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Introduction
A large body of research in humans and animal models supports 
the view that the hippocampus and the surrounding medial tem-
poral lobe (MTL) cortices play a crucial role in certain types of 
memory, including place memory (Bast, 2007; Burgess et al., 
2002; Morris, 2007). Theta oscillations are a prominent neural 
activity pattern recorded from MTL regions, in particular the hip-
pocampus, especially during movements in real and virtual envi-
ronments. Theta oscillations have been associated with encoding 
and retrieval of memory, including place memory, and this has 
been suggested to reflect that theta oscillations facilitate underly-
ing synaptic plasticity mechanisms, separate encoding and 
retrieval processes, or coordinate the activity of neuronal ensem-
bles that are distributed across hippocampus and other brain 
regions and interact to support memory encoding, retrieval or 
expression (Colgin, 2013; Cornwell et al., 2008; Hasselmo and 

Stern, 2014; Herweg et al., 2020; Kahana et al., 1999; O’Keefe 
and Burgess, 1999). The evidence linking theta oscillations with 
these memory processes has traditionally come from invasive 
recordings in animals and non-invasive recordings in humans, 
but recent studies have further supported this evidence with 
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intracranial recordings obtained directly from the human hip-
pocampal formation, for example, Bush et al. (2017).

Watermaze tests of place learning and memory in rodents, and 
corresponding reverse-translated human paradigms in real or vir-
tual environments, have long been used to study hippocampal 
function (Buckley and Bast, 2018; Cornwell et al., 2008; Morris, 
2007; Morris et al., 1982; Pu et al., 2017). In common variants, the 
rodent or human participant has to find a hidden goal that remains 
in the same place over many trials, allowing for incremental learn-
ing of the place with reference to distal cues surrounding a circular, 
featureless maze. Place memory of where the goal is located in 
relation to the distal cues (i.e. allocentric place memory) is reflected 
by relatively short latencies and direct paths to the goal when the 
animals are placed into the maze from different start positions 
(which discourages use of egocentric strategies), and by search 
preference, that is, persistent searching around the goal location, 
when the goal has been removed for a probe trial. Although incre-
mental place-learning performance depends on the hippocampus, 
rodent studies have shown that one-trial place-learning perfor-
mance, as measured using the delayed-matching-to-place (DMP) 
watermaze variant, is a more sensitive index of hippocampal func-
tion (reviewed in Buckley and Bast (2018)).

The DMP task requires the continuous rapid updating of place 
memory, resembling the everyday task of, for instance, remem-
bering where we parked our car on a particular occasion. In a 
common DMP protocol (Bast et al., 2009; Steele and Morris, 
1999), which we have recently reverse-translated into a virtual 
DMP task for human participants (Buckley and Bast, 2018), the 
goal moves to a new place every four trials. One-trial place learn-
ing on the rodent and human DMP task is reflected by marked 
reductions in latency and path lengths to the goal from trial 1 to 
2, with little further improvements on subsequent trials, and by a 
marked search preference for the vicinity of the goal location 
when trial 2 is run as probe (when the goal is removed). Rodent 
studies have shown that such one-trial place-learning perfor-
mance is highly hippocampus-dependent, being more sensitive to 
disruption of hippocampal function than incremental place-learn-
ing performance; for example, partial hippocampal lesions and 
manipulations of hippocampal synaptic plasticity, which can 
leave incremental place-learning performance relatively intact, 
markedly impair one-trial place-learning performance (reviewed 
in Buckley and Bast (2018)). Moreover, the DMP task allows for 
the repeated study of encoding and retrieval/expression of new 
place memory within the same participants. Thus, the virtual 
DMP task may be particularly suitable to reveal the neural oscil-
lations associated with encoding or retrieval/expression of hip-
pocampus-dependent place memory performance in human 
participants.

There is considerable inter-individual variance in cognitive 
performance parameters. For instance, ageing affects spatial 
memory in particular and this may happen through decline of cho-
linergic neuromodulation (Richter et al., 2014). In Alzheimer’s 
disease (AD), the MTL and the nucleus basalis are among the first 
brain areas to be damaged (Braak and Braak, 1995), and several 
studies have shown that a deficit in spatial memory in AD corre-
lates with hippocampal damage (Kramer et al., 2004; Miller, 
1973). We have previously shown that functional connectivity of 
the nucleus basalis to cortex can predict the therapeutic response 
to cholinesterase inhibitors by patients suffering from mild cogni-
tive impairment; more specifically, functional connectivity of the 

nucleus basalis predicted the improvement of cognitive perfor-
mance scores in response to treatment with cholinesterase inhibi-
tors (Meng et al., 2018). A question that arises is, how do such 
cholinergic changes mediate memory processes? One candidate 
mechanism is through hippocampal theta oscillations as these are 
known to be dependent on cholinergic input (Newman et al., 
2012; Tiesinga et al., 2001). The virtual DMP task might therefore 
serve as an ideal model to study such mechanisms in the future.

In this study, we aimed to examine whether electroencepha-
lography (EEG) was suitable to measure memory-related theta 
oscillations from the MTL in human participants performing the 
virtual DMP test. Previous studies have used magnetoencepha-
lography (MEG) to localise spatial navigation-related theta oscil-
lations (Cornwell et al., 2008; Kaplan et al., 2014; Kaplan et al., 
2012; Pu et al., 2017), but MEG is far more expensive than EEG 
and these authors also used individual anatomical magnetic reso-
nance imagings (MRIs) of the head to construct appropriate vol-
ume conductor (and thus biophysical forward) models for source 
analysis, making this method much less commonly available to 
use for future studies of individual differences in the context of 
ageing or other clinically relevant conditions or in particular 
diagnostic tests for early dementia. MEG is also particularly 
more sensitive to more superficial sources (Hillebrand and 
Barnes, 2002) and might therefore be, relatively spoken, less 
advantageous to study deeper sources. In addition, we aimed to 
perform a largely data-driven analysis to reveal key frequency 
bands (within the range of 2–15 Hz) and brain regions most 
robustly associated with performance, rather than constraining 
our analysis to predetermined frequencies or regions of interest.

Materials and methods

Participants

Initially, 26 participants were recruited, predominantly students 
from the University of Nottingham recruited through an opportu-
nity sample as part of MSc summer research projects. The study 
was run in line with ethical guidelines and approval for taught 
research projects was obtained from the Ethics Committee of the 
School of Psychology, University of Nottingham. All participants 
gave informed consent. Participants were given an inconvenience 
allowance for their participation. The sample size was chosen to 
represent a compromise between statistical power and practical 
considerations. It was a little higher than sample sizes in previous 
MEG studies of spatial memory and navigation-related theta (18 
participants (Pu et al., 2017); 19 participants (Kaplan et al., 
2012)). The data of five participants had to be excluded due to 
problems with their EEG data, either trigger problems or electrical 
noise issues caused by an electrical device on the roof of the semi-
shielded room in which the experiment was conducted. The data 
of 21 participants (15 female and 6 male) were thus included in 
this report (mean age = 24.4 years, standard deviation = 2.9 years).

