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Objectives. The purpose of this study was to segment the left ventricle (LV) blood pool, LV myocardium, and right ventricle (RV)
blood pool of end-diastole and end-systole frames in free-breathing cardiac magnetic resonance (CMR) imaging. Automatic and
accurate segmentation of cardiac structures could reduce the postprocessing time of cardiac function analysis.Method.Weproposed
a novel deep learning network using a residual block for the segmentation of the heart and a random data augmentation strategy
to reduce the training time and the problem of overfitting. Automated cardiac diagnosis challenge (ACDC) data were used for
training, and the free-breathing CMR data were used for validation and testing. Results. The average Dice was 0.919 (LV), 0.806
(myocardium), and 0.818 (RV). The average IoU was 0.860 (LV), 0.699 (myocardium), and 0.761 (RV). Conclusions.The proposed
method may aid in the segmentation of cardiac images and improves the postprocessing efficiency of cardiac function analysis.

1. Introduction

Free-breathing cardiac magnetic resonance (CMR) cine
imaging techniques have been developed for the evaluation
of cardiac function [1–5]. It is an accurate and reproducible
technique for chamber volume, myocardial mass, and stroke
volumemeasurements [5]. Compared with breath-hold CMR
cine imaging, it has a short acquisition time and elim-
inates the unnecessary breath-hold stage. It is beneficial
for children and patients who are unable to hold their
breath during data acquisition. However, the postprocessing
of free-breathing CMR cine imaging is time-consuming
and laborious. Although some commercial software could
automatically segment the left ventricle (LV) blood pool, LV
myocardium, and right ventricle (RV) blood pool contours
of end-diastole (ED) and end-systole (ES) frames, man-
ual adjustment of the segmented contour is still required
by an expert. However, the procedure could introduce
intraobserver and interobserver variability [6]. Hence, a fully

automatic segmentation method of ED and ES frames is
necessary for improving the postprocessing efficiency of the
free-breathing CMR cine imaging.

The segmentation process of cardiac imaging was previ-
ously divided into two stages, i.e., localization and segmen-
tation. For the localization task, some studies used variance
image [7], the Fourier Transform [8], and the circular Hough
transform [9] to locate the heart. Due to the diaphragm
motion in free breathing CMR cine imaging, these methods
cannot be applied directly for the heart localization, especially
for the apex slice. For the segmentation task, the level
set was previously widely used for the LV, myocardium,
and RV [10–13]. Other methods include threshold, pixel
classification, cardiac atlas, shaped registration, and active
shape model, among others [6, 14–19]. However, most algo-
rithms require prior information and manual operation.
An alternative automatic method to locate and segment
the heart from the cardiac image is to use deep learning
techniques.
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Recently, deep learning approaches have beenwidely used
in medical image segmentation, especially for CMR images
[20–35]. Bernard et al. [20] summarized all the types of
segmentation methods using deep learning. Avendi et al. [21]
presented a combined deformable model and deep learning
method for LV segmentation. Ngo et al. [22] proposed a
deep learning method combined with the level set for LV
segmentation. Tan et al. [23] designed a regression network
on the segmentation of short-axis LV. Isensee et al. [24]
used an ensemble of modified 2D and 3D U-Net to tackle
the segmentation. Baumgartner et al. [25] tested various
convolution neural networks with hyperparameters. Zotti
et al. [26] proposed an extension of the U-Net for the
cardiac segmentation and an automated analysis method
for CMR images [27]. Vigneault et al. [28] presented a
novel network for localization and semantic segmentation of
cardiac images. Zheng et al. [29] applied a novel variant of U-
Net for the cardiac segmentation on short axis MRI image.
Khened et al. [30] utilized multiscale residual DenseNets
for cardiac segmentation. Zhang et al. [31] proposed a novel
deep network for the segmentation of myocardial infarction.
Bai et al. [32] used a fully convolutional network for CMR
image analysis. Qin et al. [33] proposed a motion estimation
and segmentation method for cardiac images. Oktay et al.
[34] developed neural networks to cardiac image enhance-
ment and segmentation. Romaguera et al. [35] studied the
myocardial segmentation with deep learning approach.These
methods were successful for cardiac segmentation. However,
the image quality of free-breathing CMR imaging is lower
than the breath-hold CMR imaging (see Figure 1) [36]. The
deep learning techniques for the accurate segmentation of
free-breath CMR data remain a challenge.

