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Abstract: The genomes of influenza A and B viruses have eight, single-stranded RNA segments
that exist in the form of a viral ribonucleoprotein complex in association with nucleoprotein (NP)
and an RNA-dependent RNA polymerase complex. We previously used high-throughput RNA
sequencing coupled with crosslinking immunoprecipitation (HITS-CLIP) to examine where NP
binds to the viral RNA (vRNA) and demonstrated for two H1N1 strains that NP binds vRNA in
a non-uniform, non-random manner. In this study, we expand on those initial observations and
describe the NP-vRNA binding profile for a seasonal H3N2 and influenza B virus. We show that,
similar to H1N1 strains, NP binds vRNA in a non-uniform and non-random manner. Each viral gene
segment has a unique NP binding profile with areas that are enriched for NP association as well
as free of NP-binding. Interestingly, NP-vRNA binding profiles have some conservation between
influenza A viruses, H1N1 and H3N2, but no correlation was observed between influenza A and B
viruses. Our study demonstrates the conserved nature of non-uniform NP binding within influenza
viruses. Mapping of the NP-bound vRNA segments provides information on the flexible NP regions
that may be involved in facilitating assembly.
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1. Introduction

Influenza viruses cause worldwide outbreaks of mild to severe respiratory disease and is
a constant public health concern each year. They are genetically diverse and are divided into four types
A, B, C, and D, which differ in their genetic organization, host species, and clinical-epidemiological
characteristics. During seasonal epidemics, influenza B viruses (IBV), influenza A/H3N2, and A/H1N1
viruses are continuously co-circulating and cause a significant disease burden [1]. Influenza A virus
(IAV) has a broad species tropism while IBV exists predominantly within the human population [2].

The single-stranded, negative-sense viral RNA (vRNA) genome comprises eight segments,
which are each named for the major protein that it encodes (PB2, PB1, PA, HA, NP, NA, M, NS)
and vary in length from 2.3 kb to 0.9 kb. Packaging of all eight vRNA segments is required for
production of fully infectious virus particles [3,4] and occurs en route to the plasma membrane [5,6].
Evidence suggests that assembly is a selective process [7–9], which results in a distinct pattern of seven
vRNA in a circle surrounding a single one in the center [10–13]. The precise mechanism of selective
assembly is still unknown, but direct RNA-RNA interactions have been proposed to mediate formation
of the vRNA supra-molecule [10,14].
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Each influenza vRNA is bound by multiple nucleoprotein (NP) molecules and one heterotrimeric
RNA polymerase complex composed of PB2, PB1, and PA to form a viral ribonucleoprotein (vRNP)
complex. NP is the most abundant protein in the vRNP complex and provides a scaffold for the
vRNA to facilitate the formation of the double helical vRNP structure, which results from NP binding
RNA and self-oligomerization [15–17]. Prevailing schematics of the viral genome depict a uniform
string of NP along the length of the vRNA segment. However, this classical architecture would make
segment-specific RNA-RNA interactions difficult to form. Given the fact that the classical viral genomic
structure was constructed from EM images [18,19], which provides no information regarding the RNA
structure, we proposed that NP could associate with vRNA in a non-random and non-uniform manner.
We previously used high-throughput RNA sequencing coupled with crosslinking immunoprecipitation
(HITS-CLIP) to map NP association to vRNA for all eight segments of two H1N1 strains [20] and found
that NP bound to RNA in a non-uniform, non-random manner. This was highly reproducible. Recently,
another group using a similar technique (PAR-CLIP) also found that NP does not bind randomly and
uniformly to H1N1 vRNA [21]. These studies propose a new architecture of the influenza viral genome.

In this study, we performed HITS-CLIP to map NP association to vRNA for all eight segments of
a seasonal H3N2 and an IBV strain. These viruses were chosen since they co-circulate with seasonal
H1N1 viruses and have the potential to reassort in nature. We demonstrate that H3N2 has some
correlation to the NP-vRNA binding profiles of H1N1 while IAV and IBV strains have no correlation
in their NP-binding profiles. Our studies demonstrate that the non-uniform, non-random NP-binding
pattern is consistent for all human seasonal viruses and is a conserved feature of the influenza
genomic architecture.