Virtual DMP task

The virtual DMP task was run using MazeSuite Software (www.
mazesuite.com; Ayaz et al., 2008) on a Windows 7 computer, 
using procedures adapted from our previous study (Buckley and 
Bast, 2018). Given that we have described the environment used 

www.mazesuite.com
www.mazesuite.com
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in this study in detail elsewhere (Buckley and Bast, 2018), we 
give only a brief overview of the materials to aid understanding 
of the task, and focus instead on the procedural details for the 
present EEG study.

The virtual environment was identical to that used in our previ-
ous study, and comprised of a circular grass lawn surrounded by a 
brown fence, beyond which eight cues (a tree, hot-air balloon, star, 
plane, tower, windmill, satellite and a planet), could be seen by 
participants and could be used for spatial orientation. These cues 
were varying distances from the fence, but distributed at regular 
45° intervals around the circular fence (Figure 1(a) and (b)).

The virtual arena was viewed from a first-person perspective, 
and participants were instructed to control movement through the 
environment using the four cursor keys on the keyboard with 
their right hand. Presses on the ‘up’, ‘down’, ‘left’ and ‘right’ 
keys permitted the participant to move forwards, backwards and 
to turn (rotate) counter-clockwise and clockwise, respectively. 
Trials started with the participant being placed in the environ-
ment facing the perimeter fence. As described elsewhere 
(Buckley and Bast, 2018), the environment was modelled on a 
rodent watermaze (Bast et al., 2009) and, thus, travelling from 
the start location to the opposite side of the fence (i.e. the diam-
eter of the circle) took approximately 10 s.

During an experimental session, participants were instructed 
to search for an invisible target, ‘William the Worm’, a cover 
story that has been used successfully with children and adults of 
varying ages (Buckley and Bast, 2018; Buckley et al., 2015), and 
to remember the location of the target using the cues arranged 
around the fence. Each participant completed one session of 32 
trials, in which William the Worm would be located at eight dif-
ferent locations, for four trials at each location (Figure 1(c)). To 
prevent the use of egocentric strategies to navigate to each target 
location, participants began each of the four trials to the same 
target location at one of four different start positions spaced 
evenly along the fence perimeter (the notional N, E, S and W of 
the environment). The sequence of start positions and target loca-
tions was the same for all participants.

The overall 32 trials (to eight different locations) that each 
participant completed were split equally over four experimental 
blocks (Figure 1(d)). Each block started with a 120-s resting state 
period to serve as a baseline for the EEG analysis, in which a 
fixation cross was shown on a black screen throughout. 
Subsequently, within each block, participants would find William 
the Worm at two different locations. For each location within a 
session, the participant was given four consecutive trials to find 
the target (in the same location), before they were notified that 
the location of the target had changed.

For most trials of the experiment, participants were either 
given feedback once they found the target, or the target was high-
lighted to them after 120 s by a white flag appearing at the goal 
location. Having navigated to the target location, participants 
received a congratulatory message (‘Congratulations!!! You 
found William! Congratulations!!!’) and initiated the next trial 
using the Enter key. However, in experimental blocks 2–4, probe 
trials were administered on the second trial at the second loca-
tion. Here, unlike every other trial in the task, participants were 
not informed (and the trial did not end) when they crossed the 
target location. Instead, participants were allowed to move freely 
for 60 s in order to allow the measurement of ‘search preference’ 
(see section ‘Behavioural data analysis’). Each probe trial ended 

after 60 s had elapsed, after which a message (‘Keep looking for 
William!’) was displayed on the screen for 1 s, and then the next 
normal trial (i.e. trial 3) began automatically.

Behavioural data analysis

All data analysis was carried out in MATLAB. The time-series of 
participants’ positions were therefore imported and temporally 
aligned with the recorded EEG signals. For primary analysis, we 
calculated the following path-length measures: (1) ‘total path 
length’ of their translational (not rotational) movements in planar 
Euclidean space during the trial while searching for the target and 
(2) ‘path efficiency’ as the ratio between the ‘total path length’ 
and the distance of their starting position to the target position, 
which varies substantially from trial to trial (see Figure 2). Data 
from the first location (i.e. the first four trials) were excluded 
from analysis since participants were still adapting to the task.

In addition, we calculated a ‘search preference’ measure, 
which has been shown to be particularly dependent on hippocam-
pal function in rat studies using the watermaze DMP test (Bast 
et al., 2009; McGarrity et al., 2017; Pezze and Bast, 2012). In this 
study, we measured the ‘search preference’ for the correct loca-
tion during the probe trial as the average distance the participant 
kept from the target throughout the probe trial (with lower aver-
age distance reflecting higher search preference). A similar meas-
ure has been used in previous watermaze studies in rodents 
(Gallagher et al., 2015), although a more common measure of 
search preference in rodent watermaze and human virtual maze 
studies is the time the subjects spent within a pre-defined region 
around the target, often expressed as a proportion of time spent in 
other parts of the maze (Buckley and Bast, 2018). The reasons we 
used the distance-to-target measure (which was highly correlated 
with the proportion of time spent near the target) in this study 
were (1) that it only depends on the target location, without the 
requirement to define a zone around it or comparison areas and 
(2) ease of implementation.

EEG recording and analysis

EEG data were recorded using an EasyCap 120 channel system 
(with three peripheral electrodes – two located at the outer canthi of 
the eyes for horizontal electrooculography (EOG) and one below 
the left eye for vertical EOG recording, EasyCap GmbH, Germany). 
Data were sampled at 1000 Hz and amplified with a Sensorium 
amplifier (Sensorium Inc., Charlotte, VT, USA). Electrode imped-
ances were kept below 20 kOhm. For each session (i.e. two maze 
runs with four trials each, plus a resting state period at the begin-
ning), a new data file was started. Electrode locations of individual 
participants were digitised using a three-dimensional (3D) optical 
camera for neuronavigation for transcranial magnetic stimulation 
(TMS) (Brainsight®, Rogue Research Inc., Quebec, Canada).