Asmentioned above, the development of a fully automatic
method for the segmentation of free-breathing CMR images
could assist experts in analyzing cardiac function. In this
paper, we propose a one-stage deep learning network based
U-Net [37] for the segmentation of the heart. The LV, LV
myocardium, and RV were directly segmented by using
presented deep learning model. The ACDC data were used
for training, and free-breathing CMR data were used for
validation and testing. We also used a random augmentation
data strategy during training. The data were only augmented
during the training process and were not stored, making it
faster than data augmentation before training. Furthermore,
we proposed an improved loss function to yield higher
segmentation accuracy. The proposed method is validated
and tested on free-breathing CMR data. The experimental
results validate its accuracy for cardiac segmentation. The
layout of the paper is as follows: The datasets are introduced
in detail in Section 2; the methods are presented in Section 3;
Section 4 demonstrates the experimental results; in Section 5,
we discuss and analyze the results; and the conclusions are
given in Section 6.

2. Materials

2.1. Free-Breathing CMR Data. The study was approved by
the institutional Review Board. Twelve subjects (7 males; 5

females; age 25±4), with informed consent, were recruited
for the study. The heart function assessments were carried
out using a 3.0T MR scanner (Siemens, Germany). The heart
rate was monitored using ECG. Ten short axis slices covering
the whole heart from apex to base were imaged using a free-
breathing 2D real-time SSFP, to which the Karhunen-Loeve
transform filter was applied along the temporal direction to
increase the signal-to-noise ratio. The imaging parameters
were as follows: slice thickness 8 mm with a 2 mm gap,
field of view (FOV) = 340 × 287 mm2, pixel spacing = 2.25
mm/pixel, repetition time/echo time (TR/TE) = 2.5/1.1 ms,
matrix size = 160 × 128, TPAT=4, bandwidth=1488 Hz/pixel,
temporal resolution = 59.5 ms, and cine duration of 5 s for
each slice, containing 84 frames covering end-expiration and
end-inspiration. The ED and ES frames in end-expiratory
stage of each slice of twelve subjects were used to validate the
final network model. The segmentation contours for the LV,
LV myocardium, and RV of each frame were provided by the
radiologist. The ED and ES frames in other respiratory stages
of each slice were used for testing.

2.2. 2017 ACDC Data. The data was obtained from the auto-
mated cardiac diagnosis challenge (ACDC) data [20], which
was initiated at the 2017MICCAI Segmentation Challenge in
the STACOM workshop. It consists of 150 subjects with nor-
mal, previous myocardial infarction, dilated cardiomyopathy,
hypertrophic cardiomyopathy, and abnormal right ventricle.
The data is divided into the training and testing sets, with
100 and 50 cases, respectively. As the training set contains the
LV, LV myocardium, and RV contours, we used the training
set to determine the parameters for segmentation in our
study.

2.3. Data Processing. TheACDC data varied in size from 154
× 224 to 428 × 512.We resized all images to 160 × 128 by bilin-
ear interpolation without any image cropping operations.
Since the data acquisition from different imaging acquisition
sequences can introduce inconsistencies in image intensity
and pixel intensity, the 16-bit images were normalized to 8-
bit images. Thereafter, contrast-limited adaptive histogram
equalization (CLAHE) [38] was used to enhance the contrast
of the grayscale image. Finally, 1902 images (100 subjects)
from ACDC data were used for training, and 80 images (4
subjects) and 160 images (8 subjects) from free-breathing
CMR data were used for validation and testing, respectively.
For the ground truth (labeled image) in the training stage, LV
blood pool, LVmyocardium, RVblood pool, and background
are labeled as 4, 3, 2, and 1, respectively.