2. Materials and Methods

2.1. Cells and Viruses

Madin-Darby canine kidney (MDCK) cells were maintained in Eagle’s Minimum Essential
Medium (EMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine
serum (FBS, Hyclone, Logan, UT, USA), 2 mM L-glutamine (Gibco, Waltham, MA, USA),
and 1% penicillin/streptomycin (Gibco). A/Panama/07/1999 (H3N2) virus was a generous gift
from Dr. Zhiping Ye (Center for Biologics Evaluation and Research, FDA) through the WHO Global
Influenza Surveillance Response System. The influenza B virus, B/Texas/02/2013 (Victoria Lineage),
Cell-Derived, FR-1302, was obtained through the Influenza Reagent Resource, Influenza Division,
WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for
Disease Control and Prevention, Atlanta, GA, USA.

2.2. HITS-CLIP and Deep Sequencing Data Analysis

HITS-CLIP was performed as described previously [20]. Two confluent T175 flasks of MDCK
cells were washed with phosphate-buffered saline and infected with the indicated virus at a dilution
of 1:10,000 in serum-free EMEM containing TPCK-trypsin (Worthington Biochemicals, Berkshire, UK).
At 96 h post-infection, 40 mL of the culture medium containing ~107 infectious virus particles
per mL was harvested and cellular debris was pelleted by centrifugation at 2000× g for 20 min.
A clarified supernatant was UV irradiated at 254 nm (400 mJ/cm2 followed by 200 mJ/cm2) and
ultra-centrifuged at 200,000× g for 2 h on a 30% sucrose-NTE (100 mM NaCl, 10 mM Tris pH 7.4,
1 mM EDTA) cushion. Concentrated virions were re-suspended in PXL buffer (1× PBS, 1% NP40,
0.5% deoxycholate, 0.1% SDS), treated with DNase and RNase, and it was followed by a partial
RNase A (0.25, 0.025, and 0.0025 µg) digestion for 5 min at 37 ◦C. Virus lysate was incubated with
the Dynabead Protein G conjugated to mouse monoclonal antibody MAB8251 (Millipore, Burlington,
MA, USA) for A/Panama/07/1999 or mouse monoclonal antibody ab2074 (Abcam, Cambridge,
MA, USA) for B/Texas/02/2013 to immuno-precipitate influenza NP. 5′ and 3′ adaptor ligation,
RT reaction, and first-round PCR amplification were performed before preparing Illumina-compatible
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deep sequencing libraries using the NEBNext Ultra DNA Library Prep Kit (NEB, Ipswich, MA, USA).
Deep sequencing was carried out using Illumina’s NextSeq platform and the data were deposited in
the Sequence Read Archive under accession numbers SRP158158. Data analysis was performed using
the NovoAlign alignment program and mapping the reads to reference genomes available from the
NCBI database. Sequencing results were visualized on the Integrated Genome Viewer [22].

2.3. Pearson Correlation Analysis

HITS-CLIP data were normalized to the highest peak within each segment (excluding super
peaks). The normalized read depth at each nucleotide position was compared between H1N1, H3N2,
and IBV strains using the Prism 6 software (GraphPad, La Jolla, CA, USA). The Pearson correlation
coefficients and corresponding p-values were determined between influenza virus strains for each
segment. In general, Pearson correlation coefficients (r) range from 1 to −1 where r ≥ 0.7 demonstrates
a high positive correlation, 0.5≤ r < 0.7 is a moderate positive correlation, 0.3≤ r < 0.5 is a low positive
correlation, and r < 0.3 is a negligible correlation [23]. To compare IAV and IBV vRNA segments with
different lengths, the sequences of the two strains were aligned using a multiple sequence aligner and
the gap corrected by padding any gaps with the preceding values in the bedGraph file.

2.4. Peak Analysis

Predicted NP binding sites were determined using the peak-finding algorithm MACS [24].
For each HITS-CLIP experiment, a p-score was chosen that exhibited the best performance in terms of
calling NP peaks. Non-peak regions were anything not called a peak by MACS and include HITS-CLIP
read coverage of less than 5% of the maximum peak height of each experiment. Mean peak widths
were calculated using the coordinates obtained from MACS analysis and omitting apparent double
peaks that were called a single peak by the algorithm.

Nucleotide composition for peaks was determined using the coordinates provided by the MACS
software. The sequences were isolated and the percentages of A, U, G, and C were calculated based
on the length of the peak. Nucleotide compositions of non-peak regions were calculated in the same
manner. The nucleotide percentages for each peak and non-peak were graphed as a scatter plot to
illustrate the observed variation. A two-way ANOVA analysis using Prism 6 software (GraphPad)
identified a highly significant difference in the G and U content between peaks and non-peaks
(p-value < 0.0001). No statistically significant difference was observed between the percentage of A
and C bases.