All analyses were conducted using FieldTrip (Oostenveld 
et al., 2011) and custom-written analysis software in MATLAB. 
Continuous data from both the rest and maze periods were notch-
filtered for power line noise at 50 Hz, temporally aligned to the 
maze-data and then split into 1-s epochs (pseudo-trials) to facili-
tate the analysis. All data from one block (of which there were 
four per participant) were concatenated and checked for exces-
sive artefacts using a summary statistic (total power calculated 
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Figure 1. The virtual DMP task and the structure of the experimental sessions. (a) and (b) Participants were placed within a circular environment, 
with landmarks presented at varying distances from the circular wall, and were instructed to find a hidden target (see Figure 2 for an illustration of 
search paths). (c) In order to repeatedly test rapid place learning, the hidden goal (filled circles in panel (c)) moved after every four trials, and was 
placed at eight different locations during an experimental session (filled squares in panel (a)). (d) Each participant completed one experimental 
session split into four blocks. Each block started with a 2-min resting state period, followed by two sets of four navigation trials. During each set of 
four trials, the goal was placed in the same location, and participants began one trial from each of the notional cardinal points of the environment. 
Participants were then instructed that the goal had moved, and completed another set of four trials navigating to the new location. In trial 1, 
participants could not know the location of the target and had to search for it. In trials 2–4, the participants could use the memory of the location 
acquired during trial 1 in order to navigate to the target efficiently. At locations 4, 6 and 8, the second of the four navigation trials was ran as a 
probe trial (marked by an *), during which no feedback was given when participants crossed the target location. Probe trials continued for 60 s, 
during which participants’ ‘search preference’ for correct location could be measured. EEG was recorded continuously throughout the entire session.
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Figure 2. Behavioural performance on the virtual DMP test. (a) Illustration of one participant’s search paths during the four trials to one location. 
(b) Path-length measures as a function of trial, averaged across all locations and participants. Left: total path length is the entire translational 
distance (without rotations) travelled by the participant; numbers represent (arbitrary) ‘maze units’ as distance measure. Right: path efficiency is 
path length normalised to the distance of starting position to target location. Averages of each participant across trials have been subtracted; error 
bars thus represent standard error of mean condition differences across participants, that is, confidence intervals. (c) Left: average heat map of 
participant locations during probe trials, with the target location at 0,0. Colour code represents the average normalised frequency as a function of 
spatial location. Right: histogram of locations for the three different probe trials in sequence of occurrence. Numbers on x-axis represent the spatial 
distance from target in ‘maze-units’; y-axis represents the normalised frequencies.
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for each trial and electrode) provided by ft_rejectvisual. A princi-
pal component analysis (PCA) was then computed on these data 
and eye-blink components and obvious artefact components were 
removed from the data. A final inspection of any residual arte-
facts was carried out, using, again, the summary statistic pro-
vided by ft_rejectvisual.

In order to have a reasonable separation of signals from dif-
ferent sources, for example, motor cortex, temporal lobe and 
occipital cortex, we conducted all data analyses in the source 
space using a beamformer transformation (Gross et al., 2001; Van 
Veen et al., 1997). To this end, we used the boundary element 
volume conductor model (BEM) of the segmented standard 

Montreal Neurological Institute (MNI) brain as implemented in 
the FieldTrip toolbox (Oostenveld et al., 2011; Oostenveld et al., 
2003). Average digitised electrode positions were aligned to the 
head surface (based on MNI brain, see Table 1) and the leadfields 
were calculated for a 3D grid covering the entire (MNI) brain 
with a spatial resolution of 1 cm.

To calculate the source reconstructed power spectra with a 
good signal-to-noise ratio and in a computationally efficient way, 
we used the following approach: a time-domain linearly con-
strained maximum variance beamformer (Van Veen et al., 1997) 
was calculated on low-pass filtered (cut-off 30 Hz) data from all 
epochs including the resting state period, using the covariance 

Table 1. EasyCap electrode (Elec) and fiducial (nasion, NAS; left/right pre-auricular, LPA/RPA) positions in MNI coordinates (units: mm, rounded)..

Elec x y z Elec x y z Elec x y z

NAS −7 82 −44 38 −82 6 −12 78 56 −51 76
LPA −85 −15 −44 39 −79 12 22 79 75 −54 47
RPA 84 −17 −42 40 −65 22 50 80 76 −65 2
1 −37 80 −7 41 −41 23 75 81 −77 −58 16
2 −8 88 0 42 −9 30 86 82 −71 −57 45
3 25 85 −6 43 24 24 85 83 −53 −61 71
4 −40 76 5 44 55 23 63 84 −31 −60 89
5 −20 83 14 45 79 15 31 85 2 −64 94
6 10 86 13 46 82 6 −7 86 36 −67 84
7 29 81 13 47 −82 −3 7 87 60 −73 55
8 −60 60 −17 48 −76 2 42 88 70 −72 24
9 −40 73 22 49 −55 5 70 89 −73 −70 4
10 −25 79 29 50 −25 8 91 90 −68 −73 32
11 −8 81 33 51 6 11 93 91 −58 −75 53
12 11 82 32 52 40 6 82 92 −42 −73 74
13 30 77 29 53 70 2 56 93 −17 −78 81
14 58 68 −8 54 84 −7 14 94 14 −81 82
15 −56 61 13 55 −84 −18 −7 95 39 −84 66
16 −50 60 33 56 −81 −15 24 96 55 −89 37
17 −27 70 45 57 −70 −8 58 97 62 −89 7
18 8 72 49 58 −42 −5 85 98 −58 −85 35
19 40 65 41 59 −10 −7 98 99 −49 −86 51
20 52 64 23 60 25 −7 92 100 −29 −89 64
21 −75 32 −14 61 61 −11 71 101 2 −95 62
22 −68 44 9 62 82 −17 35 102 29 −96 55
23 −58 46 38 63 86 −23 0 103 38 −98 42
24 −39 52 56 64 −84 −32 15 104 −58 −93 13
25 −6 60 64 65 −77 −26 48 105 −41 −95 44
26 15 60 64 66 −57 −23 75 106 −31 −98 46
27 45 54 50 67 −31 −22 93 107 −13 −101 50
28 64 49 25 68 8 −28 101 108 6 −100 51
29 75 39 −3 69 43 −31 90 109 19 −103 44
30 −77 26 1 70 72 −37 60 110 38 −109 9
31 −70 32 29 71 83 −46 14 111 −44 −101 25
32 −55 31 57 72 −82 −50 −3 112 −30 –105 31
33 −27 45 71 73 −80 −43 30 113 3 −108 35
34 3 45 78 74 −67 −40 63 114 18 −108 30
35 39 41 66 75 −46 −41 85 115 −42 −106 10
36 61 38 45 76 −14 −44 98 116 −14 −113 18
37 78 30 12 77 23 −42 97 117 12 −114 14
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matrix from all these epochs concatenated across the four blocks 
and the leadfield matrix. This approach gives particularly robust 
filters (Bauer et al., 2012b; Bauer et al., 2014; Litvak et al., 
2010). To obtain source estimates of power spectral density esti-
mates, we then projected the real part (not the imaginary) of the 
(‘sensor-level’) cross-spectral density matrix (calculated in 1 Hz 
steps over 1 s epochs using a Hanning taper), averaged for all 
epochs of a particular trial type (resting state, trial 1, trial 2 exclu-
sive probe trials, trial 3, trial 4 and probe trial) through the 
beamformer.

This gave thus trial-specific estimates of power spectral den-
sity (2–15 Hz in steps of 1 Hz) for each of the 2015 grid points in 
the brain (1 cm regular grid) – separately for resting state, trial 1, 
trial 2, trial 3, trial 4 and probe trials, averaged across locations. 
Regarding the choice of spatial resolution and frequency range, 
see the next section.

Statistical analyses of EEG correlates of 
behaviour

The mere comparison of the navigation trials on the virtual 
DMP task versus rest is confounded by motor activations due 
to button presses, as well as dynamic visual input and enhanced 
attentional load during the navigation trials. Hence, this com-
parison is of limited suitability to reveal any memory-related 
activations.

