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Abstract: The phenome is the complete set of phenotypes resulting from genetic variation in populations of an organism. 

Saturation of a phenome implies the identification and phenotypic description of mutations in all genes in an organism, 

potentially constrained to those encoding proteins. The human genome is believed to contain 20-25,000 protein coding 

genes, but only a small fraction of these have documented mutant phenotypes, thus the human phenome is far from com-

plete. In model organisms, genetic saturation entails the identification of multiple mutant alleles of a gene or locus, allow-

ing a consistent description of mutational phenotypes for that gene. Saturation of several model organisms has been at-

tempted, usually by targeting annotated coding genes with insertional transposons (Drosophila melanogaster, Mus muscu-

lus) or by sequence directed deletion (Saccharomyces cerevisiae) or using libraries of antisense oligonucleotide probes in-

jected directly into animals (Caenorhabditis elegans, Danio rerio). This paper reviews the general state of the human 

phenome, and discusses theoretical and practical considerations toward a saturation analysis in humans. Throughout, em-

phasis is placed on high penetrance genetic variation, of the kind typically asociated with monogenic versus complex 

traits. 
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INTRODUCTION 

 The phenome is the complete set of phenotypes resulting 
from genetic variation in populations of an organism [1-4]. 
The concept of phenomic saturation cannot be approached 
without a careful consideration of the meaning of phenotype, 
and the genotype-phenotype map. In the most general sense, 
the phenotype of an individual organism is the sum total of 
its physiology. Such a broad definition is not particularly 
useful. In the context of genetics, phenotypes may be defined 
more specifically as those physiological traits which vary 
measurably as a function of genomic sequence differences 
among individuals in a population. Thus, many aspects of 
physiology can be ignored depending on the type of se-
quence differences being studied. For example, mutations in 
the gene encoding the low density lipoprotein receptor 
(LDLR) have huge impact on plasma cholesterol, atheroscle-
rosis, heart disease, but have no obvious or known impact on 
eye color or height. In contrast, mutations in the genes en-
coding pigment-producing enzymes in the iris may be irrele-
vant to heart disease. One of the advantages of forward ge-
netics is that one begins with an unusual physiological trait 
observed in actual organisms (human or model animal), and 
proceeds to search for genetic variation that underlies that 
trait. In contrast, if one starts with a gene of interest, and 
mutates it in a directed way (or even through screening undi-
rected libraries of mutants), one has no idea what the physio-
logical effects might be so one is obliged to explore all pos-
sible phenotype consequences – a time consuming and diffi-
cult task with animals that cannot tell us how they are  
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feeling! Both approaches have been employed in model stud-
ies, but human genetics in intact organisms is generally re-
stricted to forward genetics except in some special cases of 
clinical trials involving somatic cell genetic manipulation 
(i.e. gene therapy). 

MONOGENIC VERSUS COMPLEX PHENOTYPES 

 To some extent, the distinction between monogenic and 
complex phenotypes is operational. All genetic variants in 
nuclear chromosomes are de facto transmitted in a Men-
delian fashion. Thus even weakly penetrant variants, such as 
most SNPs found by association through large scale genome-
wide studies in case control cohorts, are nonetheless “Men-
delian”. Monogenic or Mendelian conditions are defined as 
being caused by variants in single genes, with the variants 
having a high penetrance (i.e. added risk). As a simple ex-
ample, the clinical phenotype of cystic fibrosis has been 
made for many thousands of patients across all human popu-
lations. In all cases that have been studied, mutations are 
found in a single protein-coding gene, CFTR. Thus there is a 
clear one gene-one phenotype correlation for this condition. 
In contrast, oligogenic or polygenic or complex phenotypes 
are usually thought of as those for which combined input of 
many different genetic variants is required, potentially with 
significant environmental factors required as well (Fig. 1). 

 Even for nominally monogenic disorders the case of CF 
is far from typical. There are many medical examples in 
which a particular clinical diagnosis has been linked to high 
penetrance genetic variation in many different genes (e.g. 
ataxias [5], sensorineural deafness [6-8], retinitis pigmentosa 
[9-11]). In Charcot-Marie-Tooth disease, causal genes have 
been found with a broad spectrum of cellular processes in-
cluding specialized neuronal structures, protein turnover, 
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vesicle fusion, microtubule transport, transcription factors, 
and even several tRNA-synthetases [12-19]. Clearly, some 
disease diagnoses represent a common end-point for differ-
ent types of defects in gene function. 

 Somewhat less common in human genetics are examples 
of different allele-specific physiological outcomes. For obvi-
ous quantitative traits, such as plasma cholesterol, there are 
alleles in genes such as PCSK9 and APOB which may alter-
natively cause hyper- or hypocholesterolemia. These appear 
to correlate with gain or loss of function, such that loss of 
function alleles cause either high end or low end mean val-
ues in the measured trait, but not both, whereas gain of func-
tion alleles cause the opposite mean value. In a developmen-
tal example, Huntington disease is caused by triplet repeat 
expansions of a particular region of the encoding gene lead-
ing to some form of aberrant protein which causes neuronal 
toxicity through an incompletely understood mechanism. 
Formally such an allele is a clear gain of function (more spe-
cifically, a neomorph or new function versus a hypermorph 
or higher level of normal function). The alternative type of 
allele, a loss of function, is not known for the HD gene in 
humans, however the orthologous HD gene directed knock-
out is lethal in homozygous mice [20], and it is likely that a 
human loss of function allele would have a similar extreme 
phenotype clinically unrelated to Huntington disease. 

 There are also a variety of relatively well-documented 
examples of digenic inheritance in human disease, such that 
a clinical phenotype depends on simultaneous genetic varia-
tion in two different protein-coding genes. Retinitis pigmen-
tosa resulting from simultaneous heterozygous mutations in 
the genes peripherin/RDS and ROM1 is perhaps the first 
documented example [21-28]. There are also likely digenic 
models for hemochromatosis [29, 30], Bardet-Biedl syn-
drome [31-36], sensorineural deafness [37-46] and other 
phenotypes. 

 For many monogenic genetic disorders there is signifi-
cant inter-patient variability. This may be due to allele spe-
cific effects of the primary causal gene, or to secondary ge-
netic modifiers [47, 48]. In some cases, it can be attributed to 
well-understood environmental factors. For example, muta-
tions of the gene encoding phenylalanine hydroxylase cause 
childhood onset phenylketonuria, but there is great variation 
in clinical severity among patients [49], and disease progres-
sion depends on dietary intake levels of phenylalanine, such 
that dietary restrictions have beneficial effects in clinical 
practice. Similarly, hereditary hemochromatosis is generally 
more severe clinically in males than females carrying the 
same risk alleles; this difference is generally interepreted as 
females being partially rescued from iron overload through 
regular blood loss during menstruation [50]. It is widely as-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Monogenic versus complex phenotypes. 

