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SUMMARY

RNA-sequencing and quantitative proteomic profiling simultaneously measure
thousands of molecules and provide opportunities to decipher the transcrip-
tomic and proteomic landscapes of cohort specimens for basic and health
research. We present a protocol for the analysis of paired transcriptome and pro-
teome data to identify and compare molecular subgroups among cohort speci-
mens.We demonstrate a streamlined analysis workflow, applicable for both tran-
scriptome and proteome data, which allows the comparison of two data types for
RNA-protein variations and for derivation of biological implications.
For complete details on the use and execution of this protocol, please refer to
Yang et al. (2021).

BEFORE YOU BEGIN

Protocol overview

Technological advances in high-throughput profiling technologies have enabled themolecular char-

acterization of biological samples to identify fundamental and translational insights. RNA-

sequencing (RNA-seq) and quantitative global proteomics are two approaches that have been ex-

ploited to enumerate thousands of RNA or protein molecules within a sample, respectively (Ellis

et al., 2013;Weinstein et al., 2013). While either of these twomethods has been widely used in omics

studies, few studies have adapted both approaches to simultaneously profile the paired transcrip-

tomes and proteomes of clinical specimens. In our previous study, we applied RNA-seq and quan-

titative proteomic mass spectrometry to pancreatic neuroendocrine neoplasm specimens and iden-

tified biologically distinct subgroups with potential therapeutic vulnerabilities (Yang et al., 2021).

This protocol presents a generic version of the analysis workflow used in our previous study and de-

tails the preparation and analysis of RNA-seq and quantitative global proteomic data for subgroup

identification and comparison. The identified subgroups and their molecular differences may be

further investigated for clinical significance and biological differences. While we illustrate the work-

flow using cancer specimen data, this protocol or parts of the protocol can be adapted for RNA-seq

and/or quantitative proteomic data from any sample or species to discover molecular subgroups

based on global gene expression or protein abundance patterns, compare RNA or protein -level dif-

ferences between conditions, and examine RNA-protein correlations. Combining paired RNA and

protein -level data enables cross-referencing between the two independent measurements that sub-

stantiates the analysis results obtained from individual datasets.
STAR Protocols 3, 101283, June 17, 2022 ª 2022 The Authors.
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Protocol
Note: Throughout this protocol, each line of executable code is preceded by a greater than

sign (>), while text outputs are italicized.

Pause point: Given that this protocol is exclusively bioinformatics-based, the users may

pause at any time.
Institutional permissions

This protocol uses the molecular datasets from our previous study (Yang et al., 2021) to demonstrate

the detailed steps and potential outcomes. These datasets were used in accordance with the ethical

approval by the UBC Clinical Research Ethics Board (H12-03484) and the University of British

Columbia BC Cancer Research Ethics Board (H16-01577). Users adapting this protocol are reminded

to acquire the necessary permissions to use their datasets from the relevant institutions, if

applicable.
Software setup

Timing: < 1 h

All the analysis steps described in this protocol are performed using R, a free software environ-

ment for statistical computing and visualization (R Core Team, 2020), which can be run on most

operating systems including UNIX, Windows and MacOS. The current protocol was developed us-

ing R version 3.6.3 running on a Linus system (CentOS 7). In addition to R, a list of R packages is

required as they provide the necessary functions for the data processing, analysis or visualization

steps covered in this protocol. The list of packages and their versions used are included in the key

resources table.

1. Download and install R from https://cran.r-project.org/ (R Core Team, 2020).

Note: By default, the most recent release is downloaded, but older releases (eg. version 3.6.3)

can also be found from the website. To install R, follow the installation steps specific to the

operating system described on the website.

Optional: Download and install RStudio from https://www.rstudio.com/products/rstudio/

(RStudio Team, 2018). RStudio is an integrated development environment for R that facili-

tates code writing and execution with plotting capabilities. While RStudio is not required

to follow this protocol, its usage provides convenient data visualization and is highly

recommended.

2. Download and install required R packages from CRAN or Bioconductor (https://bioconductor.

org). We recommend using BiocManager to install R packages from either source,

which automatically identifies the most updated versions of the packages for the R version

used.
f (!requireNamespace(‘‘BiocManager’’, quietly = T)) install.packages(‘‘BiocManager’’)

equired.packages <- c(‘‘tidyverse’’, ‘‘reshape2’’, ‘‘biomaRt’’, ‘‘org.Hs.eg.db’’,

edgeR’’, ‘‘limma’’, ‘‘NMF’’, ‘‘sva’’, ‘‘vsn’’, ‘‘ggpubr’’, ‘‘ggfortify’’, ‘‘GSEABase’’)

iocManager::install(required.packages, ask = F)
3. Attach the installed packages.
STAR Protocols 3, 101283, June 17, 2022
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>sapply(c(required.packages, ‘‘magrittr’’), require, character.only = T)
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Note: Packages must be reattached/reloaded at each restart of R.

Note: The magrittr package is included in the tidyverse suite download but not automatically

loaded with the tidyverse suite and must be explicitly loaded.
Load datasets

Timing: < 30 min

For the purpose of this protocol, we assume that the users start with data of a rectangular structure,

with features (RNAs or proteins) in rows, and samples in columns. Additional columns with feature

information such as gene identifiers or feature subtypes may be present. Depending on the source

and prior workflow, the starting datasets may be of different structures or formats, and we leave it to

the users’ discretion to reformat their data to that similar to our input data shown below.

In this protocol, we use the RNA-seq count and transcript-per-million (TPM) data and proteomic

peptide spectral match (PSM) data from our previous study (Yang et al., 2021). In brief, samples

from a specimen cohort were subjected to RNA-seq and proteomic profiling. The RNA-seq count

data were generated using STAR aligner (Dobin et al., 2012) and featureCounts (part of Subread)

(Liao et al., 2013). The proteomic PSM data were generated from five tandem mass tag (TMT)

10-plex mass-spectrometry runs using Orbitrap Fusion and Proteome Discoverer (Thermo Fisher).

This protocol is also applicable to RNA expression data from other technologies (e.g., gene expres-

sion microarray), provided it is normalized according to the standard practices for the particular

technologies.

4. Read in transcriptomic data.
>COUNT <- read_tsv(‘‘COUNT.tsv’’)

>dim(COUNT)

[1] 57905 41

>head(COUNT)

# A tibble: 6 3 44

EnsemblGeneID Start End Strand Length S1 S2 S3

<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 ENSG000002239. 1186. 1222. +;+;+. 1756 0 1 0

2 ENSG000002272. 1436. 1482. -;-;-. 2073 104 82 61

3 ENSG000002434. 2955. 3003. +;+;+. 1021 0 0 0

4 ENSG000002376. 3455. 3517. -;-;-. 1219 0 0 0

5 ENSG000002680. 5247. 5331. +;+;+ 947 0 0 0

6 ENSG000002403. 62948 63887 + 940 1 0 0

# . with 36 more variables: S4 <dbl>, S5 <dbl>, S6 <dbl>,

# S7 <dbl>, S8 <dbl>, S9 <dbl>, S10 <dbl>, S11 <dbl>,
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# S12 <dbl>, S13 <dbl>, S14 <dbl>, S15 <dbl>, S16 <dbl>,

# S17 <dbl>, S19 <dbl>, S21 <dbl>, S22 <dbl>, S23 <dbl>,

# S24 <dbl>, S25 <dbl>, S26 <dbl>, S27 <dbl>, S28 <dbl>,

# S29 <dbl>, S30 <dbl>, S31 <dbl>, S32 <dbl>, S33 <dbl>,

# S37 <dbl>, S38 <dbl>, S39 <dbl>, S40 <dbl>, .

>TPM <- read_tsv(‘‘TPM.tsv’’)

>head(TPM)

# A tibble: 6 3 44

EnsemblGeneID Start End Strand Length S1 S2 S3

<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 ENSG000002239. 1186. 1222. +;+;+. 1756 0 0.114 0

2 ENSG000002272. 1436. 1482. -;-;-. 2073 9.68 7.90 5.23

3 ENSG000002434. 2955. 3003. +;+;+. 1021 0 0 0

4 ENSG000002376. 3455. 3517. -;-;-. 1219 0 0 0

5 ENSG000002680. 5247. 5331. +;+;+ 947 0 0 0

6 ENSG000002403. 62948 63887 + 940 0.205 0 0

# . with 36 more variables: S4 <dbl>, S5 <dbl>, S6 <dbl>,

# S7 <dbl>, S8 <dbl>, S9 <dbl>, S10 <dbl>, S11 <dbl>,

# S12 <dbl>, S13 <dbl>, S14 <dbl>, S15 <dbl>, S16 <dbl>,

# S17 <dbl>, S19 <dbl>, S21 <dbl>, S22 <dbl>, S23 <dbl>,

# S24 <dbl>, S25 <dbl>, S26 <dbl>, S27 <dbl>, S28 <dbl>,

# S29 <dbl>, S30 <dbl>, S31 <dbl>, S32 <dbl>, S33 <dbl>,

# S37 <dbl>, S38 <dbl>, S39 <dbl>, S40 <dbl>,.
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Note: Here, the ‘‘COUNT.tsv’’ and ‘‘TPM.tsv’’ files imported are tab-delimited files previously

generated and saved to the working directory. These files contain RNA-seq count and TPM

data, respectively, for our cohort of specimens. The first five columns of each dataset contain

aggregated gene-level information such as the start and end positions of the readsmapped to

each gene.