In order to do so, we sought to correlate EEG power spectral 
density estimates with behavioural performance measures in the 
task. We chose the following approaches: (1) use the individual 
difference in path efficiency between trial 2 and trial 1 as a pre-
dictor of individual EEG activity during trial 1 to potentially 
reveal encoding processes; (2) use the same behavioural measure 
as a predictor of individual EEG activity during trial 2 to reveal 
retrieval/expression processes; (3) use the search preference for 
the target location, as reflected by average distance to target, dur-
ing probe trials as predictor of EEG activity in probe trials to 
reveal retrieval/expression processes and (4) use the same behav-
ioural variable (average distance to target during probe trial) to 
predict EEG activity during trial 1 to reveal encoding processes. 
Further control analyses following the same logic are described 
in section ‘Results’.

We aimed to perform a data-driven analysis rather than aim-
ing to confirm a priori hypotheses, and thus constraining our 
analysis on particular frequencies or regions of interest (also 
given the leakage of spatial filters, particularly with a canonical 
forward model). Given the large number of grid points (or ‘vox-
els’) covering the brain and the multiple frequencies involved, 
we corrected for the multiple comparison problem (for mass-
univariate testing), using a cluster-permutation approach (Maris 
and Oostenveld, 2007).

The frequency range and spatial resolution were chosen with 
the following rationale:

1. To provide a compromise between statistical sensitivity 
(power) when correcting for multiple comparisons with 
mass-univariate analyses and to cover a reasonable range 
with sufficient specificity.

2. Regarding the beamformer spatial resolution, although 
1 cm is on the lower side, the use of a canonical volume 
conductor model (in contrast to individual ones based on 

segmented individual MRIs of participants’ brains) and 
regularisation of the covariance matrix would likely pre-
vent a higher effective spatial resolution anyway.

3. Regarding the frequency range, the lower bound was 
chosen to be just above the Rayleigh frequency, whereas 
the upper bound was chosen as to encompass a reasona-
bly broad range of frequencies, including and extending 
beyond the low-frequency MTL oscillations that have 
been implicated in spatial navigation and memory 
(Ekstrom and Watrous, 2014) and that were the focus of 
this study, without making the statistical tests too 
insensitive.

Mass-univariate regression analyses were conducted using 
the behavioural metrics as a predictor variable and the EEG 
power of the particular trial type as the criterion with individual 
participants and blocks being units of observation; within- and 
between-subject variance was thus pooled in this approach to 
harvest as much of behavioural variation as possible. Since rela-
tively large amplitude differences existed between participants, 
possibly related to impedances, the data were a priori normalised 
using the following approach: the individual (participant spe-
cific) source estimates of power spectral density were divided by 
the (individual) squared average of the square root of all power 
spectral density estimates across all frequencies and grid points 
during the 2-min resting state periods prior to each block
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where i is the index to the participant, f is the index for K frequen-
cies, v is the index for M grid points (or voxels), and S2 is the 
power spectral density estimate (i.e. the squared estimate of the 
complex Fourier coefficient). The cluster-permutation approach 
(Maris and Oostenveld, 2007), briefly summarised, was applied 
as follows: spatio-spectral clusters (in three spatial plus a spectral 
dimension) were formed of adjacent data points that survived the 
alpha-threshold of p < 0.01 for two-sided testing on the regres-
sion coefficient. The cumulative t-value of the regression coeffi-
cients within each cluster was then calculated. This calculation 
for the real data was then repeated for 1000 randomised data sets, 
where, for each combination of frequency bin and spatial grid 
point (=‘voxel’), the associated behavioural parameter was shuf-
fled randomly across observations (participants). A histogram of 
the maximum cluster metric for each randomisation was formed, 
serving as the reference, or null distribution. For those clusters of 
the real data for which the aggregated statistic was above the 5% 
percentile of this reference distribution, the omnibus null hypoth-
esis can be rejected.

Principal component control analysis

As a control analysis, to stay closer to the recorded raw data and 
rely less on the algorithms that provide the inversion of the 
EEG data into brain space (beamformer source analysis), we 
additionally conducted an analysis where we projected the EEG 
raw data into the leading principal components for increased 
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signal-to-noise ratio. PCA is a transformation of a data space 
into orthogonal new variables. It is, unlike a beamformer source 
analysis, free of assumptions about the biophysical origin of the 
electrical signals and independent of the validity of a volume 
conductor model.

To this end, the raw data of all participants (individual chan-
nels and every third trial to reduce memory) were z-transformed 
and then pooled together; a PCA was then computed on those 
trials to ensure all participants shared the same component struc-
ture. These data were then frequency analysed in the same way as 
for the beamformed data. Data (EEG and behavioural) of probe 
trials were then split into quintiles, sorted by the average distance 
to target, and the highest quintile was compared to the lowest 
quintile by means of a t-test for independent samples. In addition, 
the rest periods preceding the respective probe trials were com-
pared in the same way.

Results

Behavioural data: one-trial place learning on 
the virtual DMP test

Figure 2(a) shows examples of the search paths taken by one par-
ticipant during the four trials to one location. On trial 1, the par-
ticipant searches for the new (unknown) target location, in this 
example in a mainly circular pattern (for other search strategies 
during trial 1, see Buckley and Bast, 2018, Figure 2). In subse-
quent trials, this search path is typically markedly more direct (i.e. 
shorter), reflecting one-trial place learning and leading to the 
behavioural summary statistics shown in Figure 2(b), left. What 
can also be appreciated from Figure 2(a) is that the distance of 
initial starting position in the maze to target varies markedly 
across trials, target locations and blocks (although this is kept con-
stant across participants). To remove this variability, total path 
length was normalised to this initial distance and presented as 
‘path efficiency’ (Figure 2(b), right). The latter metric effectively 
expresses the ‘straightness’ of the path taken to the target. Total 
path length was significantly shortened with higher trial numbers 
(F(3,20) = 47.85, p < 10−8), as was path efficiency (F(3,20) = 24.45, 
p < 10−6), with a sharp reduction from trial 1 to 2, reflecting one-
trial place learning. For all measures, the average of each partici-
pant across conditions was first subtracted to make the standard 
errors of the mean (SEMs) interpretable regarding statistically 
significant differences (within-subject design).

When the second trial to a new location was run as a probe 
trial, where participants roamed around for 60 s without being 
given feedback about the target location, participants typically 
showed marked search preference for the target location by mov-
ing around in close proximity to the target (Figure 1(c)), reflect-
ing one-trial place learning. Overall, both path-length measures 
and the search preference measure revealed marked one-trial 
place learning, similar to previous DMP studies in rodents and 
humans (Buckley and Bast, 2018).

Correlations between behaviour and EEG 
activity

Since the comparison between maze trials 1–4, on one hand, and 
rest periods, on the other hand, confounds mnemonic processes 

with motor outputs, visual input and attentional demands, we 
focused on the analysis of inter-individual differences in behav-
iour and EEG parameters. All analyses were performed in 3D 
source space, using a regular 1 cm grid, based on a canonical for-
ward model (MNI brain).