Genetic variants may be anywhere between vanishingly rare (with a minor allele frequency at a minimum of one in the entire human popula-

tion of approximately 6 billion, thus an allele frequency of 1/12x10
9 

chromosomes) up to 50% (after which the minor allele becomes the 

major allele). The physiological effect of a genetic variant may be individually very strong (high penetrance) or weak (low penetrance). Rare 

high penetrance alleles have historically been identified in families, and studied by genome-wide scanning with dense polymorphic anony-

mous markers, currently SNPs, followed by statistical linkage analysis and gene resequencing to identify causal variants in the family. Com-

mon low penetrance alleles are typically identified in large case/control cohorts, and studied by genome-wide SNP genotyping followed by 

simple statistical tests of differential allele frequency in the two classes, or by more sophisticated linkage disequilibrium (haplotype) map-

ping. Common high penetrance variants are unusual, since these would normally be either quickly fixed or eliminated from breeding popula-

tions. One circumstance under which such variants can be maintained is balanced selection, where there are opposing selections on heterozy-

gotes versus homozygotes (malaria and sickle cell anemia being the best documented example). Rare variants of small functional effect are 

easily discovered through random resequencing but difficult to study mechanistically. 
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sumed that combinations of genetic and environmental fac-
tors play a major role in clinical severity for many mono-
genic disorders [51-53]. This has been difficult to address 
experimentally for most such disorders, as they are individu-
ally rare and affected patients are dispersed across the globe. 
Significant attempts have been made to identify genetic co-
factors or modifiers for cystic fibrosis [54-57] and hemo-
chromatosis [58, 59]. The distinction between digenic (or 
oligogenic) inheritance and genetic modifiers is somewhat 
semantic, depending on the ease of clinical ascertainment 
and severity of the physiological effect of the primary gene. 
In any case, the ability to combine spontaneous, mutagen-
induced, and engineered genetic variants in model organisms 
such as mouse and fruit fly, make it clear that physiological 
states can be readily decomposed into the effects of multiple 
genes acting in concert in an individual. The commonly used 
term “synthetic phenotype” in Drosophila genetics refers to 
the same phenomenon as “digenic inheritance”, or “major 
genetic modifier”, as used more often in human genetics. 

 Monogenic disorders are operationally identified primar-
ily by their observed transmission in families. In the case of 
weakly penetrant genetic variants, or those with major ge-
netic modifiers, it is difficult or impossible to trace the in-
heritance of the physiological state (whether a disease, a 
quantititative trait, or a benign trait such as height) in fami-
lies, in a fashion consistent with a single chromosomal locus. 
Furthermore, for every anecdotal case of traits “running in 
families” such as hair or eye color or height, there are exam-
ples where this does not occur. Clearly, some physiological 
states require multiple genetic inputs of similar strength 
penetrance, and some allelic variants on their own have little 
physiological impact. Assuming that all physiological traits 
can be defined by some quantitative variable or variables, 
although these may not be known, the effect of an individual 
variant allele can be visualized by its effect on the mean trait 
measurement. The further from the population mean a par-
ticular allelic variant is, the easier it is to detect and follow in 
individual pedigrees. The distinction between dominant and 
recessive acting alleles, while a practical complication in the 
detection of familial transmission, is theoretically not rele-
vant to this point. 

 Even so, examples are known which blur these distinc-

tions. Age-related macular degeneration (ARMD) has been 

strongly associated with genetic variation in the gene encod-

ing complement factor H (CFH) [60-63]. The gene was iden-

tified independently by family-based linkage and in genome 

wide association methods, although the GWAS approach 

was clearly stronger. However, there is a very strong age-of-

onset effect, which combined with the natural human life-

span makes it difficult to observe familial transmission of the 

phenotype. Factoring in the age-of-onset, the penetrance of 

CFH variants is extremely high, and this can be arguably 

considered a monogenic trait in the affected patients. If hu-

mans lived several hundred years, large dominant pedigrees 

for ARMD caused by CFH variants might well be ascer-
tained. 

 Not all traits are diseases, obviously, although diseases 

receive the most attention from geneticists and are often the 

most readily ascertained through routine clinical surveil-

lance. However, non-medical traits such as hair or eye color, 

and ability to smell or taste particular chemicals, have been 
studied genetically [64-70]. 

HOW MANY GENES ARE THERE? 

 Determining the number of actual genes encoded by hu-
man (or other) genomes has proved surprisingly vexing. 
From early estimates in excess of 80,000 protein coding 
genes in the human genome based on quantitative measure-
ments of CpG islands [71], estimates have dropped repeat-
edly, to 28-34,000 based on exon comparison between the 
pufferfish Tetraodon nigroviridis and human genomes [72], 
to 21,037 based on large scale cDNA library sequencing [73, 
74], to 20,488 based on comparison of proposed human 
genes to sequences of other primate genomes [75]. Currently 
RefSeq, a widely used NCBI library of gene annotations, 
includes 21,515 unique entries. These include substantial 
numbers of non-protein coding genes such as 363 small nu-
cleolar RNA (SNO) genes, 28 SNAR genes and 637 micro-
RNA (MIR) genes, so RefSeq probably includes approxi-
mately 20,000 protein coding genes. There are several ongo-
ing manual gene curation efforts, specifically Havana, 
VEGA [76, 77] and CCDS [78], as well as the Mammalian 
Gene Collection (MGC). The CCDS has currently curated 
18,173 different protein coding genes, although some well 
documented genes are visibly missing from the database 
which is thus still in progress. The MGC currently includes 
17,592 genes for which full length cDNA clones are avail-
able. 

 Although a consensus appears near that the total count of 
protein coding genes in the human genome is between 20-
22,000, the advent of next-generation technologies has al-
lowed further exploration of alternative splicing through 
deep resequencing of cDNA libraries. Several recent studies 
have documented novel alternatively spliced forms of known 
genes, as well as completely novel exons within previously 
studied genes [79, 80]. Thus the number of potential alterna-
tive protein isoforms is many times greater than the actual 
gene count. 

 The human mitochondrial genome has been compara-
tively straightforward to annotate, as it resembles bacterial 
genomes in gene structure. It encodes 13 proteins, all in-
volved in respiratory electron transport and oxidative phos-
phorylation, as well as 22 mitochondrion specific tRNAs, 
and the 12S and 16S ribosomal RNAs (rRNAs) required for 
the mitochondrial ribosome [81]. However, the human mito-
chondrion itself contains 900-1000 different proteins, based 
on direct proteomic analyses [82, 83]. Thus the large major-
ity of mitochondrial proteins are encoded by nuclear chro-
mosomal genes. 