3. Methods

3.1. Outline of the Method. The block diagram of the pro-
posed method is shown in Figure 2. In our method, the
proposed segmentation network can be divided into two
stages: encoder and decoder. The encoder stage was used for
CMR image representation and pixel-level classification, and
a decoder stage was used to restore the original spatial reso-
lution. To better display the segmentation result, red, green,
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Figure 1: Comparison of breath-hold CMR data (a, c) and free-breath CMR data (b, d), where (a, b) are ED frames and (c, d) are ES frames.

Segmentation Network

Encoder Decoder

LV myocardiumLV RV 

Figure 2:The block diagram of the proposed method for segmentation.

and blue colors indicate the region of LV, LV myocardium,
and RV in Figure 2.

3.1.1. Heart Segmentation. For LV, LV myocardium, and RV
segmentation, it was always necessary to initially locate the
heart region when using older methods [7–9, 30], which
is highly time-consuming especially for the deep learning

methods. We proposed a deep learning network based on
U-Net and ResNet [39] to directly locate and segment the
heart region. Figure 3 demonstrates the architecture of the
network for heart segmentation. The architecture consists
of a down-sample path (encoder) followed by an up-sample
path (decoder) to restore the size of the input image. In the
down-sample path (left section in Figure 3), the input image



4 BioMed Research International

80×64

80×64

40×32

40×32

20×16

20×16

10×8

10×8

24

48

96

192 384 192

96192

96 48

48 2424

2×2 max pooling concatenation 2×2 transposed conv

1×1 conv3×3 conv, bn, relu

160×128 160×128

1

3
42

384

160×128

160×128

Residual block

1×1 
Conv, bn

3×3 
Conv, bn

3×3 
Conv, bn

relu
sum

Figure 3: The proposed network architecture for heart segmentation. The label value of LV, LV myocardium, RV, and background is 4, 3, 2,
and 1, respectively.

is 160 × 128 in size. The residual block includes two 3 × 3
convolution layers and one 1 × 1 convolution layer which
are appended by batch normalization (BN) and subsequently
by ReLU activation (see Figure 3). The max pooling of size
2 × 2 is used to down-sample the convolved maps. The
dropout layer is used in the bottom of the convolution layer to
prevent overfitting.Thedropout ratiowas set to 0.5. In the up-
sample path (right section in Figure 3), the 2 × 2 transposed
convolution was used to up-sample the convolved maps.
Several skip connections were used to concatenate feature
maps between down-sample and up-sample paths, which
could provide more feature information for localization and
segmentation. A 1 × 1 convolution layer maps the 24 feature
channels to 4 classes. The pixel value in the output image of
4 to 1 indicates the LV, LVmyocardium, RV, and background,
respectively. Thereafter, the loss function layer is used to
calculate the loss value from the output of the SoftMax layer.

3.1.2. Loss Function. Previous methods used Dice loss [40]
to solve the problem of class imbalance between heart
structure and background in cardiac image segmentation.
Recently, Sudre et al. presented an improved Dice loss, called
generalized Dice loss [41, 42], which is a robust and accurate
loss function for unbalanced tasks and is formulated as
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where 𝑌 and 𝑇 are predicted label image and ground truth,
respectively, 𝐾 is the number of classes, 𝑀 is number

elements along the first two dimensions of 𝑌 or 𝑇, and 𝑤𝑘
is a weighting factor for each class. In our study, some images
in the ACDC data did not have full labels, as illustrated in
Figure 4. In such cases, 𝑇𝑘𝑚=0 and 𝑤𝑘=infinite. To avoid this
kind of problem, the loss and 𝑤𝑘 are revised and given by
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where 𝜀=10−8 is used to avoid the numerical issue of dividing
by 0. When 𝑇𝑘𝑚=0, the weight of 𝑘 class is determined by the
𝑌𝑘𝑚; it could improve the performance of segmentation.