Reductions in path-length measures from 
trial 1 to trial 2 show no significant 
correlations with EEG activity

As a first step, we used the difference in path length and in path 
efficiency, respectively, between trial 1 and trial 2 as a predictor 
variable for EEG activity in either trials 1 (encoding) or in trials 2 
(retrieval/expression, where these were not probe trials). The clus-
ter analysis correcting for multiple comparison across space and 
frequency yielded no results that crossed the significance thresh-
old (all p > 0.3), both for trials 1 and trials 2. Moreover, lowering 
the univariate clustering threshold to p < 0.05 did not change this 
result. We interpret this to be due to the comparably small varia-
bility in the spatial distance measures (see Figure 2(b)).

Negative correlations of theta oscillatory 
activity with distance to target – potential 
correlates of encoding and retrieval/
expression processes

We next turned to the ‘average distance to the target’ during the 
‘probe trial’, reflecting ‘search preference’ for the target location, 
which has been shown to be particularly dependent on hippocam-
pal function in rat studies (Bast et al., 2009; McGarrity et al., 
2017; Pezze and Bast, 2012). We used the average distance to the 
target during the three probe trials as a predictor variable for EEG 
data during both the same probe trial itself (i.e. reflecting 
retrieval/expression processes), as well as for the EEG data dur-
ing the corresponding trial 1 (i.e. reflecting the encoding pro-
cess). This analysis revealed negative correlations of oscillatory 
activity during probe trials (retrieval/expression) and during trial 
1 (encoding) with average distance to target during probe trials 
(i.e. oscillatory activity predicted higher search preference), 
which were specific with respect to frequency and brain region 
(Figure 3(a)–(d)).

Figure 3(a) shows the spectrum of the thresholded statistics 
for the correlation between probe trial EEG activity and average 
distance to target during the probe trials, that is, during retrieval/
expression. Only data points that ‘survived’ the omnibus signifi-
cance threshold of p < 0.05 (two-sided) on the cluster level have 
values above zero, weighted by the number of data bins that 
reached significance – that is, the strength of the spectral statis-
tics depends on the effect size in the respective frequency bin, as 
well as on the number of spatial grid points that are significant at 
that particular frequency, and thus reflects a weighted average. 
There was a negative theta peak (6–8 Hz), indicating that 
enhanced theta power correlates with a smaller average distance 
to the target, and thus more accurate one-trial place memory per-
formance. Figure 3(b) shows the spatial signature of this cluster 
(significant at p < 0.05, two-sided and corrected) of the correla-
tion of theta-activity during the probe trial with memory perfor-
mance (average distance to target during probe trial); brain areas 
contributing to the significant correlation encompassed 
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the temporal lobes, particularly in the right hemisphere and 
including the hippocampus and parahippocampal area, inferior 
occipital areas and/or cerebellum, as well as the right hemi-
spheric striatum.

Figure 3(c) and (d) shows the same for the correlation of aver-
age distance to target during the probe trial and EEG activity in 
the immediately preceding trial 1, that is, during encoding. Hence, 

here the EEG activity is not from the very same period during 
which the participant was moving across the maze, but it reflects 
neuronal activity of encoding, upon which the behavioural suc-
cess of the probe trial depends. Note the remarkable similarity of 
the spectral and spatial pattern of the significant cluster (p < 0.05) 
to Figure 3(a) and (b), despite the EEG data being taken from a 
different period than the behavioural measure.

Figure 3. Negative correlations between oscillatory EEG activity and distance to target. (a)–(d) Negative correlations of EEG activity during probe 
trials (retrieval/expression) and trial 1 (encoding) with average distance to target during probe trial. Crosshairs in brain topographies show the 
location of cross-section planes (chosen to provide good overview). (a) Frequency spectrum of the omnibus significant cluster for the probe trial, 
correcting for multiple comparisons across frequencies and three spatial dimensions; higher theta-band activity during the probe trial is correlated 
with smaller distance to target. (b) Axial, coronal and sagittal views of the thresholded cluster (brain activations are sign-inverted to frequency 
spectra): activation is centred in (predominantly right) temporal cortex, inferior occipital cortex or cerebellum and striatum, forming one large 
cluster. (c) and (d) Same as (a) and (b), but now for the oscillatory activity during trial 1 (encoding); note the spectral and spatial similarity of the 
effects. (e) and (f) As a control analysis, the average distance during all non-probe trials was correlated to the EEG activity in the corresponding 
trials (to test for potential confounds, for example, related to sensorimotor factors). The largest cluster of this analysis was a peak in occipital 
alpha/beta activity (also sign-inverted) that did, however, not reach omnibus significance. All colour scales here show t-values averaged across the 
whole frequency domain (including frequencies where no significant correlation was found), with dark red corresponding to the lowest and white to 
the highest t-values, hence associated numeric values are arbitrary.
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To verify the specificity of these neuronal activation patterns 
to encoding and retrieval of one-trial place memory, we con-
ducted the following three further control analyses:

1. We used the same average distance to target during the 
probe trial and correlated this to brain activity during 
corresponding trials 4; this failed to reveal any signifi-
cant clusters (all p > 0.3, positive or negative).

2. We then correlated the average distance to target from all 
trials (initially including probe trials) to their correspond-
ing EEG activity. This revealed a significant cluster in 
occipital and temporal areas with a similar spectral pro-
file (p < 0.05, not shown) and spatially not too dissimilar 
to Figure 3(a)–(d). No positive clusters were found.

3. We repeated this analysis, but this time removing all 
probe trials, and thus correlating average distance from 
target to simultaneous EEG activity in trials 1, 3 and 4 of 
the second locations of each block (i.e. locations 4, 6 and 
8) and trials 1, 2, 3 and 4 from the first location of all 
blocks (3, 5 and 7) which never contained a probe trial, 
see Figure 1(b). This revealed a cluster that is, for com-
parison to Figure 3(a)–(d), depicted in Figure 3(e) and 
(f), showing a clear maximum in occipital cortex and a 
spectral peak in the alpha-band – but that did not reach 
omnibus significance (p = 0.14).

From this dissociation, we concluded that the highly similar 
outcomes shown in Figure 3(a)–(d) were specifically reflecting 
processes related to encoding and retrieving/expressing memory 
representations as behaviourally measured in terms of search 
preference during the probe trial.

Positive correlations of alpha-oscillatory 
activity with distance to target – potential 
correlates of motor behaviour

The cluster-permutation algorithm separates clusters showing 
positive and negative effects. In addition to the negative correla-
tions of EEG activity with average distance to target, that is, 
patterns reflecting increased activity with better memory perfor-
mance, our analysis also revealed several positive correlations 
of oscillatory activity during probe trials (retrieval/expression) 
and during trial 1 (encoding) with average distance to target dur-
ing probe trials (i.e. more oscillatory activity predicted lower 
search preference), which were specific with respect to fre-
quency and brain region (Figure 4). Figure 4(a) and (b) shows 
the positive correlation of alpha-activity (12 Hz) in motor cortex 
(left central sulcus over the hand area) during the probe trial to 
average distance from target during the same probe trial, 
although this did not reach omnibus significance (p > 0.2). 
Moreover, as shown in Figure 4(c) and (d), there was also a posi-
tive correlation for average distance to target with EEG activity 
during the (immediately preceding) trial 1, that is, encoding. 
This positive correlation, with a similar alpha/beta (12–14 Hz) 
peak and a location covering large parts of parietal cortex con-
tralateral to the navigation hand and, thus, sensorimotor areas 
related to visually guided hand movements (Buneo and 
Andersen, 2006; Pause et al., 1989), was of omnibus signifi-
cance (p < 0.05). For an interpretation of these correlations, see 
further below.