STUDIES IN MODEL ORGANISMS 

 Saturation mutagenesis of model organisms has been 
widely used to identify mutable genes either for viability or 
for various interesting biological phenotypes [84]. In diploid 
organisms, dominant mutations are readily detected in het-
erozygotes after mutagenesis and breeding to rule out direct 
effects of the mutagen, although dominant lethality is obvi-
ously a difficult phenotype to recover. Recessive mutations 
can be detected in fungi by sporulation and reduction to hap-
loidy, or in metazoans by establishing mutagenized het-
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erozygous lines and inbreeding to create homozygotes, or 
particularly in Drosophila melanogaster by complementa-
tion testing of mutagenized heterozygotes with chromosomal 
deletions of cytologically or molecularly defined extent. A 
longstanding question has been whether all biochemically 
defined genes (transcribed, spliced, protein cod-
ing/noncoding, etc) have detectable mutational phenotypes. 
Even now, only a few historically saturated regions can be 
well-defined in terms of chromosomal extent, number of 
genetically mutable loci, and annotated protein-coding tran-
scripts. With the advent of the complete genomic sequence 
plus extensive gene annotation, such studies can be revisited. 
This brief overview will focus on animals, leaving plant ge-
netics aside. 

 The budding yeast S. cerevisiae is relatively straightfor-
ward to saturate since most genes lack introns. As a result at 
least for protein-coding genes, predictions can be made 
based on the occurrence of long contiguous open reading 
frames. Although the lower limit cutoff is somewhat arbi-
trary, based on annotation of the complete genome sequence 
the yeast genome project in 2001 identified 6138 potential 
protein coding genes. Essentially all of these have been indi-
vidually deleted, and the resulting strains analyzed under a 
few different sets of growth conditions [85-87]. According to 
the yeast deletion project, 18.2% of genes are essential for 
growth in rich medium. A large-scale effort is also under 
way to map genetic interactions by combining individually 
deleted genes in pairwise combination [88]. Ultimately over 
36 million different pairwise tests must be performed; to date 
5.4 million tests have been reported but the results are in-
triguing. Approximately 170,000 interactions were detected, 
meaning that a strain carrying both deletions differed signifi-
cantly in fitness from either single deletion strain. These in-
teractions could be further studied by overlaying orthogonal 
annotations such as functional cellular modules, expression 
profiles, and protein-protein interaction profiles. 

 In D. melanogaster, historical saturation mutageneses 
have been performed for multiple genomic regions, while the 
essentially complete genome sequence of the organism to-
gether with a preliminary gene annotation was published in 
2000 [89]. Overall the fly genome is believed to contain 13-
14,000 protein coding genes. Saturation of the zeste-white 
region of the X chromosome in D. melanogaster has been 
performed repeatedly, using various mutagens [90, 91]. De-
fining the region as that uncovered by a particular deletion 
(Df(1)w

rJ1
, encompassing cytological bands 3A2-3C2), mu-

tations were initially identified in 17 loci, 15 generating le-
thality and 2 generating visible phenotypes. Currently Fly-
Base annotates 31 genetic loci uncovered by this deletion, 
including genes with additional lethal, female sterile or visi-
ble phenotypes beyond the original 17. One caveat is that in 
rare cases, different mutations within the same gene may 
show genetic complementation, overestimating the number 
of actual genes. Through transcriptional and comparative 
genomic analyses, Flybase annotates a total of 43 genes in 
this chromosomal region, including 19 identified only as 
candidate genes. In some cases genetically defined loci have 
not yet been assigned to structurally defined genes. Thus up 
to three fourths (31/43) of annotated genes may be mutable 
to an observable phenotype in this region. 

 In another chromosomal region also intensively studied 
in D. melanogaster, a strikingly different result was ob-
tained. In a 2.9 million base region around the alcohol dehy-
drogenase (Adh) gene, Ashburner et al. documented 218 
potential protein coding genes, but only 73 genetically defin-
able loci in the region, of which only 49 have been assigned 
to specific structural genes so far [92]. Thus in the Adh re-
gion only a third of structurally defined genes may have in-
dividual mutational phenotypes. 

 Thus a substantial fraction, and in some cases a majority 
of protein coding genes in an interval do in fact generate a 
mutable phenotype, typically recessive lethality. Attempts at 
saturation mutagenesis using P-elements have been widely 
performed in D. melanogaster [93], however it is well 
documented that this transposon shows significant site speci-
ficity thus is not a good mutagen for true saturation. Efforts 
are currently under way to generate genome-wide saturation 
with transposable elements demonstrating less site specific-
ity than the original P-element [94-96]. Although the larger 
number of genes in the fly makes whole genome pairwise 
genetic mapping a daunting prospect, nonetheless de novo 
mutagenesis in genetically compromised fly strains is a rou-
tinely used tool to identify genetic interactions and members 
of shared physiological or regulatory pathways [97, 98]. 
Such modifier genes are often referred to as suppressors or 
enhancers of a phenotype, which may be either visible or 
lethal in nature. 

 Although the small nematode worm Caenorhabditis ele-
gans has a shorter experimental history than flies, ease of 
manipulation quickly made it a favorite among developmen-
tal geneticists. Moreover its small number of cells has per-
mitted the unique opportunity to map all of embryonic and 
postembryonic development at the cellular level [99, 100]. 
The C. elegans genome has also been sequenced, and anno-
tated to contain slightly fewer than 20,000 protein coding 
genes [101]. It remains puzzling why the worm, a much 
‘simpler’ organism than the fly, has more genes, and in fact 
has about the same number as mammals. C. elegans has been 
the subject of a large number of genetic analyses, and pilot 
transposon-mediated mutagenesis has been performed [102]. 
However, the use of antisense RNA (RNAi), originally dis-
covered in C. elegans [103], has permitted large scale gene 
knockdown experiments using libraries of gene-specific an-
tisense targeting reagents, formally similar to germ-line loss-
of-function mutagenesis [104, 105]. A study of RNAi target-
ing 16,757 genes from a predicted set of 19,427, detected 
mutant phenotypes for 1,722 probes, or 10% of targeted 
genes. Of these, slightly more than half caused embryonic 
lethality (RNAi was fed to hermaphrodite worms, allowing 
analysis of the effects in their progeny), with an estimated 
success rate of 70% compared to a set of genes with known 
germ-line embryonic lethal mutations. This suggests that 8% 
of genes can mutate to an embryonic lethal state in this or-
ganism. The overall low rate of observed phenotypes is diffi-
cult to interpret; it may simply be that most genes are func-
tionally redundant in the worm. Alternatively, RNAi rea-
gents may not be effective in completely reducing gene func-
tion for some genes. 

 Large scale random mutageneses have been performed in 
Mus musculus using both chemical and genetic mutagens 
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[106-125]. Chemical mutageneses typically employ ethylni-
trosourea (ENU), but the prohibitive logistics of generating 
and maintaining the huge numbers of heterozygous F1 lines, 
required to create homozygous F2 animals to screen system-
atically for recessive mutations, have precluded a true ge-
nome-wide saturation. Genetic approaches primarily involve 
transposon-mediated insertional mutagenesis in mouse em-
bryonic stem (ES) cells. There are now multiple libraries of 
embryonic stem cells carrying random transposon insertions, 
for which insertion sites have been mapped by direct se-
quencing. This potentially permits researchers to study the 
insertional phenotype for a gene of interest, if it happens to 
exist in a library. The vast majority of these transposon in-
sertions have not been developed from ES cells into whole 
animals. Moreover, many of these insertions are not explicit 
gene knockouts as insertions are not targeted to coding ex-
ons. 