5. Read in proteomic data.
>PSM <- paste0("PSM_", 1:5) %>%

setNames(., paste0("TMT", 1:5)) %>%

as.list %>%

lapply(., function(x) paste0(x, ".tsv") %>% read_tsv)

>lapply(PSM, dim)

$TMT1

[1] 150236 25

$TMT2
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[1] 139264 25

$TMT3

[1] 153412 25

$TMT4

[1] 121423 25

$TMT5

[1] 128379 25

>head(PSM$TMT1)

# A tibble: 6 3 25

Confidence ‘PSM Ambiguity‘ ‘Annotated Sequence. Contaminant

<chr> <chr> <chr> <lgl>

1 High Unambiguous [R].nPDNLEELLLNETA. FALSE

2 High Unambiguous [R].lALDDVAALHGPVV. FALSE

3 High Unambiguous [K].gkPAAPGGAGNTGT. FALSE

4 High Unambiguous [K].dLYANNVLSGGTTm. FALSE

5 High Unambiguous [R].vAPEEHPVLLTEAP. FALSE

6 High Unambiguous [K].mGGMEGPFGGGMEN. FALSE

# . with 21 more variables: Number of Protein Groups <dbl>,

# Number of Proteins <dbl>,

# Master Protein Accessions <chr>,

# Protein Accessions <chr>, Rank <dbl>,

# Search Engine Rank <dbl>, mz in Da <dbl>,

# Percolator q-Value <dbl>, Percolator PEP <dbl>,

# Peptide Quan Usage <chr>, Quan Info <chr>, S8 <dbl>, .
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Note:Here, the PSM_[1–5].tsv files contain PSM abundance data from the five runs. Due to the

random fractionation nature of the approach, each run identified and quantitated a slightly

different set of peptides and are thus kept separate as objects in a list for processing prior

to analysis. Each run contains 8 specimens plus two technical control samples: a pooled stan-

dard (P1�5) consisting of fractions of the included specimens and a cell line supermix (SM1�5)

made up with a panel of cell lines. The first 15 columns of each dataset contain information on

each PSM, including its confidence, its matching peptide and the protein(s) in which the pep-

tide can be found.

Note: Due to a few specimens being excluded because of inferior RNA quality or failure in

RNA-seq library construction, the RNA-seq count dataset contains fewer samples compared

to the proteomic datasets as shown below.
>PSM %>%

sapply(., function(x) {
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x %>%

dplyr::select(matches("S[0-9]")) %>%

colnames

}) %>% c %>%

intersect(colnames(COUNT)) %>% {

print(paste("Number of overlapping samples:",

length(.)))

}

[1] "Number of overlapping samples: 35"
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-sequencing data (Yang et al., 2021) European Genome-Phenome Archive (EGA): EGAS00001005024,
https://ega-archive.org/studies/EGAS00001005024

Mass spectrometry
proteomic data

(Yang et al., 2021) PRoteomics IDEntification Database (PRIDE): PXD024175, https://
www.ebi.ac.uk/pride/archive/projects/PXD024175

MSigDB gene sets v7.4 (Liberzon et al., 2015) http://www.gsea-msigdb.org/gsea/downloads.jsp

Software and algorithms

R v3.6.3 (R Core Team, 2020) https://cran.r-project.org

RStudio v1.2.1335 (RStudio Team, 2018) https://www.rstudio.com

BiocManager v1.30.16 (Morgan, 2021) https://CRAN.R-project.org/package=BiocManager

tidyverse v1.3.1 (Wickham et al., 2019) https://www.tidyverse.org

reshape2 v1.4.4 (Wickham, 2007) https://cran.r-project.org/web/packages/reshape2/index.html

biomaRt v2.42.1 (Durinck et al., 2005, 2009) https://bioconductor.org/packages/release/bioc/html/biomaRt.html

org.Hs.eg.db v3.10.0 (Carlson, 2019) https://bioconductor.org/packages/release/data/annotation/html/
org.Hs.eg.db.html

edgeR v3.28.1 (McCarthy et al., 2012;
Robinson et al., 2010)

https://bioconductor.org/packages/release/bioc/html/edgeR.html

limma v3.42.2 (Ritchie et al., 2015) https://bioconductor.org/packages/release/bioc/html/limma.html

NMF v0.23.0 (Gaujoux and Seoighe, 2010) https://cran.r-project.org/web/packages/NMF/index.html

sva v3.34.0 (Leek et al., 2019) https://bioconductor.org/packages/release/bioc/html/sva.html

vsn v3.54.0 (Huber et al., 2002) https://bioconductor.org/packages/release/bioc/html/vsn.html

ggpubr v0.4.0 (Kassambara, 2020) https://cran.r-project.org/web/packages/ggpubr/index.html

ggfortify v0.4.13 (Horikoshi and Tang, 2020;
Tang et al., 2016)

https://cran.r-project.org/web/packages/ggfortify/index.html

GSEABase v1.48.0 (Morgan et al., 2019) http://bioconductor.org/packages/release/bioc/html/GSEABase.
html

renv v0.14.0 (Ushey, 2021) https://CRAN.R-project.org/package=renv
STEP-BY-STEP METHOD DETAILS

Preparation of RNA-seq data for cluster analysis

Timing: < 30 min

Both RNA-seq and proteomic data require transformation and/or normalization prior to analysis. For

analysis of RNA-seq data, the TPM values are used for cluster analysis as they account for gene

length and sequencing depth, and the RNA-seq count data is used for differential analysis. To
6 STAR Protocols 3, 101283, June 17, 2022
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prepare these two datasets for analyses, RNA annotations are added. To prepare the TPM data for

cluster analysis, protein-coding mRNAs are log-transformed, and low level mRNAs are removed as

background noise.

1. Add annotations to RNA features for the TPM and COUNT data loaded in above.

Note: Additional annotations of RNA features are necessary for downstream analysis, partic-

ularly when comparing to proteomic data. For the purpose of this protocol, it is critical to add

two types of annotations to the RNA features: the gene biotype and the HGNC symbol. The

former allows filtering for protein-coding mRNAs, while the latter serves as a common identi-

fier type in analyses involving both mRNA and protein data.
>GRCh37.87 <- useMart(biomart = "ENSEMBL_MART_ENSEMBL",

host = "dec2016.archive.ensembl.org",

dataset = "hsapiens_gene_ensembl")

>RNA.anno <- getBM(attributes = c("ensembl_gene_id", ‘‘hgnc_symbol", "entrezgene", "gene_-

biotype"), filters = "ensembl_gene_id", values = COUNT$EnsemblGeneID, mart = GRCh37.87, useC-

ache = F) %>%

set_colnames(c("EnsemblGeneID", "HGNCSymbol", "EntrezID", "Biotype")) %>%

dplyr::mutate(EntrezID = as.character(EntrezID)) %>%

group_by(EnsemblGeneID, Biotype) %>%

dplyr::summarise(HGNCSymbol = ifelse(length(unique(HGNCSymbol)) > 1, paste(unique(HGNC-

Symbol), collapse = ", "), unique(HGNCSymbol)), EntrezID = ifelse(length(unique(EntrezID))

> 1, paste(unique(EntrezID), collapse = ", "), unique(EntrezID))) %>%

ungroup %>%

mutate_all(function(x) na_if(x, "NA")) %>%

mutate_all(function(x) na_if(x, ""))

>head(RNA.anno)

# A tibble: 6 3 4

EnsemblGeneID Biotype HGNCSymbol EntrezID

<chr> <chr> <chr> <chr>

1 ENSG00000000003 protein_coding TSPAN6 7105

2 ENSG00000000005 protein_coding TNMD 64102

3 ENSG00000000419 protein_coding DPM1 8813

4 ENSG00000000457 protein_coding SCYL3 57147

5 ENSG00000000460 protein_coding C1orf112 55732

6 ENSG00000000938 protein_coding FGR 2268

>COUNT <- left_join(COUNT, RNA.anno, by = "EnsemblGeneID")

>TPM <- left_join(TPM, RNA.anno, by = "EnsemblGeneID")