3.2. Implementation Details. The heart segmentation net-
work was implemented inMatlab 2019a using a deep learning
toolbox and trained on a computer with Nvidia RTX 2080Ti
(11GB memory). In the training stage, 1902 images from
ACDC data were used for training, and 80 images from
free-breathing CMR data were used for validation. In order
to prevent the network from overfitting, affine geometric
transformation (scaling, rotation, shearing, and translation),
gaussian noise, gaussian blur, and elastic deformations were
used to augment the training set before training in car-
diac images segmentation [24, 30, 43]. However, random
augmentation before training increased the training time;
therefore we used a random augmentation data strategy
during the training process. For each iteration of training, a
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Figure 4: Original images in ACDC data (a, c) and corresponding labeled images (b, d).

random combination of transformations was applied on the
minibatch images and was not stored in memory. Therefore,
different images were used for network training in each
iteration as it could help prevent overfitting, especially for
data that come from different acquisition protocols. Figure 5
shows the process of data augmentation in training for heart
segmentation.

The network was trained by decreasing the proposed loss
function using the adaptive moment estimation (ADAM)
optimizer [44]. The initial learning rate of 10−3 was decayed
by 0.98 per epoch, where the minibatch included 16 images.
The network weights were initialized using He initialization
[45]. L2 regularization weight decay of 10−4 was added to the
loss function to reduce overfitting. Besides, for using random
augmentation of the minibatch, the training set was also
shuffled in each epoch before training. Since each minibatch
was different due to the random augmentation, the learning
rate was restored to 10−3 every 100 epochs. We used the Dice
curve of the minibatch to observe the training process for
training and validation sets. The training of the model was
discontinued when no improvement in the Dice score was

seen (at about 200 epochs). For the present network, it takes
about 6 hours to complete the training of 200 epochs.

3.3. Evaluation Criterion. To evaluate the performance of the
developed methods, the Dice and intersection over union
(IoU) were calculated and compared with the ground truth.
The Dice for each class is given by

𝐷𝑖𝑐𝑒 = 2
𝑌𝑘 ∩ 𝑇𝑘
𝑌𝑘 + 𝑇𝑘

(5)

where𝑌𝑘 and𝑇𝑘 are predicted and ground truth image of each
class (𝑘=2, 3, 4). The IoU for each class is defined by

𝐼𝑜𝑈 =
𝑌𝑘 ∩ 𝑇𝑘
𝑌𝑘 ∪ 𝑇𝑘

(6)

4. Experiments and Results

4.1. Comparison of the LearningCurves of the ProposedMethod
and U-Net. We trained the proposed network and U-Net



6 BioMed Research International

•••

Training set

Rand-X-Scale: [0.6 1.4]
Rand-Y-Scale: [0.6 1.4]
RandRotation: [-30,30]
Rand-X-Translation: [-10 10]
Rand-Y-Translation: [-10 10]
Rand-X-Shear: [-10,10]
Rand-Y-Shear: [-10,10]
X: horizontal direction
Y: vertical direction

min-batch

Network training

Epoch 1

•••

•••

Iteration 1

Iteration 2

•••

••• Epoch 2, 3, ...

Augmentation

Figure 5: The process of data augmentation in training.

by using the same training scheme: the learning rate was
restored to 10−3 every 100 epochs using the ADAM solver.
Other network training settings were the same as described
in Section 3.2, and for every epoch the model was evaluated
on the validation set. Figure 6 shows the Dice and loss curve
of two networks using cross-entropy (CE) loss, improved
generalized Dice (IGD) loss, and data augmentation (DA).
To observe the learning curves, the validation loss of the
proposed model and U-Net with DA decreased consistently
with a decrease in training loss, indicating less overfitting on
the training set. The convergence speed of both models with
IGD loss was faster than CE loss for the validation curve.
Furthermore, the proposed network using IGD loss and DA
shows the fastest convergence and the lowest loss value when
compared to the U-Net model.

4.2. The Result of Segmentation on Validation and Testing
Set. The highest mean Dice score model was selected for
segmentation and evaluation. Figures 7 and 8 show the
representative segmentation results by the proposed method
from apex to basal slices of ED and ES frames on the
testing set. Our method gave accurate results for most
slices; however, some failure cases were found in basal slices
since these slices included other structures such as the
pulmonary artery, left ventricle, and right ventricle outflow
tract, among other vessels, as demonstrated in Figure 9.
The segmentation performances of the proposed network
and U-Net on validation and testing sets are summarized
and compared in Table 1. The proposed model and U-Net
using IGD loss had a better Dice and IoU score than CE
loss. Compared to those without DA, both models with DA
showed a significant improvement in validation and testing
sets. Moreover, the proposed network with IGD and DA
showed the best performance in the evaluation of Dice and
IoU score.