 As an alternative to random mutagenesis, many targeted 
gene knockout mouse strains have been constructed. These 
are inevitably biased in favor of “interesting” genes, with the 
occurrence of known human genetic phenotypes being one 
component of interest. However there are other reasons for 
genes to be defined as interesting, and it is unclear whether 
existing knockouts are biased toward genes certain to yield a 
detectable mutant phenotype in mice. In a review of mouse 
knockouts as of 1995, it was reported that of 263 different 
genes targeted, 25% yielded an embryonic lethal phenotype, 
with another 10% leading to death within a few weeks post-
natally [126-128]. Overall, 95% of knockouts were reported 
to show an observable phenotype, a very high proportion in 
comparison to the RNAi results with C. elegans. Subse-
quently it was reported that about 1/3 of direct knockouts 
yield embryonic lethality [129]. In an analysis of mouse 
knockouts for 34 genes which are known targets of commer-
cial therapeutics for important human diseases, all but one 
knockout strain showed some detectable phenotype in the 
mouse, most of which were directly relevant to the equiva-
lent human disease [130]. In one case, that of insulin, the 
gene is known to be duplicated in the mouse genome, such 
that the double knockout is lethal whereas either gene alone 
does not yield a phenotype [131, 132]. In contrast, a knock-
out disrupting the insulin receptor gene, which exists in a 
single haploid copy in the mouse genome, is severely ill and 
dies shortly after birth, validating that the insulin pathway is 
intrinsically mutable in the mouse [133, 134]. 

 The zebrafish Danio rerio has been the subject of many 
large scale mutageneses, since it was originally developed as 
a research organism by Streisinger [135-140]. In the absence 
of a gene-specific targeting system, most mutageneses have 
involved ENU followed by screens for interesting biological 
phenotypes. Identifying the actual mutated genes requires 
large scale recombinational mapping using anonymous po-
lymorphic DNA markers, either microsatellites or SNPs, 
followed by positional cloning. Since the advent of high 
throughput sequencing, an intermediate approach called 
TILLING has been developed [141-143]. Instead of mapping 
and positional cloning, mutations in a given gene are found 
directly by sequencing pools of very large numbers of 
mutagenized animals (or plants, where the method was 
originally developed [142]) until a variant in the desired lo-
cus is detected. Using these approaches mutations have been 

found affecting many different physiological systems. An-
other effective approach in zebrafish is the use of antisense 
reagents. Modified oligonucleotides containing morpholino 
groups to reduce enzymatic breakdown can be injected in 
early fish embryos [144]. Oligos targeting genes are capable 
of producing very specific knockdowns, similar to the situa-
tion in worms. One limitation is that the morpholinos are 
eventually degraded, so only events of embryogenesis can be 
interrogated with this technology. Morpholinos have been 
used in other important experimental organisms such as the 
clawed frog Xenopus laevis, but genomic saturation screens 
have not been reported. 

 In sum, mutational studies in model organisms have 
demonstrated that a sizeable proportion of genes can be mu-
tated to generate observable phenotypes. The exact number 
is difficult to determine from the available data sets, as there 
seem to be broad discrepancies between yeast and worm 
(small proportion of directed knockouts/knockdowns gener-
ating phenotypes) and flies (substantial portion of genes mu-
table) and mice (large proportion of directed knockouts gen-
erating phenotypes), nor is there a consensus as to the pro-
portion of all genes that are essential for viability. It remains 
to be seen how these results will translate to human physiol-
ogy, although it seems safe to assume that there must be sub-
stantial numbers of genes mutating to embryonic lethality, to 
viability with clinically observable phenotypes, or to com-
plete viability. 

HOW MANY MONOGENIC DISORDERS ARE 

KNOWN? 

 Keeping these points in mind, how many characterized 
monogenic phenotypes are there in humans? The entire hu-
man genetics literature is vast. There are special locus-
specific databases and/or web sites for many genetic disor-
ders, such as cystic fibrosis (http://www.genet.sickkids. 
on.ca/cftr/app) and familial hypercholesterolemia (http:// 
www.umd.necker.fr/LDLR/Home_Page.html). There are at 
least three organizations attempting to curate the entire lit-
erature [145]. The best-known, Online Inheritance in Man 
(OMIM), functions as a mixed medical and genetic database, 
with entries for clinical disorders intermingled with entries 
for specific genes [146]. It has limited direct search func-
tions. Querying with the universal term 0001 together with a 
limit for allelic variants, OMIM returns 2420 independent 
gene entries at the time of writing, while the statistics page 
reports 2763 phenotypes with a known molecular basis; the 
excess presumably resulting from some genes mutating to 
different phenotypes with independent OMIM entries [147]. 
Almost all of these represent monogenic disorders (as practi-
cally defined, high penetrance variants with reasonable evi-
dence of genic pathogenicity based on the mutation itself). 
However, a fraction of these, possibly as many as 10%, may 
represent low penetrance risk alleles not clearly definable as 
part of monogenic disorders. OMIM does not curate all re-
ported genetic variants in all genes, although entries are 
regularly updated when scientifically interesting results are 
published. 

 The Human Gene Mutation Database (HGMD) curated at 
Cardiff University, attempts to consolidate all reported ge-
netic variants in the literature [148]. It has an incomplete 
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publicly available version, and an up-to-date commercial 
version. The commercial HGMD currently includes 3611 
independent gene entries and 96,631 mutation entries. It is 
difficult to assess how many of these correspond to mono-
genic conditions, versus low penetrance risk factors for 
complex phenotypes. HGMD suggests that 2491 genes con-
tain at least one presumptive high penetrance allele 
(frameshift or premature stop codon, splice site, missense or 
indel) (P. Stenson, pers comm) [149]. The difference of 
fewer than 100 genes between OMIM and HGMD may re-
late to subtleties of literature curation of suggested versus 
confirmed genotype/phenotype causation. 

 The Human Genome Variation Society (HGVS) is devel-
oping a program of comprehensive curation which may 
eventually provide similar information as OMIM and 
HGMD combined [150, 151]. Currently the database 
HGVbaseG2P appears focused primarily on the results of 
GWAS studies for complex disorders. It includes links to 
HGMD, but presumably only the publicly available content 
not the full proprietary database. 

 The total number of molecularly characterized, true 
monogenic disorders remains slightly uncertain, but is 
slightly less than 2500, representing 10-12% of protein-
coding genes. For the remaining ~90% of genes, no high 
penetrance genetic variation has been causally linked to a 
physiological phenotype in humans. 