2.5. Continuous Wavelet Transforms

To examine potential periodicity in the NP-vRNA binding patterns, continuous one-dimensional
wavelet transforms (CWT) were performed on NP-vRNA binding profiles using the “Analytical Morlet”
wavelet package within the MATLAB wavelet toolbox. The sampling rate was defined as 1 per
nucleotide and the resulting wavelet analysis was mapped using filled contour plots with a nucleotide
repetition length as the “y-axis” frequency parameter.

3. Results

3.1. Seasonal H3N2 and IBV NP-vRNA Binding Profiles

Previous studies by us and others examining the architecture of the influenza genome using
cross-linking immunoprecipitation based approaches have been performed exclusively on H1N1
influenza A strains [20,21]. To determine whether the non-uniform, non-random binding pattern of
NP on viral RNA was conserved to other human seasonal influenza viruses. NP HITS-CLIP was
performed on a purified seasonal H3N2 and IBV viruses generated from MDCK cells infected with
A/Panama/07/1999 (H3N2) or an IBV strain of the Victoria lineage (B/Texas/02/2013). As with
H1N1 viruses [20], the H3N2 NP association differed throughout the genome, which demonstrates
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enriched binding of NP to certain vRNA regions (Figure 1). Interestingly, very few NP-free regions
were observed in each of the H3N2 segments with segment 2 (PB2), 7 (M), and 8 (NS) each containing
only one such region (Figure 1, black arrowheads). Similar to IAV, we observed a non-uniform and
non-random binding profile of NP association for IBV vRNA (Figure 2), which demonstrates that this
architecture of the influenza viral genome is conserved between IAV and IBV. In addition, we observed
a few areas of specific vRNA segments that were so abundant in our HITS-CLIP that we termed
them ‘super peaks’ (Figure 2, black arrowheads). These were seen in IBV segment 6 (NA) as well
as in IBV segment 7 (M). The significance of these highly enriched NP sites is unclear and requires
further exploration. Overall, the genomic architecture of H1N1 strains where NP binds to viral RNA
in a non-uniform non-random manner is consistent in seasonal H3N2 and IBV viruses.
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Figure 1. NP binding profile for seasonal H3N2 A/Panama/07/1999 strain (A–H). The abundance of
NP on each vRNA segment was examined using HITS-CLIP on purified virions. Cell-grown virions
were concentrated on a sucrose cushion, UV-crosslinked, treated with a partial RNase digestion,
and was followed by immunoprecipitation with an anti-NP monoclonal antibody. A representative
profile for each segment is presented as an IGV track. The nucleotide lengths and segment names
are shown on the x-axis. Normalized reads, based on the highest peak, are displayed on the y-axis.
Low NP-binding areas are indicated by black and red arrowheads.
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Figure 2. The NP binding profile for the IBV B/Texas/02/2013 strain (A–H). The abundance of NP on
each vRNA segment was examined using HITS-CLIP analysis on purified virions with an anti-IBV NP
specific antibody. A representative profile for each segment is presented as an IGV track. The nucleotide
lengths and segment names are shown on the x-axis. Normalized reads based on the highest peak
excluding “super peaks” (black arrowheads) are displayed on the y-axis.

3.2. Characterization of Enriched NP-Binding Regions

We performed a number of analyses on the peaks from all the IAV and IBV strains to understand
whether there are any common properties that elicit NP binding. First, we parsed out peaks versus
non-peaks for each segment from both strains by using the peak calling algorithm MACS [24].
The sequence for all peaks was then analyzed using a motif finder software, MEME [25,26], but no
common sequence motifs were observed.

We have shown previously that NP from two H1N1 strains preferentially bound vRNA that
is G-rich and U-poor compared to non-peaks [20]. To examine whether the same nucleotide bias is
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present in the IAV and IBV strains analyzed in this study, we calculated the nucleotide content of
peak and non-peak regions and compared them to each other as well as the overall genome-wide
content (Figure 3A,B). For seasonal H3N2, peaks were significantly enriched in guanine (G) residues
when compared to the non-peak content (22% compared to 15%) while uracil (U) bases were relatively
depleted (31% compared to 39%) (Figure 3A). This observation was also true for IBV with peaks having
21% G bases as compared to 17% in non-peaks and U bases being present at 32% in peaks and 37% in
non-peaks (Figure 3B). These differences were statistically significant based on a two-way ANOVA
analysis (p-value < 0.0001). The content of A and C bases were maintained at approximately 23% in
both populations. Taken together, these data suggest that both IAV and IBV NP proteins preferably
associate with relatively G-rich and U-poor regions of vRNA.