4.3. The Performance in Different Heart Cycles. Accurate
segmentation at ED or ES frames in different heart cycles
could help radiologists obtain information about respiratory

variations in cardiac motion [2]. Since the testing dataset
in other cycles did not provide labeled contours of ED
and ES frames, we only used our model to segment LV,
LV myocardium, and RV and observed the performance of
segmentation. Figure 10 shows the segmentation results of the
ED frames in different heart cycles. Our approach obtained
better segmentation results of LV and LVmyocardium, which
are the same as the ED frames of the end-expiratory stage.The
segmentation results in different cycles of RV were slightly
different due to the influence of respiratory motion.

5. Discussion

Previously, some studies pointed out that the use of data
from different imaging protocols could better assess the
performance of deep learning algorithms [20]. Inspired by
this problem, we presented a novel deep learning network
based on U-Net and ResNet for heart segmentation using
data from two imaging protocols in our study. The proposed
method used a random augmentation data strategy for
training. In each iteration of training, a random combination
of transformations was applied to the minibatch and was
not stored in the program, a strategy that could reduce
training time. Moreover, we proposed an improved Dice
loss to improve the accuracy of segmentation. The proposed
method was fully automated for heart segmentation without
requiring any prior knowledge, and the network produced
segmentation results at roughly 10 images per second.

Since the deep learning approaches based on U-Net were
widely used in CMR image segmentation [24, 26, 29, 37],
we selected it as the baseline method to compare with our
method. The proposed network required a lower number
of learnable parameters (4.4 million) as compared to U-Net
(30 million, when initial number of filters was 64 and BN
was used) in the study. The designed residual block helped
to alleviate the problem of vanishing gradients and improve
the performance of feature extraction. Due to the limited
free-breathing CMR data, we used ACDC data as a training
set and a random augmentation data strategy during the
training to solve the problem of lack of data. These images
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Figure 6: Comparison of the learning curves of proposed network andU-Netwith cross-entropy (CE) loss, improved generalizedDice (IGD)
loss, and data augmentation (DA). Dice curve (a, c) and loss curve (b, d) of training and validation sets, respectively. Note that the learning
curves have been smoothed by moving average method.

underwent random combination of transformation in each
iteration. In this study, the training images approached 377
000 after 200 epochs when the minibatch consisted of 16
images. When using the data augmentation before training
strategy, it was very time-consuming to train a large amount
of data. However, a large amount of training data helps to
train a better model and reduce overfitting. Compared to
the data augmentation before training strategy, the training
time was much shorter when training the same epochs.
The proposed loss function reduced the impartation of class
imbalance. In comparison to cross-entropy loss functions, the

improved loss function obtained higher Dice and IoU scores.
Furthermore, our network has a lower model complexity,
which is easy to implement and train own model.

For the reason of no definitive approach to design
hyperparameters, such as the number of layers, filter size, and
learning rate in the design of the deep learning framework, in
our study we selected hyperparameters based on exhaustive
methods and then turned to experiments. For example, we
tried several initial learning rates ranging from 10−2 to 10−3,
and after observing the learning curve, an initial learning
rate of 10−3 was selected due to the best Dice curve of the



8 BioMed Research International

ED Result GT ES Result GT

Figure 7: Representative ED and ES frames segmentation results by proposed method from slice 1 to slice 5 in short axis. Red, green, and
blue indicate LV, LV myocardium, and RV, respectively. Note that the results have been cropped for better observation of the heart region
(GT: ground truth).

ED Result GT ES Result GT

Figure 8: Representative ED and ES frames segmentation results by the proposed method from slice 6 to slice 10 in short axis. Red, green,
and blue indicate LV, LV myocardium, and RV, respectively (GT: ground truth).

validation set. However, the Dice curve did not go up after
100 epochs. We tried to adjust the learning rate to the initial
learning rate every 100 epochs using the ADAM optimizer.
The validation Dice increased consistently as the training
progressed.These training schemes helped themodel to reach
the highest accuracy of segmentation on the validation set.
Although several studies had proved the residual network
with a better performance in feature extraction [39], we found
that too many residual blocks lead to poor segmentation
results in our research. Therefore, we only used one residual
block before each max pooling layer. The training time of
the improved network was the same as standard U-Net,
and the segmentation accuracy was higher according to the
experiment results.