MUTATION RATES 

 Rates of spontaneous mutation in the human genome 
have been estimated in various ways. Combining early re-
sults of sequencing a small number of real or pseudogenes, 
Drake et al. suggested a rate of approximately 10

-8
 events per 

base pair per generation, equivalent to 64 new mutations in 
each zygote [152]. By comparing partial human and chim-
panzee sequences, Nachman and Crowell estimated a neutral 
rate of 1.3-3.4x10

-8 
events per bp per generation, equivalent 

to 91-238 new mutations per zygote [153]. More recently a 
direct test was performed by sequencing large segments of 
flow-sorted Y chromosomes from two males of a precisely 
known ancestral genealogy. Four new mutations were de-
tected between the two samples, which correcting for chro-
mosome size yielded a rate of 3x10

-8 
events per bp per gen-

eration, although the small number of individual events im-
plies a reasonable sampling bias [154]. Finally, whole ge-
nomes were resequenced for a pedigree of two parents and 
two offspring, allowing the most direct possible measure. A 
total of 28 confirmed new mutations were detected, which 
after various corrections yielded a rate of 1.1x10

-8
 events per 

bp per generation, equivalent to 70 new events per zygote, 
with a substantially lower chance of sample bias [155]. 

 These all represent essentially point mutation rates. It is 
now clear that larger structural rearrangements, generally 
termed copy number variants (CNVs), also arise at reasona-
bly high frequencies in human populations, although it is 
difficult to assess true de novo mutation rates given the 
somewhat arbitrary definition of a CNV [156-158]. Many 
CNVs include genes and have potential functional conse-
quences, although the proportion is not yet well established 
[159]. 

 Not all new mutations need have functional conse-

quences. It is generally considered that most of them are in 

fact functionally neutral. There is no easy way to assess this 

since most new mutations arise in non-coding regions of the 

genome, in either introns or intergenic regions, where our 

understanding of functional elements is still very incomplete. 

The fraction of haploid sequence coding for protein is typi-

cally considered to be 1-2%, thus if each zygote receives 70 

new mutations, at most one of these is expected to be in a 

coding exon. Coding variants may be silent (synonymous) or 

change an amino acid (nonsynonymous). Some studies have 

argued that a large proportion of nonsynonymous changes 

have functional significance, although these may only be 

evident over evolution time frames and not be directly rele-

vant to interpretation in individuals [160-163]. It should be 

noted that synonymous changes may also have measurable 

effects on gene function, by influencing splicing via exon 

splice enhancer or repressor elements, or translation effi-
ciency. 

 The rate of new deleterious mutations (usually termed U 

when summed over the entire genome), while certain to be 

substantially less than the rate of overall nucleotide change, 

cannot readily be inferred from the global rate. A compari-

son of human and chimpanzee sequences, using some as-

sumptions about evolutionary selection, led to an estimate 

for U of 1.6 per zygote [164]. A separate analysis, again us-

ing human/chimp comparison, obtained a value of U = 3 

[153]. In a key study, Kondrashov combined and re-analyzed 

data for 20 different genes for which typical loss-of-function 

mutations lead to either autosomal dominant or X-linked 

high penetrance clinically ascertainable phenotypes [165]. 

Medical ascertainment rates per live birth include both new 

cases and familial cases, but by restricting to new cases 

alone, the median and mean total mutation rates for this set 

of genes can be calculated as 7 and 14 x 10
-6

 per live birth 

respectively. Assuming 20,000 protein coding genes, these 

are equivalent to U = 0.14-0.28 per genome per birth, sub-

stantially lower than the rates estimated by evolutionary 

comparison. A likely explanation for the discrepancy is 

again that evolutionary comparisons probably involve func-

tional effects too modest to yield a clinically ascertainable 

phenotype in individuals. Although a rate of U ~ 0.2 seems 

low, given a worldwide 2009 birth rate of approximately 

139,000,000 [166], this represents almost 28 million new 

pathogenic mutations, or 1400 new mutations per gene 

worldwide. Even Canada, with a modest total population of 

about 34 million, has an annual birth rate of 378,000, and 

could have as many as 75,000 new pathogenic mutations per 

year nationwide. A significant caveat is that these rates may 

reflect a bias to genes with unusually high mutation rates. A 

number of X-linked recessive mutating genes have lower 

mutation rates, such that a value of U = 0.02 may be a much 

more conservative genome-average estimate [167]. Even so, 

the entire human gene repertoire is clearly saturated annually 

worldwide with new pathogenic alleles. There is no shortage 

of high penetrance mutations in every gene segregating in 

human populations. The only reason why high penetrance 

monogenic disorders are relatively rare is that most muta-
tions act recessively. 
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DOMINANCE VERSUS RECESSIVITY, GAIN VER-

SUS LOSS OF FUNCTION 

 The proportion of monogenic disorders transmitted as 

dominant versus recessive traits in families is hard to deter-

mine from the curated databases. Similarly, it is difficult to 

assess the proportion of gain-of-function (gof) versus loss-

of-function (lof) alleles, although this is not purely an issue 

of curation since for many alleles the functional effect re-

mains untested biochemically. Complete gene deletions rep-

resent the gold standard for a loss-of-function allele, how-

ever few clean deletions of individual genes have been asso-

ciated with monogenic conditions (whereas many contiguous 

deletion syndromes encompassing multiple genes are well 

documented). Geneticists generally assume that major pro-

tein truncations arising through frameshift or premature stop 

codon mutations are pathogenic, but it would be naive to 

presume that these all represent complete loss-of-function 

since amino terminal protein fragments could easily encode 

partial or aberrant activity. Wilkie provides a useful com-

pendium of molecular mechanisms that can lead to genetic 

dominance (haploinsufficiency, excessive gene expression, 

novel toxic protein function, etc) with examples from model 

organisms and the human genetics literature [168]. For indi-

vidual genes, the best way to distinguish between gain and 

loss of function phenotypes is to observe the array of alleles 

associated with a particular phenotype. For example, muta-

tions of BRCA1 which increase the risk of early-onset breast 

cancer include a wide variety of missense, truncating and 

deletion mutations [169]. It is reasonable to presume that 

most of these represent loss of function alleles. Similarly, 

many independent alleles causing Huntington disease all 

involve expansion of the triplet repeat, while causal muta-

tions elsewhere in the gene are not known for this pheno-

type, supportive of the interpretation that these are gain of 

function alleles. In contrast, Friedreich ataxia is typically 

caused by a triplet repeat expansion in the frataxin gene, 

however a small fraction of patients result from point alleles, 

both missense and truncating [170]. Conceivably, the ataxia 

in general could represent a loss of function phenotype, and 

the frequency of triplet repeat expansion alleles could result 

simply from an easily accessed mutational mechanism ver-

sus a specific novel function of the mutated protein. Alterna-

tively, some specific point alleles could cause an aberrant 

novel protein function akin to that of the triplet repeat expan-

sion. One glaring example is the gene encoding superoxide 

dismutase (SOD), mutations in which are causal for a frac-

tion of cases of amyotrophic lateral sclerosis (ALS, or Lou 

Gehrig disease). There are many different causal mutations 

in SOD, almost all of which are missense variants [171]. 