>COUNT %>%

dplyr::select(where(is.character), where(is.numeric)) %>%

head

# A tibble: 6 3 44

STAR Protocols 3, 101283, June 17, 2022 7



EnsemblGeneID Start En Strand Biotype HGNCSymbol

<chr> <chr> <chr> <chr> <chr> <chr>

1 ENSG00000223972 11869;11. 1222. +;+;+. transc. DDX11L1

2 ENSG00000227232 14363;14. 1482. -;-;-. unproc. WASH7P

3 ENSG00000243485 29554;30. 3003. +;+;+. lincRNA MIR1302-2

4 ENSG00000237613 34554;35. 3517. -;-;-. lincRNA FAM138A

5 ENSG00000268020 52473;53. 5331. +;+;+ unproc. OR4G4P

6 ENSG00000240361 62948 63887 + unproc. OR4G11P

# . with 38 more variables: EntrezID <chr>, Length <dbl>,

# S1 <dbl>, S2 <dbl>, S3 <dbl>, S4 <dbl>, S5 <dbl>,

# S6 <dbl>, S7 <dbl>, S8 <dbl>, S9 <dbl>, S10 <dbl>,

# S11 <dbl>, S12 <dbl>, S13 <dbl>, S14 <dbl>, S15 <dbl>,

# S16 <dbl>, S17 <dbl>, S19 <dbl>, S21 <dbl>, S22 <dbl>,

# S23 <dbl>, S24 <dbl>, S25 <dbl>, S26 <dbl>, S27 <dbl>,

# S28 <dbl>, S29 <dbl>, S30 <dbl>, S31 <dbl>, .
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Note: Three feature annotation columns are added to the COUNT and TPM data: Biotype,

HGNCSymbol and EntrezID, corresponding to the biotype, HGNC symbol and Entrez ID of

each gene. The addition of Entrez IDs is optional but sometimes necessary depending on

downstream analysis requirements.

Note: Users wishing to use a different genome assembly may do so by changing the ‘‘host’’ and

‘‘dataset’’ arguments to obtain gene annotations from a different version or species, respectively.

2. Prepare log-transformed TPM matrix

Note: For cluster analysis, a matrix of log2-transformed TPM values is needed. Here, a numeric

matrix is generated from the TPM values of protein-coding genes. Lowly expressed mRNAs,

defined here as those expressed below 1 TPM in more than 50% of the cohort, are removed

before being log2-transformed.
>logTPM <- TPM %>%

filter(., Biotype == "protein_coding") %>%

column_to_rownames("EnsemblGeneID") %>%

dplyr::select(matches("S\\d{1,2}")) %>%

as.matrix %>% {

mat = .

mat %>%

is_greater_than(1) %>%

rowSums %>%

is_weakly_greater_than(ncol(mat)*0.5) %>%

8 STAR Protocols 3, 101283, June 17, 2022



mat[.,] %>% return

} %>%

add(1) %>%

log2

>logTPM[1:5, 1:8]

S1 S2 S3 S4

ENSG00000187634 6.121744 5.120782 7.141506 1.659699

ENSG00000188976 5.596282 5.030179 5.147660 4.232472

ENSG00000187961 4.295906 2.720688 3.048589 2.280037

ENSG00000188290 4.405557 4.465438 4.933465 4.386167

ENSG00000187608 3.753190 3.237547 3.458798 3.622116

S5 S6 S7 S8

ENSG00000187634 3.180383 3.709654 2.282866 3.597135

ENSG00000188976 5.044459 4.852175 4.906102 5.338667

ENSG00000187961 3.991705 3.105126 3.108855 4.104080

ENSG00000188290 4.704014 3.947958 3.864484 5.879325

ENSG00000187608 2.700303 2.703028 2.438892 4.112869

ll
OPEN ACCESSProtocol
Note: The gene expression threshold is arbitrarily set but should take into consideration the

research question and cohort composition. Users wishing to adjust the gene expression threshold

may do so by changing the 8th and 10th lines in the code chunk above. The is_greater_than(1) line

identifies all TPM measurements above 1 while the is_weakly_greater_than(ncol(mat)*0.5) iden-

tifies features with expression above 1 TPM in 50% or more of the cohort.

CRITICAL: A small constant (in this case 1) must be added to all TPM values prior to log2-
transformation to avoid errors arising from taking the logarithm of zeroes. We prefer to

use a constant of 1 because log2 of 1 returns zero.
Preparation of proteomic data for cluster analysis

Timing: < 1 h

Similar to RNA-seq data, the proteomic data should be transformed and normalized. Additionally,

the PSM data should be converted into peptide and eventually protein -level data for analysis. Since

the proteomic data were generated based on relative abundance, all identified proteins with quan-

titative values are used.

Note:Measurements obtained from RNA-seq and quantitative proteomic mass spectrometry

are distinct in nature due to the differences in the corresponding technology. While RNA-seq

can provide absolute counts, our TMT-based proteomicmethod estimated the abundances of

PSMs in each sample relative to other samples within the same run. The two datasets therefore

require different preparation steps for transformation and normalization to account for differ-

ences such as their data distributions. For further details on RNA-seq and quantitative prote-

omic mass spectrometry comparisons, see references (Nesvizhskii, 2010; Ning et al., 2012;

Wang et al., 2014).
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3. Normalize and aggregate PSMs into proteins.

Note: The PSM abundance measurements loaded in above are aggregated into peptide and

then into protein abundance using the median values as the representation. Variance stabiliz-

ing normalization (VSN) is applied to normalize and transform peptide abundances prior to

collapsing into proteins. The measurements from ambiguously mapped peptides (ie. present

in more than one protein) are excluded.
>PRO <- PSM %>%

lapply(., function(x) {

pep <- x %>%

filter(., ‘Number of Protein Groups‘ == 1) %>%

dplyr::select(‘Master Protein Accessions‘, ‘Annotated Sequence‘, 16:25) %>%

dplyr::rename(ProteinAccession = ‘Master Protein Accessions‘, Sequence = ‘Annotated

Sequence‘) %>%

dplyr::mutate(Sequence =

toupper(str_extract(Sequence,

"(?<=\\.).*(?=\\.)"))) %>%

na.omit %>%

filter(., !grepl("sp", ProteinAccession)) %>%

group_by(ProteinAccession, Sequence) %>%

summarise_all(median) %>%

ungroup

pep <- pep %>%

dplyr::select(-ProteinAccession, -Sequence) %>%

as.matrix %>%

justvsn %>%

data.frame(ProteinAccession = pep$ProteinAccession, .)

pro <- pep %>%

group_by(ProteinAccession) %>%

summarise_all(median) %>%

ungroup

return(pro)

})

>head(PRO$TMT1)

# A tibble: 6 3 11

ProteinAccession S8 S9 S14 S21 S20 S30 S40

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 A0AUZ9 5.57 6.20 6.84 5.88 6.29 7.00 5.89

2 A0AV96 3.22 2.22 3.20 2.61 4.01 2.37 2.20

3 A0AVF1 1.12 1.32 0.785 0.878 1.05 0.944 1.17
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4 A0AVT1 4.84 4.70 5.20 5.08 4.85 5.77 5.11

5 A0FGR8 3.95 4.28 4.64 4.05 4.70 4.48 4.35

6 A0JNW5 1.12 2.16 2.06 1.65 1.65 1.38 2.08

# . with 3 more variables: S22 <dbl>, P1 <dbl>, SM1 <dbl>

>sapply(PRO, nrow)

TMT1 TMT2 TMT3 TMT4 TMT5
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Note:Usersmay opt for their preferred normalizationmethod by changing the justvsn function

on the 18th line in the above code to their desired function. For example, the normalizeBetwee-

nArrays() function from the limma package can be used to performmedian or quantile -normal-

ization. We use VSN in our protocol as it was shown to be superior in reducing variation be-

tween technical replicates (Välikangas et al., 2018). After variance stabilizing normalization,

the peptide abundance values are in log2-scale and no further transformation is necessary.

4. Compile protein abundance from separate TMT runs.

Note: As mentioned earlier, each proteomic run may identify a different set of proteins. For

proteomic analysis of the entire cohort of specimens, only proteins identified and quantitated

across all specimens are used.