Next, we examined the nucleotide width of NP peaks. As depicted in Figure 3C,D, we observed
that WSN and H3N2 had similar NP peak widths while they were slightly wider in H1N1pdm.
Intriguingly, the peak width of IBV is shifted to include even more nucleotides than IAV NP peaks,
which suggests a larger footprint of IBV NP compared to IAV NP. IBV NP has an additional 50 amino
acids in the N-terminus [27] and the increased peak width may reflect the larger size of the NP protein.
The RNA binding pocket of each NP monomer can associate with 20 to 26 nucleotides [19,28,29].
Therefore, the widths of the HITS-CLIP peaks for all segments of IAV and IBV suggests that a peak
consists of approximately three to four NP proteins. Consistent with our results, structural studies have
crystalized IAV NP as trimeric complexes [30,31] while IBV NP has been crystalized as tetramers [32].
The common peak width in IAV capable of comprising an NP trimer may suggest a unique property
of the NP oligomer assembly that contributes to vRNA association rather than being an artifact of
crystal formation.
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Figure 3. Characterization of NP-peaks. Regions of the vRNA segment that correspond to NP-peaks
were identified using the peak calling algorithm MACS [24]. The percentage of each nucleotide was
calculated for each peak and compared to non-peak regions as well as to the total genome sequence
for A/Panama/07/99 H3N2 (A) and B/Texas/02/2013 (B). This analysis identified a statistically
significant nucleotide bias for NP association in peaks, which are G-rich and U-depleted compared to
non-peaks. (C) Histogram of the nucleotide foot-print of peaks from four strains: WSN, A/CA/07/09
H1N1pdm, A/Panama/07/99 H3N2, and B/Texas/02/2013. (D) Summary of the peak number and
width described in C.
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Lastly, we explored whether a consistent underlying pattern in NP-vRNA binding could be
identified. Specifically, the possible existence of a hidden periodicity to the NP-vRNA binding pattern
extends over the entire length of the vRNA for each strain. We performed a periodicity analysis
on NP-vRNA binding profiles of all segments for each of the influenza strains using continuous
wavelet transformations (CWT). CWT provides a visually intuitive way to analyze the periodicity
of the entire binding profile but only a small section at a time, which is similar to a local Fourier
analysis. The resulting CWT plots for the seasonal H3N2 are shown in Figure 4 for all eight segments.
The two-dimensional contour plots in Figure 4 display the repetition interval on the y-axis, nucleotide
position on the x-axis, and the magnitude of periodicity is shown as color-coded signal intensity at
a given position. A long-range periodicity, if present, would be visible as a band of signal, horizontal
to the x-axis, across the entire CWT contour plot. The only signals that were observed across the entire
CWT contour plot were those at repeat lengths of 1000, which would be consistent of peaks found
roughly at each end of the genome. Therefore, based on the CWT analysis, no clear periodicity of
NP binding along the length of the viral genome was observed for any segment of seasonal H3N2
(Figure 4). Additionally, CWT analysis was performed for all four strains and we observed that
the CWT for each segment was strain specific and varied between segments for a given viral strain.
These data confirm that NP-vRNA binding profiles are non-uniform and non-periodic.
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Figure 4. Normalized wavelet transforms of NP-vRNA binding profiles for each seasonal H3N2
A/Panama/07/1999 segment. Binding profiles were analyzed for patterns that could originate from
NP-vRNA interaction and occur at regular intervals with the NP scaffold structure. Regular NP
contact over the entire length of the NP vRNA segment should show up as a strong horizontal smear
(yellow-white) across the graph, which is centered vertically at the repetition interval. The signal of
the wavelets power is color coded, according to the scale bar. Each graph is presented as the x-axis:
location along the segment, y-axis: interval over which binding is repeated. Repetition lengths are
meaningful for a repetition length under 100 nucleotides because a signal at long repetition lengths of
the order of the segment length could involve chance contact at 2 to 3 locations only.