However, a mouse gene knockout does not generate the ALS 

phenotype, whereas overexpressing equivalent missense 

variants recapitulates some aspects of the human disease 

[172]. The consensus in the field is that many or most of 

these missense variants, which arise in almost every residue 

of this small tightly folded protein, are somehow gain-of-

function, although the exact biochemical mechanisms are 

still being elucidated. Thus it cannot be assumed that pheno-

types arising from many different mutations in a gene in-

variably represent loss of function, although they probably 
do in most cases. 

 The clinical presentation of different mutant alleles can 
sometimes clarify the interpretation. Hypercholesterolemia 
can be caused by one of a small number of missense muta-
tions in the gene encoding protease PCSK9. However, a 
much larger number of mutations including obligate protein 
truncations in the same gene are associated with hypocholes-
terolemia. The hyper alleles are typically heterozygous, 
whereas the hypo alleles are typically homozygous in the 
patients [173-177]. These observations strongly suggest that 
the hyper alleles are gain of function, and the hypo alleles 
are loss of function. The rarity of the gof alleles is consistent 
that the map of genotype to the hyper phenotype is more 
highly constrained in this gene than the map from genotype 
to the hypo phenotype. Similarly, many presumptive lof al-
leles of the gene encoding apolipoprotein B exist, and lead to 
hypobetalipoproteinemia (with low LDL-cholesterol) due to 
lack of this major structural protein component of VLDL and 
LDL particles. In contrast, only a small number of specific 
amino acid missense variants are known in the ApoB gene 
causing hyperbetalipoproteinemia (with high LDL-
cholesterol), with the mechanism believed to be failure of 
recognition of mutant ApoB protein by the LDL receptor, 
and thus inability of the body to remove LDL particles from 
the plasma [178-180]. 

 Although most mutations are probably recessive, the ra-
tio of dominant to recessive monogenic disorders is probably 
significantly skewed in human genetics in favor of domi-
nants. High penetrance mutations segregating as heterozy-
gotes have the potential to generate large multigenerational 
pedigrees transmitting the physiological trait. If the trait is a 
medical disorder, such as Huntington disease or Alagille 
Syndrome, such large families are relatively obvious to as-
tute clinicians, particularly since the advent of effective mo-
lecular mapping in the 1980s. In contrast, recessive disorders 
often involve only a single affected in a nuclear family, since 
only  of offspring on average segregate the trait (for an 
autosomal disorder). Ascertainment of recessive traits by 
clinicians typically involves unusually large sibships with 
recurrence of the phenotype in multiple children. In small 
sibships with only one or a few affected children, environ-
mental or stochastic etiologies are more likely, and the hy-
pothesis of recessive segregation is less easy to demonstrate 
except by a genome-wide mapping experiment. 

 There is a strong practical reason to believe that most 
loss of function alleles function as recessive genetic traits. 
Measured rates of mutation are consistent with very high 
rates of occurrence of novel pathogenic alleles in humans, 
perhaps as many as one per meiosis. If many new mutations 
are pathogenic, then severe effects on fitness of entire popu-
lations would ensue if most mutations were dominant with 
pathogenic effects in heterozygotes. Hence, most mutations 
are reasonably anticipated to have recessive effects on 
physiological traits (even if they have formally co-dominant 
effects on their immediate biochemical function through 
simple gene dosage effects). Indeed, protection from high 
mutation rates is likely one of the evolutionary forces driving 
diploidy and hence sex, although most evolutionary biolo-
gists tend to focus on sex as a mechanism for generating 
rather than reducing diversity. 

 The recessive nature of most mutations was appreciated 
early in the 20

th
 century, and theoretical geneticists devel-
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oped several alternative models to explain this [181, 182]. 
Wright suggested that two doses of genes provided near-
saturating levels of activity for the ultimate physiological 
trait, such that loss of one dose had a non-linear and only 
weak effect on the trait (Fig. 2) [183]. Fisher suggested in-
stead that mutant alleles evolved in concert with genetic 
modifiers elsewhere in the genome. Wright’s argument re-
ceived strong theoretical support from the metabolic control 
rate theory of Kacser and Burns [184, 185]. These theoreti-
cians sought to understand why rates of production of path-
way end-products in engineered microorganisms were diffi-
cult to influence by changing amounts of individual enzymes 
in the reaction pathways, even when those enzymes were 
known to be ‘rate-limiting’ based on biochemical kinetic 
studies. They showed mathematically that control of flux 
rates through complex metabolic pathways in vivo was more 
likely to be distributed than focused on one gene product 
(Fig. 3) [184]. The result would be that modest (even two-
fold) changes in dosage of a gene product would be unlikely 
to affect overall flux through a metabolic pathway, although 
this point has been argued [186]. Assuming that some kind 
of biochemically quantitative pathways underlie all physio-
logical traits, even those of embryonic development or neu-
ropsychiatric function, metabolic control theory suggests at 
least in principle that gene dose response could readily be 
nonlinear, and that loss of even a full copy of gene function 
might have only partial effects in non-enzymatic systems 
[187]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Saturation kinetics and genetic dominance. 

As suggested by Wright, if two doses of a wild type gene in a dip-

loid organism provide saturating levels of physiological function 

(2x
R
), then loss of one copy through mutation would still provide 

most functionality (1x
R
). Such a situation would lead to recessive 

genetic behavior, whereby a heterozygote lof mutation would have 

little biological impact. Wright hypothesized that this would be the 

case for the majority of genes. In some cases, two wild type gene 

doses might provide function in the subsaturing range (2x
D
), such 

that loss of one dose in heterozygous lof mutation carriers would 

have substantial biological effect (1x
D
), leading to observed domi-

nance. Dominance caused by unusual gain-of-function alleles is not 

an element of this model. 

 Genetic studies in model organisms tend to support these 
arguments [168]. Although spontaneous or mutagen induced 
mouse mutants can span the full range of mutation types, 
engineered knockouts almost always involve deletions of 
large amounts of protein-coding potential, and are likely to 
function as lof alleles in most cases. Anecdotal evidence 
from mouse geneticists suggests that most such knockouts 
have no detectable phenotype in heterozygous state. A caveat 
to these observations of course is that mice cannot tell us 
what is wrong with them, thus some heterozygous knockout 
mice could have physiological phenotypes undetected by 
experimentalists. Similar results are seen in fly mutagenesis 
experiments, in which mutagenized flies are made heterozy-
gous against a strain carrying a defined chromosomal dele-
tion, with breakpoints defined either cytologically or now by 
DNA sequencing. In such experiments, many independent 
alleles can be obtained for most genes covered by the dele-
tion, and their phenotypes compared against the deletion or 
when homozygosed individually or combined as compound 
heterozygotes against each other. The general result of such 
studies is that most alleles with a detectable phenotype in 
most genes act recessively, with no obvious heterozygous 
effect. 