8183 7882 8058 7498 7847
>TMT <- sapply(PRO, function(x) x[,-1] %>% colnames) %>%

melt %>%

extract(,2:3) %>%

set_colnames(c("Batch", "SampleID"))

>head(TMT)

Batch SampleID

1 TMT1 S8

2 TMT1 S9

3 TMT1 S14

4 TMT1 S21

5 TMT1 S20

6 TMT1 S30

>PRO <- PRO %>%

purrr::reduce(inner_join, by = "ProteinAccession")

>PRO

# A tibble: 6,037 3 51

ProteinAccession S8 S9 S14 S21 S20 S30 S40

<fct <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 A0AV96 3.22 2.22 3.20 2.61 4.01 2.37 2.20

2 A0AVF1 1.12 1.32 0.785 0.878 1.05 0.944 1.17

3 A0AVT1 4.84 4.70 5.20 5.08 4.85 5.77 5.11
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4 A0FGR8 3.95 4.28 4.64 4.05 4.70 4.48 4.35

5 A0MZ66 5.22 4.77 4.38 4.71 4.72 4.34 3.90

6 A1IGU5 5.39 7.23 6.18 6.54 4.71 7.04 5.61

7 A1KXE4 2.41 3.26 2.34 2.97 2.49 3.01 3.45

8 A1L0T0 6.17 5.81 7.36 5.45 6.97 5.71 4.92

9 A1L188 3.09 2.84 3.20 3.44 3.02 2.57 3.56

10 A1L390 5.23 4.21 4.46 4.03 2.38 2.71 4.17

# . with 6,027 more rows, and 43 more variables: S22 <dbl>,

# P1 <dbl>, SM1 <dbl>, S12 <dbl>, S5 <dbl>, S4 <dbl>,

# S28 <dbl>, S25 <dbl>, S2 <dbl>, S7 <dbl>, S29 <dbl>,

# P2 <dbl>, SM2 <dbl>, S27 <dbl>, S39 <dbl>, S36 <dbl>,

# S1 <dbl>, S13 <dbl>, S19 <dbl>, S35 <dbl>, S34 <dbl>,

# P3 <dbl>, SM3 <dbl>, S15 <dbl>, S18 <dbl>, S17 <dbl>,
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5. Add annotations to protein features to enable downstream analysis andmRNA-protein comparison.

# S26 <dbl>, S10 <dbl>, S24 <dbl>, S32 <dbl>, S38 <dbl>, .
>PRO <- getBM(attributes = c("uniprot_swissprot", "hgnc_symbol", "entrezgene"), filters =

"uniprot_swissprot", values = PRO$ProteinAccession, mart = GRCh37.87, useCache = F) %>%

set_colnames(c("ProteinAccession", "HGNCSymbol", "EntrezID")) %>%

dplyr::mutate(EntrezID = as.character(EntrezID)) %>%

group_by(ProteinAccession) %>%

dplyr::summarise(HGNCSymbol =

ifelse(length(unique(HGNCSymbol)) > 1,

paste(unique(HGNCSymbol), collapse = ", "),

unique(HGNCSymbol)), EntrezID =

ifelse(length(unique(EntrezID)) > 1,

paste(unique(EntrezID), collapse = ", "),

unique(EntrezID))) %>%

ungroup %>%

mutate_all(function(x) na_if(x, "NA")) %>%

mutate_all(function(x) na_if(x, "")) %>%

left_join(PRO, ., by = "ProteinAccession") %>%

dplyr::select(ProteinAccession, HGNCSymbol, EntrezID, everything())

>PRO

# A tibble: 6,037 3 53

ProteinAccession HGNCSymbol EntrezID S8 S9 S14

<chr> <chr> <chr> <dbl> <dbl> <dbl>

1 A0AV96 RBM47 54502 3.22 2.22 3.20

12 STAR Protocols 3, 101283, June 17, 2022



2 A0AVF1 TTC26 79989 1.12 1.32 0.785

3 A0AVT1 UBA6 55236 4.84 4.70 5.20

4 A0FGR8 ESYT2 57488 3.95 4.28 4.64

5 A0MZ66 SHTN1 57698 5.22 4.77 4.38

6 A1IGU5 ARHGEF37 389337 5.39 7.23 6.18

7 A1KXE4 FAM168B 130074 2.41 3.26 2.34

8 A1L0T0 ILVBL 10994 6.17 5.81 7.36

9 A1L188 NDUFAF8 284184 3.09 2.84 3.20

10 A1L390 PLEKHG3 26030 5.23 4.21 4.46

# . with 6,027 more rows, and 47 more variables: S21 <dbl>,

# S20 <dbl>, S30 <dbl>, S40 <dbl>, S22 <dbl>, P1 <dbl>,

# SM1 <dbl>, S12 <dbl>, S5 <dbl>, S4 <dbl>, S28 <dbl>,

# S25 <dbl>, S2 <dbl>, S7 <dbl>, S29 <dbl>, P2 <dbl>,

# SM2 <dbl>, S27 <dbl>, S39 <dbl>, S36 <dbl>, S1 <dbl>,

# S13 <dbl>, S19 <dbl>, S35 <dbl>, S34 <dbl>, P3 <dbl>,
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Note: HGNC symbols are added to the protein data as with RNA-seq data. To facilitate sub-

sequent analyses that involve both mRNAs and proteins, the same column name, HGNCSym-

bol, is used here.

6. Check for batch effects.

Note: It is recognized that multiplex proteomic profiling, particularly using TMT-based ap-

proaches, suffers from batch-to-batch variations (Brenes et al., 2019). These batch effects

can jeopardize comparability between runs, so it is critical to ascertain whether batch effects

are present in the dataset. The following code generates a quick principal component analysis

(PCA) plot from the normalized protein data where the samples are color-coded according to

their TMT run batch. As shown in Figure 1A, batch-related sample variations are evident in our

proteomic dataset where the technical replicates of the pooled internal standard (P1�5; solid

circles) are dispersed yet cluster with other samples from the same runs. This result suggests

the batch effects related to the TMT runs are pronounced and conceal the proteomic similar-

ities expected between the technical replicates.

# SM3 <dbl>, S15 <dbl>, S18 <dbl>, S17 <dbl>, S26 <dbl>, .
>PRO %>%

column_to_rownames("ProteinAccession") %>%

dplyr::select(-HGNCSymbol, -EntrezID) %>%

as.matrix %>%

t %>%

prcomp %>% {

mat = .

dat <- TMT %>%
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dplyr::mutate(Type = ifelse(SampleID %in% paste0("SM", 1:5), 17, ifelse(SampleID %in%

paste0("P", 1:5), 19, 1)))

autoplot(., data = TMT, colour = "Batch", label = F, shape = dat$Type, size = 2) +

theme_pubr(base_size = 10)

}
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Optional: For subgroup identification, it is critical to mitigate prominent batch effects (if

present) to prevent them from confounding the true biological variations (Leek et al.,

2010). Several batch effect correction methods exist (Nygaard et al., 2016). For our anal-

ysis, we use ComBat to correct for the batch effects in our proteomic data prior to sub-

group identification. ComBat uses an empirical Bayes approach for batch correction which

avoids over-correction in datasets with small batch sizes (Johnson et al., 2007). The code

below applies ComBat to correct for the TMT run-associated batch effects and uses PCA

plot to check for post-correction sample dispersion. As shown in Figure 1B, ComBat

effectively reduces batch-associated clustering and results in comparability between the

technical replicates of the pooled internal standard (P1�5; solid circles) while leaving

the technical replicates of the cell line supermix (SM1�5; solid triangles) in a distinct

cluster.
>PRO.CB <- PRO %>%

dplyr::select(-HGNCSymbol, -EntrezID) %>%

column_to_rownames("ProteinAccession") %>%

as.matrix %>%

ComBat(dat = ., batch = TMT$Batch)

>PRO.CB[1:5, 1:5]

S8 S9 S14 S21 S20

A0AV96 3.951024 3.063534 3.935030 3.408637 4.662523

A0AVF1 3.518845 3.706400 3.208412 3.294879 3.455464

A0AVT1 4.931518 4.804685 5.255306 5.151811 4.937922

A0FGR8 4.458965 4.772773 5.112917 4.558818 5.171048

A0MZ66 5.275175 4.840055 4.461929 4.784848 4.793794

>PRO.CB %>%

t %>%

prcomp %>% {

mat = .

dat <- TMT %>%

dplyr::mutate(Type = ifelse(SampleID %in% paste0("SM", 1:5), 17, ifelse(SampleID %in%

paste0("P", 1:5), 19, 1)))

autoplot(., data = TMT, colour = "Batch", label = F, shape = dat$Type, size = 2) +

theme_pubr(base_size = 10)

}
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Note: Correction of batch effects should be limited to data on which exploratory analysis is

performed. For differential analysis of data with known batch effects, the batch information

can be included as a covariate in the statistical model to accommodate batch-related differ-

ences. This approach is demonstrated in the differential analysis section below.
Cluster analysis of RNA-seq and proteomic data

Timing: 1 h � days (depending on the sample size and computing power)

Non-negative matrix factorization (NMF) is used to perform cluster analysis for the identification of

subgroups. To ensure the identification of robustly segregated subgroups, a consensus approach is

utilized to aggregate results from multiple iterations. Running consensus NMF can become time-

consuming as the sample size increases. We therefore first perform a rank survey using a few itera-

tions to identify the optimal number of clusters (rank), then increase the number of iterations to

derive robust subgroup assignments at the optimal rank. In addition, only the most variable features

(mRNAs or proteins) are used in the cluster analysis.