The location of these positive clusters in motor cortex and 
parietal cortex, contralateral to the hand that participants were 
instructed to use for button presses to move through the maze, 
suggests that the correlations are movement-related since alpha-
activity in the motor cortex (frequently also referred to as mu-
activity) is strongly associated with movement planning and 
execution (Pfurtscheller and Lopes da Silva, 1999). More specifi-
cally, they may reflect (1) direct movement-related activations of 
the motor cortex contralateral to the hand that participants were 
instructed to use for moving and (2) procedural or motor-learning 
that may facilitate retrieving the target location.

We tentatively (and speculatively) interpret these two results 
therefore in the following way:

1. For the non-significant (when considering multiple com-
parison correction) correlation during the probe trial 
itself (where EEG data reflect the same period as the 
behaviour, Figure 4(a) and (b)), this likely reflects a 
motor confound such that participants who remain closer 
to the target show less stationary movement patterns 
(more frequent turns and stop-and-go manoeuvres), 
requiring more frequent button presses and thus more 
alpha-suppression; thus, according to this explanation, 
enhanced distance to the target would coincide with 
fewer button presses and thereby less motor-related 
alpha-suppression, that is, higher alpha-activity.

2. For the omnibus significant positive correlation of alpha-
activity during the encoding trial 1, (da Silva et al., 2014) 
with average distance from target during subsequent probe 
trials (Figure 4(c) and (d)), that is, impaired memory perfor-
mance, we suspect that this may reflect that reduced move-
ment (button presses), or exploration, during encoding 
results in weaker memory. This suggestion is consistent 
with the finding that the placement of rats onto the target 
location, instead of active swim trials, results in weaker 
memory in the watermaze DMP task (da Silva et al., 2014) 
and that volitional movements in human participants have 
been found to facilitate hippocampus-dependent memory in 
human participants (Voss et al., 2011).

In support of the implied relationships between movement 
during trial 1 or the probe, respectively, and average distance to 
target during probe trials, we found that the latter:

•• Correlated negatively with the rate of button presses dur-
ing probe trials at r = −0.3 (p < 0.05); this means the 
closer participants remain to the target, the more fre-
quently they press buttons on the same trial, probably 
because persistent searching close to the target location 
requires a high rate of button presses for frequent turns 
and stop and go (whereas continuous movement can be 
achieved by a low rate of button presses).

•• Correlated negatively with the rate of button presses dur-
ing the preceding trial 1 at r = −0.2, albeit non-signifi-
cantly (p > 0.05).

•• Correlated positively with the average speed of move-
ment at r = 0.11, although this correlation was far from 
significance (p > 0.35).

To summarise this: (1) parameters of motor behaviour during 
the probe trial correlate significantly with the memory-related 
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Figure 4. Positive correlations between oscillatory EEG activity and distance to target. (a)–(d) Positive correlations of EEG activity during probe 
trials (retrieval/expression) and trial 1 (encoding) with average distance to target during probe trials. Crosshairs in brain topographies show the 
location of cross-section planes (chosen to provide good overview). (a) The spectrum of this effect for the probe trial, while (b) its topography with 
a clear maximum over left primary sensorimotor cortex. This cluster, however, failed to reach omnibus significance. (c) The spectral distribution of 
the highly significant (p < 0.01) cluster for the encoding trial 1, while (d) its brain topography over left parietal areas. Since these effects, located 
over motor and sensorimotor regions, likely reflect motor-related patterns, a control analysis was conducted: the rate of button presses (see main 
text) was correlated with EEG activity across all trials. (e) The spectrum of this effect. Note that a higher rate of button presses (i.e. less stationary 
movement patterns) correlates with reduced alpha-activity (whereas in (a)–(d) the average distance from target, a value likely to be inversely 
related to button press rate was used). (f) The topography of this highly significant effect (p < 0.001), which is similar though more widespread 
than the effect in (b) and (d). All colour scales here show t-values averaged across the whole frequency domain (including frequencies where no 
significant correlation was found), with dark red corresponding to the lowest and white to the highest t-values, hence associated numeric values are 
arbitrary.
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average distance to target and are likely causing the effect in sen-
sorimotor cortex in Figure 4(a) and (b) and (2) more specula-
tively at this point, procedural or motor-learning and possibly 
motor parameters of exploratory behaviour (da Silva et al., 2014) 
during encoding in trial 1 may represent the correlations shown 
in Figure 4(c) and (d).

This interpretation suggests that button presses across trials 
should negatively correlate with alpha-activity. Indeed, an analy-
sis using the rate of button presses (and thus the variable that 
correlated to average distance to target during probe trial) in all 
trials as a predictor variable for EEG activity in all corresponding 
trials revealed a highly significant (p < 0.001) negative correla-
tion with alpha-activity, involving large parts (probably due to 
the effect size) of left parietal and motor cortex and of occipital 
cortex (Figure 4(e) and (f)). The direction of this effect is consist-
ent with the well-established finding that alpha-activity is associ-
ated with activation of neural tissue (Pfurtscheller and Lopes da 
Silva, 1999), that is, enhanced (sensori-) motor activity due to 
frequent button presses causing movement transients and there-
fore also non-stationary visual input. Importantly, no positive 
cluster was observed when button presses were used as predictor 
variable. Therefore, while movement-related factors are likely to 
account at least partially for the positive clusters in Figure 4(a)–
(d), there is no evidence that the memory network correlations 
presented in Figure 3 are a result of movement confounds.

Principal component control analysis

To further confirm the above findings concerning the association 
of low-frequency oscillations and one-trial place memory perfor-
mance, we additionally show the raw power spectra for partici-
pants and trials with high versus low memory performance 
during the task and the rest period. We show this for principal 
components as these provide a data-transformation that boosts 
signal-to-noise ratio without making assumptions about the bio-
physical origin of the signals. Figure 5(a) shows the raw power 
spectra during the probe trial for high-achieving trials (with a 
small distance to target, that is, good memory performance) and 
for low-achieving trials (with a large distance to target, that is, 
poor memory performance), indicating higher theta- and alpha-
power in trials with good memory performance.

Figure 5(b) shows the same difference, now for the resting 
state period immediately preceding the respective probe trials, 
indicating that higher memory performance is associated with a 
higher alpha-peak frequency and amplitude during resting state 
period. Figure 5(c) then shows the comparison of the baseline-
corrected power spectra for good versus bad probe trials (inde-
pendent samples t-test). This comparison verifies that high 
memory performance is related to higher theta-, but lower alpha-
power changes (relative to baseline) during the probe trial.