 In a unique analysis to test the Wright hypothesis di-
rectly, the mutational spectrum was reviewed for the micro-
organism Chlamydomonas, which normally grows in a hap-
loid state. When semi-synthetic diploids are generated, muta-
tions which originally arose in haploids prove nonetheless to 
be almost exclusively recessive [188]. This result strongly 
argues against recessivity arising from coordinate evolution 
of oligogenic modifiers in the diploid state, and supports 
Wright’s argument that recessivity of mutations is a conse-
quence of the way in which metabolic pathways have 
evolved. Efforts to extend the Kacser and Burns argument to 
other, nonmetabolic developmental pathways have shown 
that this is in principle feasible [181]. Nonetheless, it re-
mains conceivable that certain types of developmental pro-
grams might not be so buffered in higher eukaryotes. One 
example might be the human brain. Copy number studies 
have documented a significantly higher incidence of CNVs, 
mostly deletions, in autistic than in control patients, pre-
sumably mostly in the heterozygous state. If so, then loss of 
function mutations might cause frequent dominant pheno-
types such as schizophrenia or autism which both appear to 
have a high rate of sporadic etiology consistent with high 
mutation rates and recent evolutionary events. 

 Given that mutations in most genes probably act reces-
sively, the rate of monogenic disorders ascertained clinically 
is substantially lower than the rate of appearance of new al-
leles. It depends on a combination of new mutation rates and 
population demographics. In outbred large populations, indi-
viduals will rarely be born carrying two non-complementing 
mutations in trans in the same gene (either as homozygotes 
or compound heterozygotes). In contrast, in population iso-
lates experiencing significant inbreeding due to either geo-
graphic or cultural factors, rates of recessive disorders may 
be substantially higher than otherwise expected. In addition, 
due to founder effects different genetic disorders occur at 
increased frequency in different populations. This is well-
documented by medical geneticists, in diverse groups such 
as Finns, French Canadians, Ashkenazi Jews and Alberta 
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Hutterites [167, 189-192]. In one town in Israel, geneticists 
identified 19 different recessive monogenic disorders arising 
in a population of less than 10,000 [193]. 

DEFINING THE REST OF THE PHENOME 

 If only a small fraction of protein-coding genes have a 
molecularly characterized monogenic phenotype in humans 
as of now, what does this mean for the complete phenome? 
If the complete phenome comprises all possible phenotypes 
of all genes in the genome, then the phenome is effectively 
infinite. However, if most loss-of-function alleles in a given 
gene cause similar phenotypes, then the lof phenome is much 
smaller, probably finite, and only slightly larger than the 
number of genes. Further, if gof alleles are much rarer than 
lof alleles, then most of the gof phenome will never be ob-
served given the total human population size. In contrast, as 
described previously, the lof phenome probably exists across 
the world near completion now. 

 All these points together strongly suggest the following 
scenario: lof alleles of all genes in the genome arise regularly 
around the world; most of these represent recessive alleles; 
clinical ascertainment of homozygotes for these alleles will 
be individually rare except in founder or other population 
types with higher rates of consanguinity than expected for 
complete panmixis; compound heterozygotes will arise at 

low rates essentially everywhere, with little or no increased 
rate in founder populations. The actual rate of appearance of 
recessive cases that might be clinically ascertained is very 
difficult to estimate, since it depends on current allele fre-
quencies for deleterious alleles, which in turn depend partly 
on details of local population demographic history which for 
most populations are poorly known. However, even in pre-
sumptive outbred or non-founder populations there can be 
increased frequency of recessive deleterious alleles through 
unappreciated low levels of population mobility – the re-
duced number of observed versus potential haplotypes found 
in non-African populations provides an extreme example of 
this. 

 The inescapable conclusion is that recessive cases for lof 
alleles of most genes do occur regularly. Where then are 
these missing phenotypes? Three possibilities remain: either 
many genes mutate to a neutral lof phenotype, or else they 
mutate to an embryonic lethal phenotype, or else they mutate 
to phenotypes not yet clinically defined or molecularly char-
acterized as genetic conditions. Half of all spontaneous mis-
carriages show cytogenetically detectable chromosomal ab-
normalities [194]. With the advent of high density hybridiza-
tion arrays, smaller rearrangements especially deletions can 
readily be detected, well below the resolution of light mi-
croscopy [195, 196]. It seems likely that an additional frac-
tion of miscarriages, even earlier in fetal development, entail 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Metabolic control theory and gene networks. 

As suggested by Kacser and Burns [184], measures of enzymatic rates in purified in vitro systems do not necessarily reflect true in vivo situa-

tions. In reality, metabolic networks are complex, often with alternative routes from substrate inputs to catabolite outputs. In such cases, 

changing the rate of one specific step (indicated by arrow M), either via genetic mutation or through a targeted chemical antagonist or agonist 

(i.e. a drug) might lead to only modest, or unpredictable effects on total flux through the system and on the equilibrium levels of intermediate 

metabolites. This could explain both dominance as well as functional redundancy, whereby mutation of most genes even in homozygotes is 

not lethal, even though the genes are “required” in a mechanistic sense. Similar situations could be the case for developmental regulatory 

networks, where the flow of information rather than chemical metabolites is concerned. 
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mutation of critical embryonic genes. For example, viable 
human mutation phenotypes are known for six of the 39 
genes encoded by the four HOX gene clusters [197]. These 
are among the extreme rostrally and caudally expressed 
genes HOXA1 [198], A2 [199], A11 [200], A13 [201, 202], 
D10 [203, 204] and D13 [205]. Mutations in the majority of 
more centrally expressed HOX genes may mutate to reces-
sive embryonic lethality early in development, as probably 
do other early expressed pattern-forming genes. OMIM cur-
rently includes several thousand phenotype entries with sug-
gestion of a genetic etiology, many of which probably do 
represent recessive cases arising in families too small to map 
a genetic locus. 