7. Create wrapper function to perform NMF.

Note: Since NMF will be run for four separate instances (ie. rank survey and final clustering us-

ing mRNA or protein), a wrapper function to perform NMF can be utilized to minimize code

repetition. Below, a wrapper function is created to 1) select the top 25% most variably ex-

pressedmRNAs or variably abundant proteins based on coefficient of variation ranking, 2) me-

dian-center feature expression/abundance, and 3) perform NMF using a specified rank(s) and

number of iterations.
>doNMF <- function(mat, rank, nrun, save = T, save.name = NULL) {

if(save & is.null(save.name)) {

stop("A file name (save.name) must be provided for the result to be saved")

}

newmat <- apply(mat, 1, sd) %>%

divide_by(rowMeans(mat)) %>%

order(decreasing = T) %>%

mat[., ] %>%

extract(1:round(nrow(mat)*0.25), )

newmat <- apply(newmat, 1, median) %>%

sweep(newmat, 1, ., "-") %>%

as.matrix

res <- posneg(newmat) %>%

subset(., rowSums(.) > 0) %>%

nmf(x = ., rank = rank, nrun = nrun, seed = 123456)

if (save) {

saveRDS(res, save.name)
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}

return(res)

}

>r

>r
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CRITICAL: As with most clustering approaches, a random seed is used to initialize each
NMF run. To ensure reproducible results, a 6-digit random seed number must be provided

and is used to initialize the random number generator when running NMF. In the above

wrapper function, the number 123456 is used.
CRITICAL: NMF requires an input matrix of non-negative values, but standardization may
result in negative values. In the above code, the posneg() function is used to split the pos-

itive and negative values, where the latter are transformed into non-negative values and

added as additional features that maintain variations across samples.
Note: Since running NMF can become very time-consuming, we recommend saving the result

as soon as the computation is complete to avoid its accidental loss. The above wrapper func-

tion includes a parameter to save a copy of the result in .rds format that can be easily read back

into the workspace using the function readRDS().

8. Perform rank surveys by assuming a range of ranks and running NMF for 50 iterations at each

possible rank. The quality measures of the result from each rank can then be evaluated (next

step) to choose the optimal rank at which the samples are best segregated into clusters.
ank.r <- doNMF(logTPM, 2:7, 50, save.name = "RankSurvey_mRNA.rds")

ank.p <- colnames(PRO.CB) %>%

str_detect(., "S\\d{1,2}") %>%

PRO.CB[, .] %>%

doNMF(., 2:7, 50, save.name = "RankSurvey_protein.rds")
Note: For the proteomic data, the technical control samples are excluded from the cluster

analysis to prevent their inclusion from confounding the identification of potential subgroups

from the specimens. The sample exclusion was done using line 4 of the above code chunk

which selects columns based on their names containing ‘‘S’’ followed by a one-to-two digit

number.

Note: Considering that our cohort contains 35–36 samples with proteome and transcriptome

data, respectively, we only test a range of ranks up to 7. Users with larger sample size may in-

crease the range of ranks by changing the second parameter (‘‘2:7’’ in the above code chunk)

of the doNMF function.

9. Examine cophenetic and silhouette coefficients to determine the optimal ranks.

Note: The cophenetic correlation and silhouette width of a cluster result reflect how well the

cluster result recapitulates the inter-sample distances in the original data and how well each

sample is grouped in its cluster compared to neighboring clusters, respectively. These two co-

efficients from the consensus NMF at each rank tested can be evaluated to determine the

optimal rank at which samples fall into distinct clusters. The code below plots the cophenetic

and silhouette coefficients at the rank of 2–7 for mRNA and protein -based rank surveys. As
STAR Protocols 3, 101283, June 17, 2022



>r

gg

ef

}

>r

gg

ef

}

>s

>n

d

>n

d

>a

>a

ll
OPEN ACCESSProtocol
shown in Figures 2A and 2B, the consensus cophenetic correlation and silhouette coefficients

peak at the rank of 2 or 4 in both mRNA and protein -based analyses suggesting 2 or 4 is likely

the optimal rank for NMF analysis using either data type.
ank.r$measures %>% {

dat = .

c <- ggline(dat, x = "rank", y = "cophenetic", xlab = "Rank", ylab = "Cophenetic coefficient",

theme = theme_pubr(base_size = 10))

s <- ggline(dat, x = "rank", y = "silhouette.consensus", xlab = "Rank", ylab = "Silhouette co-

ficient", ggtheme = theme_pubr(base_size = 10))

ggarrange(c, s, ncol = 2)

ank.p$measures %>% {

dat = .

c <- ggline(dat, x = "rank", y = "cophenetic", xlab = "Rank", ylab = "Cophenetic coefficient",

theme = theme_pubr(base_size = 10))

s <- ggline(dat, x = "rank", y = "silhouette.consensus", xlab = "Rank", ylab = "Silhouette co-

ficient", ggtheme = theme_pubr(base_size = 10))

ggarrange(c, s, ncol = 2)
Note:While the cophenetic correlation and silhouette coefficients are helpful for choosing the

optimal rank, the ultimate decision of the optimal rank should also take into consideration the

research question and the cohort examined. For our analysis, while the coefficients appear

the highest at the rank of 2, we had performed auxiliary NMF analyses which indicated the

cluster solutions at the rank of 4 align more with clusters of biological differences. We there-

fore determined the rank of 4 to be the optimal rank.

10. Perform NMF at the optimal ranks to obtain subgroup assignments.

Note: Since one of the goals of this protocol is to draw comparisons between paired transcrip-

tome and proteome, only the samples with both RNA and protein information are used to

determine the subgroup assignments and for further analyses. To determine the subgroup

assignment of each sample, the consensus cluster solution at the rank of 4 is obtained by

running consensus NMF for 200 iterations using either mRNA or protein data. Hierarchical

cluster analysis is then performed using the resultant consensus matrix to obtain the subgroup

assignments.
amp <- intersect(colnames(logTPM), colnames(PRO.CB))

mf.r <- logTPM[, samp] %>%

oNMF(., 4, 200, save.name = "NMF_mRNA.rds")

mf.p <- PRO.CB[, samp] %>%

oNMF(., 4, 200, save.name = "NMF_protein.rds")

ssignment.r <- cutree(hclust(as.dist(1-nmf.r@consensus)), 4)

ssignment.p <- cutree(hclust(as.dist(1-nmf.p@consensus)), 4)
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11. Compare mRNA and protein -derived subgroup assignments.
>rbind(mRNA = assignment.r, Protein = assignment.p)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

mRNA 1 1 2 2 3 3 3 3 2 3 1 1 1 3 1

Protein 1 1 2 2 3 3 3 3 2 3 1 1 2 3 2

S16 S17 S19 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30

mRNA 4 2 3 2 1 3 3 4 2 3 2 2 4

Protein 4 3 2 2 1 3 1 4 2 3 2 2 2

S31 S32 S33 S37 S38 S39 S40

mRNA 3 1 2 1 2 4 4

Protein 3 2 2 1 2 4 4
Note: Comparison of subgroup assignments from different analyses can be done using

various approaches. The simplest and most intuitive is to tabulate the subgroup assignments

for visual comparison as shown above. Evidently, the subgroup assignments derived from

mRNA or protein -based clustering are highly concordant.

Optional: The NMF-derived subgroup assignments can be superimposed onto PCA plot to

provide a visualization of the spatial separation between samples of the different subgroups.

In the below code, PCA is performed using log-transformed TPM or batch-corrected abun-

dance from mRNAs or proteins, respectively, and plotted with the samples color-coded ac-

cording to their mRNA or protein -derived subgroup assignments. As shown in Figure 3A

and 3B, PCA plots using the first two principal components largely recapitulate NMF-derived

subgroups.
>assignment.r[colnames(logTPM)] %>%

na.omit %>%

as.data.frame %>%

set_colnames("Subgroup") %>%

dplyr::mutate(Subgroup = as.character(Subgroup)) %>% {

sg = .

logTPM[, rownames(sg)] %>%

t %>%

prcomp %>%

autoplot(., data = sg, colour = "Subgroup", shape = 19, label = F) +

scale_color_brewer(palette = "Set1") +

theme_pubr(base_size = 12)

}

>assignment.p[colnames(PRO.CB)] %>%
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na.omit %>%

as.data.frame %>%

set_colnames("Subgroup") %>%

dplyr::mutate(Subgroup = as.character(Subgroup)) %>% {

sg = .

PRO.CB[, rownames(sg)] %>%

t %>%

prcomp %>%

autoplot(., data = sg, colour = "Subgroup", shape = 19, label = F) +

scale_color_brewer(palette = "Set1") +

theme_pubr(base_size = 12)
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}

Comparison of mRNA and protein variation

Timing: < 30 min

Given availability of paired transcriptome and proteome data, it can be informative to compare the

transcriptome and proteome profiles of each sample, especially if the correlation between transcrip-

tome and proteome is not known for the particular disease/condition of interest. Here, correlation

analysis is used to compare the correlation between individual mRNAs and proteins in each spec-

imen and across the cohort.