3.3. Comparison of IAV and IBV NP-vRNA Binding Profile

To determine if the NP binding profiles for a given segment were conserved across strains,
we calculated the Pearson correlation coefficient for each segment and, as a whole genome, where all
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eight segments were concatenated together between all four strains. Pearson correlations provide
a quantitative assessment of the relatedness of two patterns where r ≥ 0.7 indicates a high positive
correlation, 0.5 ≤ r < 0.7 is a moderate positive correlation, 0.3 ≤ r < 0.5 is a low positive correlation,
and r < 0.3 is a negligible correlation [23]. Comparing the binding profiles of H3N2 to the H1N1 strains
previously published (WSN and the H1N1pdm) produced low genome-wide Pearson correlation
coefficients ranging from 0.29 to 0.33 (Table 1). These correlations varied among segments since certain
segments had a much stronger similarity when compared to others. For example, segment 2 (PB1)
exhibited the highest correlation between H3N2 and H1N1pdm viruses (r = 0.68, Table 1), and segment
4 (HA) had the lowest Pearson correlation (r = 0.16, Table 1). These observations are consistent with
sequence similarity of these two strains where PB1 nucleotides are 95% similar between Panama and
H1N1pdm strains and no similarity is present between the HA nucleotide sequences. In addition,
to address whether peak height could bias the Pearson correlation values, we converted the HITS-CLIP
data from read counts to a binary value for peak or no peak, 1 and 0 respectively, based on the MACS
algorithm. Pearson correlation performed on the binary data resulted in a slight increase in the overall
Pearson values but did not alter the trends in observed segments.

Table 1. Pearson correlation values of NP-vRNA binding profiles for all viruses and segments.

Viral Segments

Virus Comparison

H1N1pdm H3N2 IBV

Pearson p-Value Pearson p-Value Pearson p-Value

Combined eight segments
WSN 0.42 <0.00001 0.29 <0.00001 −0.01 0.33816

H1N1pdm 0.33 <0.00001 0.04 <0.00001
H3N2 −0.02 0.00618

Segment 1 (PB2)
WSN 0.40 <0.00001 0.33 <0.00001 −0.07 0.00124

H1N1pdm 0.20 <0.00001 0.05 0.02013
H3N2 0.35 <0.00001

Segment 2 (PB1)
WSN 0.08 0.00023 0.22 <0.00001 0.14 <0.00001

H1N1pdm 0.68 <0.00001 0.01 0.73457
H3N2 0.20 <0.00001

Segment 3 (PA)
WSN 0.66 <0.00001 0.65 <0.00001 −0.07 0.00061

H1N1pdm 0.67 <0.00001 −0.04 0.03624
H3N2 −0.15 <0.00001

Segment 4 (HA)
WSN 0.70 <0.00001 0.17 <0.00001 0.10 2.00 × 10−5

H1N1pdm 0.16 <0.00001 0.30 <0.00001
H3N2 0.11 <0.00001

Segment 5 (NP)
WSN 0.41 <0.00001 0.25 <0.00001 0.22 <0.00001

H1N1pdm 0.30 <0.00001 0.19 <0.00001
H3N2 0.01 0.67598

Segment 6 (NA)
WSN 0.64 <0.00001 0.20 <0.00001 −0.06 0.0283

H1N1pdm 0.35 <0.00001 0.01 0.81643
H3N2 −0.08 0.00274

Segment 7 (M)
WSN 0.34 <0.00001 0.70 <0.00001 −0.04 0.20718

H1N1pdm 0.19 <0.00001 −0.03 0.30731
H3N2 −0.07 0.01504

Segment 8 (NS)
WSN −0.06 0.03796 0.36 <0.00001 0.29 <0.00001

H1N1pdm 0.45 <0.00001 −0.10 0.00067
H3N2 0.13 2.00 × 10−5

Since IAV and IBV vRNA segments differ in length, to compare the pattern of NP-vRNA binding
between IAV and IBV strains, we accounted for the difference in size of the segments by aligning the
genome sequences and subsequently padding the gaps with the preceding values in the bedGraph
file. Surprisingly, when the segments were gap corrected, we found that the Pearson correlation
coefficients between IBV and all IAV strains encompassing all eight segments was close to 0 (Table 1).
This observation suggests that the IAV and IBV NP binding patterns are unrelated to each other.
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However, some segments had higher correlation coefficients: IBV segment 8 (NS) and WSN had
a coefficient of r = 0.395 and segment 1 (PB2) of IBV and H3N2 had a coefficient of 0.361 while
displaying no significant sequence similarity (Figure 2A,H, and Table 1). Overall, we observed that the
NP binding pattern over the entire genome of a seasonal H3N2 virus has a low correlation to H1N1
strains while the NP binding pattern of an IBV strain has no correlation to any IAV strain tested.