 The advent of dense SNP marker panels has greatly fa-
cilitated the mapping of recessive genetic loci, especially in 
population isolates with not only increased recessivity but 
also homozygosity. Formal linkage analysis is relatively in-
efficient for recessive disorders unless there are an unusually 
large number of affected individuals in a given pedigree or 
related population (i.e. founder effects). The availability of 
new technologies is about to change this paradigm. In the 
last two years multiple individual human genomes have been 
sequenced to high coverage using next-generation technolo-
gies [206-213]. To reduce the cost of whole genome analy-
sis, hybridization capture methods have been developed by 
which selected subsets of the genome, such as protein-
coding exons, can be sequenced [214-217]. Individual ge-
nomes have millions of differences from the human consen-
sus sequence as assembled by the Human Genome Project 
(current version hg19, also called GRCh37). Of the 3-4 mil-
lion such differences in individual genomes, over 90% can 
be found in dbSNP v130, which includes a large number of 
variants discovered through the 1000 Genomes Project [218-
220]. The large number of remaining variants is still too 
many to define pathogenic causality in general cases, al-
though several recent reports demonstrate the feasibilility of 
array-capture exome resequencing to define likely patho-
genic variants in affected individuals or families with rare 
clinical phenotypes under ideal conditions [221-229]. Opera-
tionally, assigning genotype/phenotype causality unambigu-
ously requires either multiple patients mutated in the same 
gene with a rare monogenic phenotype, or alternatively 
strong validation of a candidate gene through animal model 
studies. Nonetheless, whole genome or exome sequencing is 
poised to revolutionize medical genetics, allowing the identi-
fication of causal genes for many more rare phenotypes, in-
cluding some (such as prenatal lethality, or dominant disease 
with reduced viability or fertility) for which family studies 
are intrinsically impossible. 

 This review has focused primarily on protein coding 
genes. There are some examples of genes producing non-
protein coding RNAs for which high penetrance mutational 
phenotypes occur (the H19 gene in mice [230], and the XIST 
gene in humans) [231-233]. In general such assignments are 
challenging since we have little ability to define functional 
changes in non-coding RNAs except when they are exten-
sively deleted. It remains to be seen whether naturally occur-
ring variation in other such RNAs, such as microRNAs, can 
lead to monogenic phenotypes. One exception is in the mito-
chondrial genome. Well documented mutations in mitochon-
drial genes, including tRNA and rRNA coding genes, lead to 

clinical disorders of the mitochondrion, which although 
complex physiologically are generally definable by experi-
enced clinicians [234, 235]. 

PRACTICAL APPLICATIONS OF PHENOME SATU-
RATION 

 Beyond the purely scientific value of determining high 
penetrance mutational phenotypes for as many genes as pos-
sible, there is also practical value in this program. The hu-
man genetics community has focused much of its effort for 
the past decade on defining risk variants for complex, often 
adult-onset degenerative diseases of great social and com-
mercial importance. This work has mostly employed the 
analytical paradigm of high throughput SNP genotyping and 
case/control comparison using large patient cohorts (the 
GWAS approach). GWAS studies have succeeded in identi-
fying many such risk factors, but in general the variants 
found individually add only small incremental risk of dis-
ease, moreover only a modest fraction of total genetic risk in 
populations is explainable summing over all such common 
alleles [236]. The emerging consensus is that finding the 
“missing heritability” will require high throughput genomic 
resequencing in larger and larger cohorts. If one of the goals 
is to identify novel therapeutic targets for pharmaceutical 
intervention, this will be a long-term and monumentally ex-
pensive proposition. 

 In contrast, there are many good examples of high pene-
trance monogenic traits of direct relevance to common dis-
ease. Elsewhere I have discussed in depth the use of “mono-
genic disorders” as a tool to define novel therapeutic targets 
[237]. These can be found either by traditional family-based 
linkage studies [238-240], or for quantitative traits such as 
body mass, plasma glucose or cholesterol, by sequencing 
population outliers looking for excess variation in specific 
genes [241-245]. Essentially, some component of the miss-
ing heritability for medically important traits lies in a large 
aggregate number of individually rare alleles. Such genes 
provide “low hanging fruit” for drug development, some-
thing desperately needed by the biotechnology and 
pharmaceutical industries, which are universally 
acknowledged to be suffering a dearth of good new products. 
For example, the human genome encodes roughly 370 G-
protein coupled receptors, not including olfactory receptors. 
Many of these are targets of drugs already on the market, as 
GPCRs have several major advantages for new drug 
development. As with the human genome in general, only 
about 10% of GPCRs have documented human monogenic 
phenotypes. Many of these human phenotypes are directly 
relevant to important disease models. Thus the GPCR 
phenome represents a fertile area for genetic analysis, 
requiring only the resequencing of this set of genes in 
clinically defined cases of medical interest. 

 Setting aside the current hype surrounding personalized 
genomics, there are several ways in which phenome satura-
tion will have immediate diagnostic benefit. In pediatric 
hospital settings, a substantial fraction of admissions involve 
genetic disorders [246, 247]. Some of these, such as congeni-
tal heart malformations and neural tube defects, are seem-
ingly genetically complex. But others involve genetically 
simple disorders. For example, pediatric hospitals often have 
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dedicated cystic fibrosis units, as CF is one of the most 
commonly diagnosed pediatric genetic disorders with a 
known single gene basis. Given that there are already nearly 
2500 molecular characterized genetic disorders, many of 
which are regularly ascertained in any large pediatric care 
setting, genetic analysis is critical in pediatrics even now. 
The definitive diagnosis of such conditions, either through 
molecular analyses or simply by phenotypic description, has 
high value to patients and families, and potentially to the 
health care system as well. Further definition of all remain-
ing pediatric monogenic conditions will prove similarly use-
ful, if only to eliminate non-genetic causes of disease in in-
dividual patients, ending otherwise time-consuming and ex-
pensive diagnostic odysseys. 

CONCLUSION 

 I have attempted to document that most of the human 
phenome remains to be ascertained and molecularly charac-
terized. This is primarily due to challenges in clinical ascer-
tainment and gene mapping, not to any theoretical issues 
with intrinsic deleterious mutation rates or the occurrence of 
previously uncharacterized phenotypes. Mutation rates in the 
human population are sufficiently high that pathogenic vari-
ants must exist in all functional genes at the present time. 
Most of these are likely to cause recessive phenotypes, thus 
ascertainment depends on identifying homozygous or com-
pound heterozygous mutation carriers from among all medi-
cally identified patients. Historically, causal gene identifica-
tion has depended on the identification of multiplex families, 
followed by mapping with panels of anonymous DNA poly-
morphisms, position cloning and resequencing. With the 
advent of next-generation sequencing technologies, it is now 
feasible to sequence whole genomes or exomes of patients 
without the need for families or linkage mapping. However, 
the large amount of individual genome variation raises the 
challenge of identifying causal variants in these patients. 
This will require collaboration among medical geneticists 
dispersed around the world, possibly with development of 
large genotype/phenotype databases, together with the use of 
model organisms to validate gene function and/or mutation 
pathogenicity. 

 With these ideas in mind, this is my own estimate of the 
lof human phenome. Time will tell how accurate these pre-
dictions are. 

Known genes with phenotypes (2200-2400) 

Embronic lethals (5000) 

Intellectual disability or other high penetrance neuropsy-
chiatric condition (1000) 

No clinical phenotype (3000) 

Phenotypes to be defined or characterized (8-10000) 
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