12. Identify genes with paired mRNA and protein data.

Note: As mentioned earlier, HGNC gene symbols are used as the identifiers when cross-refer-

encing RNA and protein. However, Ensembl gene IDs and protein accessions, the primary

identifiers used in RNA and protein datasets respectively, should be preserved to prevent un-

necessary loss of data.
>genes <- intersect(COUNT$HGNCSymbol, PRO$HGNCSymbol) %>%

extract(!is.na(.))

>paired.TPM <- TPM %>%

filter(., HGNCSymbol %in% genes) %>%

dplyr::select(HGNCSymbol, any_of(samp)) %>%

group_by(HGNCSymbol) %>%

summarise_all(median) %>%

ungroup %>%

column_to_rownames("HGNCSymbol") %>%

add(1) %>%

log2

>paired.PRO <- PRO[,c("ProteinAccession", "HGNCSymbol")] %>%
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filter(., HGNCSymbol %in% genes) %>%

left_join(., PRO.CB %>% as.data.frame %>% rownames_to_column("ProteinAccession"),

by = "ProteinAccession") %>%

dplyr::select(HGNCSymbol, any_of(samp)) %>%

group_by(HGNCSymbol) %>%

summarise_all(median) %>%

ungroup %>%
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13. Compute mRNA-protein correlation for each sample.

Note: The correlation between paired transcriptome and proteome can be computed for each

sample to evaluate how well the transcriptome and proteome landscapes are correlated with

respect to mRNA expression and protein abundance in each sample on a global scale. The

correlations can then be plotted (as shown in Figure 4A) for visual inspection. The code below

computes and plots the mRNA-protein correlation for each sample.

column_to_rownames("HGNCSymbol")
>cor(paired.TPM, paired.PRO, method = "spearman") %>%

as.data.frame %>%

set_colnames("Rho") %>%

rownames_to_column("Sample") %>%

ggdotchart(., x = "Sample", y = "Rho", ggtheme = theme_pubr(base_size = 10), add = "segment",

ylim = c(0, 1), ylab = "mRNA-protein correlation (rho)")
14. Compute correlation between mRNA and protein variation for each gene to evaluate how well

mRNA and protein variations are correlated in the sample cohort.
>cor(t(paired.TPM), t(paired.PRO), method = "spearman") %>%

diag %>%

gghistogram(., bins = 20, theme = theme_pubr(base_size = 10), fill = "gray",

xlab = "mRNA-protein correlation (rho)",
Note: As shown in Figure 4B, based on the list of genes with paired mRNA and protein infor-

mation, diverse correlations between mRNA and protein variations are evident in our cohort

specimens.

Differential analysis

Timing: < 30 min

Differential analysis of gene expression or protein abundance can be performed using the same

analysis workflow, with slight differences in their input structures. Here, we illustrate our workflow

for differential analysis of gene expression and protein abundance between the four subgroups

ylab = "Number of genes")
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identified earlier. For simplicity, only the mRNA-derived subgroup assignments are used. Differen-

tial analysis through the limma r package uses linear models and an empirical Bayes approach that

allow analysis of data as a whole and permit inclusion of covariates (e.g., batch effects) that may

confound with analysis objectives in the model design (Ritchie et al., 2015). In addition to differential

analysis, a gene set test is performed to showcase added functionalities of the limma package in

identifying biological differences from molecular comparisons.

DGEList objects from the edgeR package (Robinson et al., 2010) and ExpressionSet objects from the

Biobase package (Huber et al., 2015) are two input formats accepted by limma. Both DGEList and

ExpressionSet objects are of the S4 class that are designed to store expression, phenotype and

feature data. For our purpose of analyzing transcriptome and proteome data, the transcriptome

data are converted into a DGEList object while the proteome data are converted into an

ExpressionSet object for analysis using limma.

Note: The utility of a DGEList class object is to facilitate normalization and transformation of

count data and is not applicable to the proteomic data showcased in this protocol. Users work-

ing with microarray data may wish to proceed with an ExpressionSet object followed by

appropriate normalization.

15. Construct a DGEList object from the RNA-seq data.

Note: As mentioned earlier, the raw counts are used in the differential analysis, as compared

to the TPMs in the cluster analyses. Since differential analysis compares gene-level measure-

ments between groups, gene-length normalization is irrelevant. Instead, raw counts can be

normalized to scale for library size and composition differences using the trimmed mean of

M values (TMM) method from edgeR (Robinson and Oshlack, 2010).
>dge <- COUNT %>% {

dat = .

p <- assignment.r %>%

as.data.frame %>%

set_colnames("Subgroup") %>%

dplyr::mutate(Subgroup = paste0("Subgroup", Subgroup))

m <- dat %>%

dplyr::select(EnsemblGeneID, one_of(rownames(p))) %>%

column_to_rownames("EnsemblGeneID") %>%

as.matrix

f <- dat %>%

dplyr::select(-matches("S\\d{1,2}")) %>%

column_to_rownames("EnsemblGeneID")

res <- DGEList(counts = m,

samples = p,

genes = f)

fkeep <- rowSums(cpm(res) > 1) >= round(nrow(p)*0.1)

res <- res[fkeep, keep.lib.sizes = F] %>%
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calcNormFactors(., method = "TMM")

res

}

>dim(dge)

[1] 25373 35
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Note: As done in the preparatory steps of cluster analysis, noise-level RNAs are removed from

the constructed DGEList object. Here, only RNAs with expression above 1 count-per-million

(CPM) in at least 10% of the cohort are retained for further analyses.

Note: The DGEList is analogous to a list of three objects: a gene matrix (counts), a feature

annotation dataframe (genes) and a sample annotation dataframe (samples).

16. Construct an ExpressionSet object from the proteomic data.

Note: For differential abundance analysis of proteomic data, the normalized protein abun-

dance values are used. To account for the TMT-associated batch effects in the linear

modeling, the batch covariate (eg. TMT run) is added to the sample annotations.
>eset <- PRO %>% {

dat = .

p <- assignment.r %>%

as.data.frame %>%

set_colnames("Subgroup") %>%

merge(., TMT, by.x = "row.names", by.y = "SampleID") %>%

column_to_rownames("Row.names") %>%

dplyr::mutate(Subgroup = paste0("Subgroup", Subgroup)) %>%

extract(samp,) %>%

new("AnnotatedDataFrame", .)

m <- dat %>%

dplyr::select(ProteinAccession, one_of(samp)) %>%

column_to_rownames("ProteinAccession") %>%

as.matrix

f <- dat %>%

dplyr::select(ProteinAccession, HGNCSymbol, EntrezID) %>%

column_to_rownames("ProteinAccession") %>%

new("AnnotatedDataFrame", .)

ExpressionSet(assayData = m,

phenoData = p,

featureData = f)

}
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>eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 6037 features, 35 samples

element names: exprs

protocolData: none

phenoData

sampleNames: S1 S2 . S40 (35 total)

varLabels: Subgroup Batch

varMetadata: labelDescription

featureData

featureNames: A0AV96 A0AVF1 . Q9Y6Y8 (6037 total)

fvarLabels: HGNCSymbol EntrezID

fvarMetadata: labelDescription

experimentData: use ’experimentData(object)’

Annotation:
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Note: Similar to a DGEList, the ExpressionSet contains a protein abundance matrix (assay-

Data), a feature annotation dataframe (featureData) and a sample annotation dataframe

(phenoData).

17. Create a wrapper function to perform limma.

Note: Differential analysis using limma involves several steps that are mostly identical regard-

less of the input. As such, a wrapper function can be created to reduce code repetition, as pre-

viously done for performing NMF. In addition to differential analysis capabilities, limma is

equipped with a function camera() that performs a competitive gene set test against any refer-

ence gene panel of interest (Wu and Smyth, 2012). This added capability can be leveraged to

develop a streamlined workflow combining differential analysis and gene set tests.
>doLimma <- function(dat, type, model.m, contr.m, gs = NULL)

{

if (type == "rna") {

v <- voom(dat, design = model.m)

if (!is.null(gs)) {

gset <- gs %>%

ids2indices(., id = dat$genes$HGNCSymbol)

}

} else if (type == "protein") {

v <- dat

if (!is.null(gs)) {

gset <- gs %>%
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ids2indices(., id = fData(dat)$HGNCSymbol)

}

} else {

stop("Data type must be specified.")

}

vfit <- lmFit(v, model.m) %>%

contrasts.fit(., contrasts = contr.m)

efit <- eBayes(vfit)

if (!is.null(gs)) {

groups = colnames(contr.m)

cam <- groups %>%

setNames(.,.) %>%

as.list %>%

lapply(., function(x) {

camera(v, gset, model.m, contrast = contr.m[,x])

})

return(list(v=v, efit = efit, camera = cam))

} else {

list(v = v, efit = efit)

}

}
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Note: Since the transcriptome data was only subjected to normalization, the wrapper function

transforms the transcriptome data using voom prior to performing the analysis. The proteome

data, on the other hand, was subjected to transformation during variance-stabilizing normal-

ization and no further processing is required.