Discussion
Combining the virtual DMP task with continuous EEG measures 
and using a correlational analysis unconstrained by a priori 
hypotheses on frequency bands or regions of interest, we have 
shown that better one-trial place memory performance (as 
reflected by average distance to target during probe trials) is pre-
dicted by theta oscillations within a largely right hemispheric 
network consisting of MTL (including parahippocampal area), 
striatum and inferior occipital cortex or cerebellum, both during 
encoding and during retrieval/expression. In addition, it emerged 
that enhanced memory performance was also correlated with 
reduced alpha-activity in sensorimotor cortical areas contralat-
eral to the navigation hand during encoding (left parietal cortex) 
or probe trials (left motor cortex, although this correlation was 
not statistically significant), probably reflecting movement-
related factors that may at least partially be associated with mem-
ory performance.

Comparison to previous MEG studies 
demonstrating hippocampal theta correlates 
of spatial memory and navigation

Previous studies (Cornwell et al., 2008; Kaplan et al., 2012, 
2014; Pu et al., 2017) have used MEG in combination with indi-
vidual anatomical MRIs to demonstrate hippocampal theta con-
tributions during encoding (Cornwell et al., 2008; Pu et al., 2017) 
and retrieval (Kaplan et al., 2012, 2014) of spatial memory and 
navigation in virtual mazes. In this study, the theta correlates of 
place memory performance were more pronounced in the right 

Figure 5. Principal component control analysis. (a) Averaged power spectra, not baseline corrected, in high-performing probe trials (red line) 
compared to low-performing probe trials (blue line). (b) The same for the resting state period immediately preceding the respective probe trials. (c) 
The results of the t-test for independent samples of baseline-corrected power during the probe trial.
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hemisphere (although some left temporal lobe activation was 
also evident), in line with hippocampal theta correlates reported 
by Kaplan et al. (2012, 2014) and Pu et al. (2017), and a wide 
range of evidence indicating that human spatial navigation mem-
ory is mainly associated with the right hippocampus (Burgess 
et al., 2002; Miller et al., 2018).

We, similar to Cornwell et al., (2008) and Pu et al., 2017) used 
an open-field navigation task, reverse-translated from a rodent 
watermaze paradigm, whereas Kaplan et al. (2014) and Kaplan 
et al. (2012) have relied on more structured tasks and used shorter 
epochs corresponding to specific encoding and retrieval periods 
to target temporal windows with an enhanced chance to detect 
hippocampal activation. Importantly, we used an analysis uncon-
strained by prior hypotheses on regions of interest or frequency 
bands to reveal theta originating from the MTL as a major neural 
mechanism underlying inter-individual differences in spatial 
learning. Interestingly, Cornwell et al. found a correlate of theta-
activity in hippocampus to the reduction in path length from trial 
1 to trial 2. In this study, we did not find an omnibus significant 
oscillatory correlate of reductions in path-length measures from 
trial 1 to trial 2. However, note that: (1) in our data, there was 
relatively small inter-individual variation in the difference from 
trial 1 to trial 2, as can be appreciated by the small error bars in 
Figure 2 and (2) we may have used a more conservative statisti-
cal approach, also to deal with increased leakage of our spatial 
filters in EEG recordings based on a canonical forward model. 
Moreover, previous studies in humans and rats suggest that 
reductions in path-length measures from trial 1 and 2 and search 
preference on the DMP task may rely on partially dissociable 
neuropsychological mechanisms (Buckley and Bast, 2018). First, 
there is only a moderate correlation between these measures in 
both human participants and rats (Buckley and Bast, 2018). 
Second, in rats, only the search preference measure shows a sig-
nificant decline with increasing retention delay between trial 1 
and trial 2, reflecting forgetting (da Silva et al., 2014). Third, and 
most importantly, studies in rats show that the search preference 
measure is more strongly hippocampus-dependent, being more 
sensitive to disruption of hippocampal function by partial hip-
pocampal lesions (Bast et al., 2009) and pharmacological manip-
ulations (McGarrity et al., 2017; Pezze and Bast, 2012). Our 
finding that only the search preference measure showed theta 
correlates in the MTL is consistent with these previous findings.

Reliability of our source reconstruction

Analysing frequencies from 2 to 15 Hz, as a trade-off between 
statistical power/sensitivity and ensuring a broad range, we were 
able to confirm – while correcting for multiple comparisons in 
28,120 data points in frequency and spatial domain – that it was 
predominantly theta oscillations, in particular in the temporal 
lobe, that gave the best prediction of individual one-trial place 
memory performance on the virtual DMP task. Moreover, encod-
ing and retrieval/expression correlates of memory performance 
were highly consistent, an issue we shall come back to further 
below. Although the anatomical locations of the theta correlates 
have to be interpreted with some caution on the basis of meth-
odological limitations, this consistency between encoding and 
retrieval inspires a certain amount of confidence in their accuracy 
and spatial precision. Regarding the methodological constraints, 
two aspects should be mentioned as follows:

1. These results were obtained on the basis of a canonical 
(standard) forward model, based on the MNI brain and, 
therefore, based on averaged electrode positions for all 
participants (since individual positions on a standard 
brain and head surface were deemed meaningless); this 
imposes significant limitations on the spatial specificity, 
but perhaps also sensitivity of the beamformer solution 
(Troebinger et al., 2014). To address this issue, we 
applied a relatively high (noise-) regularisation of the 
covariance matrix. The comparably high spatial specific-
ity of the functional images shown is also due to these 
showing a statistic that is thresholded for data points that 
survive a non-parametric significance threshold of 
p < 0.01 and form part of a cluster that crosses the omni-
bus significance threshold (for details please refer to 
Maris and Oostenveld (2007)).

2. It would not be formally correct to ascertain on the basis 
of these results that a particular data point, which forms 
part of the omnibus significant cluster, drives this effect. 
For instance, the fact that the right striatum forms part of 
the cluster does not imply that this region is involved in 
spatial navigation memory at a confidence level given by 
the significance threshold corrected for multiple com-
parisons. This confidence level only applies to the entire 
cluster, not to each individual data point contributing to 
the shape of the cluster. However, the fact that (1) we 
chose a fairly conservative cluster significance criterion 
of p < 0.01 and (2) we see strikingly similar activation 
patterns in two largely independent (for the part of the 
EEG data) comparisons, for encoding and retrieval, do 
instil confidence in these findings.

Finally, participants’ movement and the dynamic visual input 
they received during task performance (as participants were 
moving relatively freely through the virtual environment) may 
have influenced our findings. However, it is highly unlikely that 
the theta correlates of one-trial place memory performance are 
explained by movement or dynamic visual input factors alone. 
None of the control analyses on movement parameters, nor a 
control analysis of our behavioural predictor variable of interest 
(average distance to target during probe trials) on unrelated trials 
yielded remotely similar theta correlates (see also next section on 
the alpha-correlates in sensorimotor regions of the brain). Hence, 
we conclude that movement or dynamic visual input effects are 
not the main factors to the effects we see in the putative network 
of temporal lobe, striatum and inferior occipital and/or cerebellar 
activation. Encoding of spatial memories in the real world also 
requires movements and dynamic visual input, such that avoiding 
this would be undesirable.