4. Discussion

In this study, we show that seasonal H3N2 and IBV strains display a non-uniform, non-random
NP-vRNA binding pattern (Figures 1 and 2), which is similar to H1N1 strains [20,21]. Overall,
all strains tested had a similar number of peaks (Figure 3D) and peaks trended to be more G-rich and
U-poor compared to non-peaks. These observations provide the first evidence for a nucleotide bias
in NP-vRNA binding. In addition, we demonstrate that the frequency of NP-peaks along a vRNA
segment does not follow a periodic pattern (Figure 4). Lastly, we compared the NP-binding profile of
three IAV, two H1N1, and one H3N2 strain and observed low correlation between strains when all
eight segments are concatenated together. Interestingly, the Pearson correlation of NP-binding patterns
between segments revealed that some segments were more similar than others, which may be related
to sequence similarity or imply a similar relationship during influenza viral RNA assembly.

Efficient incorporation of all eight segments requires segment-specific packaging signals that are
known to be in the 3′ and 5′ ends of each vRNA segment [33–40]. Specific regions within the coding
sequence of vRNA segments have also been identified using in vitro binding assays [10,11,13,14,41,42].
Many of the regions responsible for vRNA-vRNA interaction were located within the coding region for
the avian H5N2 (A/Finch/England/205/91) virus [11,42]. However, these studies were performed on
naked RNA without NP. Based on the distinct association of NP to the vRNA segments, the addition
of NP might alter the regions of a vRNA segment available for base pairing. A recent study using
vRNPs from a H3N2 (A/Udorn/307/72) virus found that segment 2 (PB1) between nucleotides 1776
and 2070 interacted with segment 6 (NA), which drives co-segregation of these two segments in the
virus [43]. In our NP-vRNA binding profile of H3N2, segment 2 (PB1) contains two NP-free regions
and, interestingly, one of these lies within nucleotides 1776–2070 (Figure 1B, red arrowhead). Therefore,
it is an intriguing possibility that the NP-vRNA binding patterns may provide insight into potential
vRNA-vRNA interactions.

Segmentation of the influenza virus genome facilitates exchange of vRNPs between co-infecting
strains and provides an evolutionary advantage to the virus. Within the human population, H3N2 and
H1N1 viruses continuously co-circulate during seasonal epidemics and have previously reassorted to
generate a novel H1N2 virus strain [44] that caused a small outbreak during the 2001 to 2002 season.
IBV also co-circulates but is evolutionarily divergent and intertypic re-assortment of vRNA segments
has never been observed in nature or tissue culture [45]. Interestingly, there is a genetic bias during
reassortment where not all 256 (from 28 vRNP choices) possible virus combinations are observed during
experimental reassortment studies [46]. Mutations caused by the influenza error-prone polymerase as
well as reassortment can promote genetic diversity. However, most re-assortment events are deleterious
due to protein incompatibility [47]. Taken together with evidence for intersegmental interactions within
the vRNA coding regions, NP binding to vRNA may play a role in potential reassortment events.
Variation in influenza NP density along vRNA segments may aid in the coordinated assembly of
all eight vRNP segments in an orderly process. Conserved NP-binding patterns between segments
from different strains, as we observed in Table 1, may also provide insight into the reassortment
potential of certain vRNA segments. Further investigation is needed to determine whether segments
with highly similar NP binding patterns are interchangeable and are more likely to be packaged with
segments from different strains in a coinfected cell. Expanding on the notion that NP-binding patterns
may contribute to vRNA assembly, a re-assortment and the striking differences between IAV and
IBV NP-vRNA binding profiles may provide an explanation as to why IAV and IBV are incapable
of reassortment.
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We demonstrate that NP-vRNA binding profiles of IAV and IBV are non-uniform, which highlights
a conservation in the new architecture recently proposed by us and others [20]. Both IAV and IBV
encode homologous proteins, which can be distinguished by different protein size, and contain
noncoding regions that serve as promoters for replication and transcription [48]. For example,
biochemically purified IAV and IBV NP proteins are very similar [49] while the N-terminal domain
of IBV is significantly longer than IAV and shares little homology [30,32]. Interestingly, we observed
that both IAV and IBV NP proteins have a similar RNA nucleotide bias for binding with preferential
association to G-rich and U-poor regions as compared to non-peak regions (Figure 3). It is still unclear
what drives NP enrichment at specific sites on the vNRA and further studies are needed to examine
the contribution of the RNA sequence and the structure on NP binding.
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