Note: A model matrix and a contrast matrix are required to perform linear modeling and to

specify group comparisons. Thesematrices are left for the users to supply to the wrapper func-

tion to allow flexibility to add or modify as appropriate. Examples of how these matrices can

be constructed are shown in steps 19 and 20.

Note: The above wrapper function outputs a list containing the input (v), the result of fitted

gene-wise linear model as a MArrayLM object (efit), and a gene set test result if applicable

(camera).

18. Import reference gene sets for gene set testing.
>Hallmark <- getGmt("h.all.v7.4.symbols.gmt") %>%

geneIds

>length(Hallmark)

[1] 50
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>Hallmark$HALLMARK_PANCREAS_BETA_CELLS

[1] "PAX6" "NEUROD1" "ISL1" "NKX2-2" "PCSK1"

[6] "NKX6-1" "SLC2A2" "SEC11A" "DCX" "SPCS1"

[11] "FOXA2" "GCK" "MAFB" "INS" "PDX1"

[16] "ABCC8" "IAPP" "SRP9" "NEUROG3" "FOXO1"

[21] "AKT3" "GCG" "DPP4" "PAX4" "SYT13"

[26] "SCGN" "HNF1A" "STXBP1" "CHGA" "VDR"

[31] "PCSK2" "INSM1" "SST" "ELP4" "SRPRB"

[36] "PAK3" "G6PC2" "PKLR" "LMO2" "SRP14"
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Note: For illustrative purpose, here we only use the Hallmark gene sets from MSigDB, which

consist of 50 curated gene sets with cancer relevance (Liberzon et al., 2015) downloaded from

www.gsea-msigdb.org/gsea/downloads.jsp - msigdb and saved to the working directory.

This same code is applicable to any other gene sets from MSigDB.

Note: In theory, any reference gene panels of the same data structure (a list of named objects,

each containing a vector of genes) can be used in placed of the ‘‘Hallmark’’ gene set gener-

ated from the above code.

CRITICAL: The type of gene identifiers used in the reference gene panels must also be pre-
sent in the data to be analyzed. In our example, our transcriptome and proteome data

contain HGNC symbols, thus the MSigDB gene sets consisting of HGNC symbols were

used.
19. Perform differential analysis using transcriptomic data.

Note: Here, differential expression analysis is performed to compare RNA expression be-

tween each subgroup to the average of the other subgroups. Since one subgroup was very

different from the others (Subgroup 4, purple in Figure 3), it was not included in the analysis

of the other three subgroups as reflected in the contrast matrix design.
>lm.r <- dge %>% {

dat = .

model.m <- model.matrix(�0 + factor(Subgroup), dat$samples) %>%

set_colnames(paste0("Subgroup", 1:4))

contr.m <- makeContrasts(Subgroup1 = Subgroup1 - (Subgroup2 + Subgroup3)/2,

Subgroup2 = Subgroup2 - (Subgroup1 + Subgroup3)/2,

Subgroup3 = Subgroup3 - (Subgroup1 + Subgroup2)/2,

Subgroup4 = Subgroup4 - (Subgroup1 + Subgroup2 + Subgroup3)/3,

levels = colnames(model.m))

doLimma(dat, "rna", model.m = model.m, contr.m = contr.m, Hallmark)

}
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Note: The model (model.m) and contrast (contr.m) matrices can be changed to suit users’

needs, depending on the experimental context and analysis objectives, such as if a different

comparison is desired. A model matrix can be constructed using the model.matrix function

where a formula and phenotype data should be supplied. In the above code chunk, the sam-

ple annotation dataframe from the RNA DGEList is used as the phenotype data and the ‘‘Sub-

group’’ column from it used to define the groups of interest. A contrast matrix specifies the

desired comparisons and can be constructed using the makeContrasts function. In the above

example, four comparisons are made, one for each evaluation between a subgroup (Sub-

group1�4 preceding the minus sign) and others (Subgroups following the minus sign). Users

interested in other comparisons may alter the formula accordingly. For instance, to compare

Subgroup 4 to all other subgroups, one can use: ‘‘Subgroup4 = Subgroup4 – (Subgroup1 +

Subgroup2 + Subgroup3)/3’’.

20. Perform differential analysis using proteomic data.
>lm.p <- eset %>% {

dat = .

model.m <- model.matrix(�0 + factor(Subgroup) + factor(Batch),

pData(dat)) %>%

set_colnames(c(paste0("Subgroup", 1:4), paste0("TMT", 2:5)))

contr.m <- makeContrasts(Subgroup1 = Subgroup1 - (Subgroup2 + Subgroup3)/2,

Subgroup2 = Subgroup2 - (Subgroup1 + Subgroup3)/2,

Subgroup3 = Subgroup3 - (Subgroup1 + Subgroup2)/2,

Subgroup4 = Subgroup4 - (Subgroup1 + Subgroup2 + Subgroup3)/3,

levels = colnames(model.m))

doLimma(dat, "protein", model.m = model.m, contr.m = contr.m, Hallmark)

}

Note: The code for running differential protein abundance analysis is nearly identical to that

used for differential mRNA expression analysis, with the addition of the batch covariate (TMT

run grouping) in the designmatrix to account for the batch effects associated with the different

TMT runs. In experiments where confounding variables are known, users may replace the

‘‘Batch’’ covariate or add to the formula to account for more than one covariate that can

adversely impact the analysis.

21. Extract differential analysis results.

Note:Differential mRNA expression or protein abundance analysis results can be easily extracted

using the topTable() function on the MArrayLM object outputted by limma. A set of significantly

differential genes for each subgroup is derived by imposing expression/abundance and/or signif-

icance thresholds. The code below illustrates how to extract the significantly differential genes for

each subgroup from the transcriptomic and proteomic data. As in our previous work (Yang et al.,

2021), a significance threshold is set at adjusted p-value < 0.05, and log-fold change thresholds of

2 and 1 are set for mRNA and protein, respectively.
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>deg <- paste0("Subgroup", 1:4) %>%

setNames(., .) %>%

as.list %>%

lapply(., function(x) topTable(lm.r$efit, coef = x, p.value = 0.05, lfc = 2, n = Inf))

>dap <- paste0("Subgroup", 1:4) %>%

setNames(., .) %>%

as.list %>%

lapply(., function(x) topTable(lm.p$efit, coef = x, p.value = 0.05, lfc = 1, n = Inf))
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Note: The output from the above code is a Iist of data frames, each containing significantly differ-

ential genes for a subgroup from the transcriptomic (deg) or proteomic (dap) data. The number of

significantly differential genes varies between subgroups and data as shown below.
>sapply(deg, nrow)

Subgroup1 Subgroup2 Subgroup3 Subgroup4

332 527 905 1124

>sapply(dap, nrow)

Subgroup1 Subgroup2 Subgroup3 Subgroup4

34 75 203 112
Note: The significance threshold here is imposed on the adjusted p-value, after correction for

multiple comparisons. The default p-value adjustment method is the Benjamini-Hochberg

procedure.

Note: To obtain the entirety of the differential analysis results, one can drop the p.value and lfc

parameter.

Note: The gene set test results are structured as data frames with each row corresponding to a

gene set and test statistics in columns. Below is a demonstration of the gene set test result

from one of the subgroups.
>head(lm.r$camera$Subgroup4)

NGenes Direction

HALLMARK_E2F_TARGETS 197 Up

HALLMARK_G2M_CHECKPOINT 190 Up

HALLMARK_MYC_TARGETS_V1 195 Up

HALLMARK_INTERFERON_GAMMA_RESPONSE 193 Down

HALLMARK_MYC_TARGETS_V2 58 Up

HALLMARK_INTERFERON_ALPHA_RESPONSE 94 Down

PValue FDR

HALLMARK_E2F_TARGETS 1.979853e-47 9.899264e-46
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HALLMARK_G2M_CHECKPOINT 2.665669e-33 6.664172e-32

HALLMARK_MYC_TARGETS_V1 2.409791e-17 4.016318e-16

HALLMARK_INTERFERON_GAMMA_RESPONSE 1.850506e-07 2.313132e-06

HALLMARK_MYC_TARGETS_V2 2.334552e-07 2.334552e-06
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EXPECTED OUTCOMES

Given paired transcriptomic and proteomic data, this protocol is designed to achieve three goals:

identify molecular subgroups, compare variations between mRNA expression and protein abun-

dance, and perform differential analysis between the identified subgroups. Steps are provided to

apply appropriate normalization and transformation to RNA-seq or proteomic quantitative data

(steps 1–6) for cluster and differential analyses. Consensus NMF analysis (steps 7–11) identifies

robust clusters using either mRNA or protein data (Figures 3A and 3B). Using a common gene iden-

tifier, the correlations between mRNA expression and protein abundance are computed (steps 12–

14) for each sample or for each gene (Figures 4A and 4B) to inform the degree of independence and

interdependence between transcriptomic and proteomic landscapes. Differential analysis through

limma (steps 15–21) identifies differentially expressed mRNAs and differentially abundant proteins

for further investigation.