A limitation of this work was the basal slice segmentation.
This slice included the pulmonary artery, left ventricle and
right ventricle outflow tract, and other structures. Compared
to other slices, the basal slice occupied a small part of
ACDC data. Even with data augmentation, it was hard to
improve accuracy using the proposed method. Even for
experts, segmenting the basal slice is challenging [20]. Other
studies have also reported the failure of the basal slice with
deep learning methods [20, 28, 46, 47]. Furthermore, the
anatomical structure of EDandES frameswas different due to
the influence of respiratory motion in different cardiac cycles
and could produce poo segmentation results, especially for
supervised deep learningmethods. Existing solutions to these
problems are to exclude the basal slice in CMR imaging or the
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Figure 9: Failure cases from the heart segmentation model.

First cycle Second cycle Third cycle Fourth cycle Fifth cycle Sixth cycle

Figure 10: Segmentation results of six cycles at ED frames in different slices. The first row is near the apex slice, the second row is mid-slice,
and the third row is near basal slice.

use of a larger database, e.g., the UK Biobank [48],might help
to enhance segmentation accuracy. Further studies should
include the simultaneous cardiac function quantification and
segmentation, and so on [49, 50].

6. Conclusion

In this paper, we proposed a fully automatic heart segmenta-
tion approach based on deep learning. The designed residual
block and improved loss function were used to improve
the segmentation performance of the LV, LV myocardium,
and RV. A random data augmentation strategy was applied
to reduce the training time and alleviate the problem of
overfitting. The results showed that the presented method has
high segmentation accuracy and stability. It is worth pointing
out that it is the first report employing a one-stage deep
learning method for the segmentation of free-breathing CMR
data. In the future, we aim to develop more methods and test
on a larger sample of free-breathing imaging data.
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Table 1: Comparing the segmentation performance of the proposed network and U-Net on validation and testing set (IoU: intersection over
union, CE: cross-entropy, IGD: improved generalized Dice, DA: data augmentation, and italic formatting indicating the best Dice and IoU
score for each class).

Loss function LV Dice LV Myocardium Dice RV Dice
valid test valid test valid test

U-Net +CE 0.763 0.815 0.632 0.690 0.675 0.680
U-Net +CE+DA 0.867 0.880 0.757 0.782 0.758 0.746
U-Net +IGD 0.784 0.835 0.676 0.722 0.741 0.684
U-Net +IGD+DA 0.870 0.876 0.752 0.771 0.768 0.788
Proposed+CE 0.765 0.815 0.646 0.701 0.722 0.704
Proposed+CE+DA 0.823 0.875 0.704 0.770 0.767 0.748
Proposed+IGD 0.804 0.817 0.668 0.711 0.730 0.670
Proposed+IGD+DA 0.878 0.919 0.768 0.806 0.795 0.818

LV IoU LVMyocardium IoU RV IoU
valid test valid test valid test

U-Net +CE 0.697 0.758 0.517 0.585 0.606 0.615
U-Net +CE+DA 0.798 0.827 0.640 0.679 0.702 0.694
U-Net +IGD 0.712 0.772 0.558 0.615 0.677 0.620
U-Net +IGD+DA 0.791 0.816 0.618 0.661 0.715 0.734
Proposed+CE 0.709 0.760 0.531 0.592 0.651 0.639
Proposed+CE+DA 0.753 0.822 0.590 0.669 0.710 0.697
Proposed+IGD 0.733 0.757 0.550 0.602 0.659 0.605
Proposed+IGD+DA 0.802 0.860 0.642 0.699 0.741 0.761

J No.20152044), the Joint Fund of Guizhou Province Depart-
ment of Science Technology (NO. LH[2017]7208), and Doc-
toral Research Initiation Fund of the Affiliated Hospital of
Guizhou Medical University.
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