LIMITATIONS

This protocol relies on available transcriptomic and proteomic data from the samples of interest. While

there are virtually no limitations to the types of research questions or samples for this protocol to work,

the quality of the input data directly affects the quality of the result outputs. For data likely affected by

confounding variables such as batch effects, a thoughtful experimental design is crucial to assess and

mitigate such unwanted effects during the analysis and to thereby minimizing the impacts of the con-

founding variables on the results. For example, the inclusion of technical control samples in our prote-

omic profiling experiment enabled the discovery, assessment and mitigation of batch effects associ-

ated with TMT runs (Figures 1A and 1B). Failure to account for potential confounding variables in the

experimental design may limit the reliability of the analysis results and the extent to which correction

methods may aid with mitigating their effects. We therefore strongly recommend spending consider-

able effort on experimental design prior to commencing data generation and acquisition.

TROUBLESHOOTING

Problem 1

Encountering error messages when downloading or installing packages (Before you begin steps

1–3).

Potential solution

Error messages can often be encountered during package download and installation. Often, these

errors are due to incompatibility between the R and package versions or missing package depen-

dencies. While the most appropriate solution would depend on the actual errors encountered, up-

dating R and/or the packages in questions while also enabling dependency installation/update can

often resolve the errors. This approach, however, may sometimes trigger additional incompatibil-

ities due to partially updated dependencies. The most straightforward solution for this problem

may be to use the renv package (Ushey, 2021) to create a project-specific environment and use

the BiocManager package (Morgan, 2021) to facilitate all package downloads and installations as

described in step 2 of before you begin.

Problem 2

Encountering error messages when running executable codes throughout this protocol.

HALLMARK_INTERFERON_ALPHA_RESPONSE 5.432535e-07 4.527113e-06
28 STAR Protocols 3, 101283, June 17, 2022



Figure 1. Principal component analysis of the proteomic profiles before and after applying batch correction

(A) Principal component analysis (PCA) plot of samples based on their proteomic profiles. The samples are color-

coded according to tandem mass tag (TMT) run. The patient specimen samples are shown as hollowed circles.

Technical replicates of the pooled internal standard sample (P1�5) and cell line supermix (SM1�5) are shown as solid

circles and solid triangles, respectively.

(B) PCA plot of the same samples after applying ComBat to mitigate the observed batch effects. The samples are

color-coded and shown as in (A).
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Potential solution

If steps from this protocol are followed properly, error messages encountered would likely be due to

either inaccurate syntax or deviations in the input data structure(s). For the former, it is crucial to

confirm proper and accurate placement of commas, brackets, parentheses, and quotation marks

as well as correct spelling. For errors due to input data structure(s), users are advised to reformat

their data to closely match those used in this protocol. Snapshots of input data are shown

throughout the protocol.

Problem 3

More than one identifier is mapped to a feature when adding annotation(s) (steps 1 and 5).

Potential solution

Conversion of gene identifiers from omic data can almost always lead to multiple identifiers mapped

to a feature. For example, an Ensembl gene identifier may have more than one HGNC symbol and

Entrez ID due to various reasons such as gene splicing. A potential solution, as demonstrated in

steps 1, 3, and 13 of the step-by-step method details, is to either treat the additional identifiers

as new features and duplicate feature measurements or to simply use only one of the identifiers. Ad-

vantages and disadvantages of either approach would depend on the exact applications and down-

stream analysis, but such simplification is rarely detrimental to omic-scale analysis as only a marginal

fraction of the feature pool is affected.

Problem 4

Too many or too few significantly differential genes (step 21).

Potential solution

The thresholds used to determine significantly differential genes are typically defined per exper-

iment and should be set according to the particular context. While the significance threshold is

most commonly set at 0.05 to allow a maximum of 5% error rate, the fold-change thresholds often
STAR Protocols 3, 101283, June 17, 2022 29



Figure 2. Rank surveys of consensus non-negative matrix factorization on mRNA or protein measurements

(A) Cophenetic correlation and silhouette coefficients (y-axis) at the rank 2–7 (x-axis) from consensus non-negative

matrix factorization (NMF) using the top 25% variably expressed mRNAs.

(B) Cophenetic correlation and silhouette coefficients (y-axis) at the rank 2–7 (x-axis) from consensus NMF using the

top 25% variably abundant proteins.
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vary between studies, and it is at the users’ discretion to decide on a reasonable threshold given

their study objectives and the samples examined. Nevertheless, identification of significantly dif-

ferential genes relies on the assumption that the groups compared are biologically different, and

the number of significantly differential genes identified reflect the degree to which the compared

groups differ.

Problem 5

Uncertainties surrounding the details and/or uses of a package or function throughout this protocol.

Potential solution

A well- developed and maintained package typically contains a vignette with elaborate information

including usage examples. Users wishing to learnmore about a specific package used in this protocol

are encouraged to refer to the package vignette for additional information and package usage var-

iations. The vignette for a package canbe accessed through thepackage’s download link (listed in the

key resources table) or within R using the function vignette(). For information on a particular function

used, the help() function can be used within R to bring up the information page on the function.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Sharon Gorski (sgorski@bcgsc.ca).

Materials availability

This study did not generate new unique reagents.
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Figure 3. Consensus NMF-derived subgroups illustrated using PCA plots

(A and B) Analysis and visualization strategies adapted from Yang et al. (Yang et al., 2021). (A) PCA plot using all

expressed mRNAs. The samples are color-coded according to their NMF-derived subgroups. (B) PCA plot using all

proteins. The samples are color-coded according to their NMF-derived subgroups.
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Data and code availability

This study did not generate any new datasets or software. The datasets used for demonstration in

this protocol were previously generated (Yang et al., 2021) and are available at the European

Genome-phenome Archive (EGAS00001005024) and the Proteomics Identification Database

(PXD024175). The codes generated and used in this study are presented throughout the text.
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Figure 4. Correlations between mRNA expression and protein abundance

(A and B) Analysis and visualization strategies adapted from Yang et al. (2021). (A) Sample-wise mRNA-protein

correlation computed as Spearman’s Rho (y-axis). Samples are ordered along the x-axis based on increasing

correlation. (B) The distribution of gene-wise mRNA-protein correlations computed as Spearman’s Rho (x-axis). A

histogram of 20 bins is shown with height of each bar proportional to the number of genes in each bin. The median

correlation is depicted by a red vertical line.
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Ghandi, M., Mesirov, J.P., and Tamayo, P. (2015).
The molecular signatures Database Hallmark gene
set collection. Cell Syst. 1, 417–425.

McCarthy, D.J., Chen, Y., and Smyth, G.K. (2012).
Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological
variation. Nucleic Acids Res. 40, 4288–4297.

Morgan, M. (2021). BiocManager:: Access the
Bioconductor Project Package Repository
([Software]).

Morgan, M., Falcon, S., and Gentleman, R. (2019).
GSEABase: Gene Set Enrichment Data Structures
and Methods ([Software]).

Nesvizhskii, A.I. (2010). A survey of computational
methods and error rate estimation procedures for
peptide and protein identification in shotgun
proteomics. J. Proteomics 73, 2092–2123.

Ning, K., Fermin, D., and Nesvizhskii, A.I. (2012).
Comparative analysis of different label-free mass
spectrometry based protein abundance estimates
and their correlation with RNA-Seq gene
expression data. J. Proteome Res. 11, 2261–2271.

Nygaard, V., Rødland, E.A., and Hovig, E. (2016).
Methods that remove batch effects while retaining
group differences may lead to exaggerated
confidence in downstream analyses. Biostatistics
17, 29–39.

R Core Team (2020). R: A Language and
Environment for Statistical Computing ([Software]).

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W.,
Shi, W., and Smyth, G.K. (2015). Limma powers
differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids
Res. 43, e47.

Robinson, M.D., and Oshlack, A. (2010). A scaling
normalization method for differential expression
analysis of RNA-seq data. Genome Biol. 11, R25.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K.
(2010). edgeR: a Bioconductor package for
differential expression analysis of digital gene
expression data. Bioinformatics 26, 139–140.

RStudio Team (2018). RStudio: Integrated
Development for R ([Software]).

Tang, Y., Horikoshi, M., and Li, W. (2016). ggfortify:
unified interface to visualize statistical result of
popular R packages. R. J. 8, 474.

Ushey, K. (2021). renv: Project Environments
([Software]).
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