The brain network supporting one-trial place 
memory performance

Beyond the hypothesis-conform activation of the temporal lobe, 
including the hippocampal and parahippocampal region, we see 
further distinct activations in the right striatum and inferior 
occipital cortex and/or cerebellum – all at theta frequencies with 
a peak at 7 Hz. Activity in these regions, at this frequency, corre-
lated negatively with distance from the target – suggesting that 
higher theta-activity in these regions during both encoding and 
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retrieval led to better one-trial place memory performance across 
individuals. Occipital involvement is consistent with the depend-
ence of the task on visual input, and with previous studies impli-
cating occipital theta-activity in performance of virtual spatial 
navigation tasks (Ekstrom, 2015) and in working memory tasks 
in both humans and animals (Fuentemilla et al., 2014; Lee et al., 
2005).

With respect to cerebellum and striatum, it is evident that the 
quality of the anatomical forward model used in this study 
requires some caution and standard forward models developed 
for the cortical sheet are less suitable to detect such deep sources 
with cell geometries that may differ from the cortical sheet 
(Meyer et al., 2017). Nevertheless, our finding of a putative 
involvement of cerebellar theta-activity adds to an emerging lit-
erature that the cerebellum may provide input on self-motion and 
trajectory learning into the hippocampus, to facilitate the estab-
lishment of a cognitive map (Lefort et al., 2015), and is consistent 
with the suggestion that interactions between MTL and cerebel-
lum may be coordinated by theta-activity (Watson et al., 2019). 
More directly, in one of the first, if not the first publication on 
electrophysiological hippocampal activation measured in humans 
in the context of a watermaze-like virtual maze, Cornwell et al. 
(2008) showed a highly similar cerebellar theta activation in their 
MEG recordings.

The striatal correlates observed in this study, in two separate 
conditions, are also consistent with some previous finding. 
Studies of human spatial navigation in a virtual maze have impli-
cated the striatum and hippocampus (Doeller et al., 2008), and 
dopaminergic decline in the striatal–hippocampal circuit during 
ageing and Parkinson’s disease has been associated with defi-
ciencies in spatial navigation and memory (Thurm et al., 2016); 
these studies suggested that striatal mechanisms mainly serve 
cue-response strategies supporting spatial navigation, which are 
distinct from and complement hippocampal mechanisms of allo-
centric place representations. In addition, the human striatum has 
been implicated in performance on laboratory tests of hippocam-
pus-dependent declarative memory (Scimeca and Badre, 2012). 
Moreover, rodent studies that combined behavioural testing with 
multi-site electrophysiological recordings (DeCoteau et al., 
2007; Martin and Ono, 2000; van der Meer and Redish, 2011) or 
disconnection approaches (Devan and White, 1999; Floresco 
et al., 1997) support that hippocampal interactions with the stria-
tum, especially mediodorsal and ventral striatum (the main recip-
ients of hippocampal projections; (Humphries and Prescott, 
2010; Voorn et al., 2004)), are important for rapid place-learning 
performance (reviewed in Bast (2011)). Studies in freely behav-
ing rodents have also shown theta oscillations in the striatum and 
suggested that interactions between hippocampus and striatum, 
again mainly mediodorsal and ventral parts, are coordinated by 
theta oscillations in the context of spatial memory and navigation 
tasks (Berke et al., 2004; DeCoteau et al., 2007; Tort et al., 2008; 
van der Meer and Redish, 2011). Finally, in a recent study in rats, 
we found that functional inhibition targeting the ventral striatum 
disrupted one-trial place memory performance on the watermaze 
DMP task (Seaton et al., 2019).

The idea that theta oscillations support memory and particu-
larly enhance the precision of spatial memory representations has 
a long history. Jensen and Lisman, (2000), for instance, found that 
when analysing the spike-time-series of place-field recordings, 
considering the position of the spikes in the phase of ongoing 

theta oscillations substantially boosted the decoding accuracy of 
the rat’s position in the maze. Lee et al. (2005) found, in a visual 
working memory task, that during the encoding period, the delay 
activity was not characterised by an increase of spiking activity, 
but, instead, the spikes of those neurons carrying the stimulus 
representation strongly synchronise to the ongoing theta rhythm; 
this effect appears to be part of a network effect where phase-
synchronisation of spikes in visual cortex to a prefrontal cortex–
driven theta rhythm appears to be a major determinant on the 
success of working memory material retention (Liebe et al., 
2012). Regarding the computational role of theta oscillations, 
one prominent idea is that theta oscillations facilitate and orches-
trate spike-time-dependent plasticity (Lengyel et al., 2005; 
Sejnowski and Paulsen, 2006); theta oscillations in different 
brain regions may ensure that the inputs from different neuronal 
populations may be timed such that effective spike-time-depend-
ent memory traces can be formed and retrieved. 
Neurophysiological studies and computational modelling sug-
gest how theta oscillations in the hippocampus might play a 
mechanistic role during both encoding and retrieval (Hasselmo 
and Stern, 2014).

Overall, this study suggests that one-trial place memory per-
formance may be supported by a brain network, coordinated by 
theta-activity and including the MTL, occipital cortex, cerebel-
lum and striatum. The particular nature of the interactions 
between these regions in the theta range would perhaps be more 
suitably studied with further studies utilising individual and spe-
cialised forward models in the context of MEG recordings (due 
to enhanced MEG specificity to study neuronal interactions 
between different brain areas).

Alpha-band correlates of DMP task 
performance

Beyond the theta-band effects, we also observed that our measure 
of search preference during probes correlated with some activity 
in higher frequency bands, notably the sensorimotor alpha-band 
(Pfurtscheller et al., 1996), in sensorimotor areas contralateral to 
the hand that participants were instructed to use for navigation by 
button presses. This correlation was (omnibus) significant only in 
correspondence to the encoding trial and revealed a relatively 
broad cluster of parietal regions. For EEG activity during the 
probe trial (retrieval), this did not reach omnibus significance, 
but was localised very clearly to the hand area of the central sul-
cus (notably the critical p-value for individual data points was 
p < 0.01). Control analyses considered in section ‘Results’ sug-
gested that these correlates reflect movement-related factors 
associated with task performance. The non-significant correla-
tion of alpha-activity in the hand area during the probe trials with 
search preference during the probe trials likely reflected that par-
ticipants with more precise spatial memory utilised more button 
presses to perform frequent turns and stop and go. The significant 
correlation of alpha-activity in parietal sensorimotor regions, 
which have been implicated in visually guided hand movements 
(Buneo and Andersen, 2006; Pause et al., 1989), during trial 1 
with search preference during the probe trials may reflect that 
increased active exploration, or enhanced attention to one’s 
movements (which would be expected to result in reduced alpha-
power (Bauer et al., 2012a; Jensen and Mazaheri, 2011)), during 
trial 1 boosts one-trial place memory. This suggestion is 
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consistent with the finding in rats that placement of rats into the 
target location, instead of active swim trials to the target location, 
results in weaker memory in the watermaze DMP task (da Silva 
et al., 2014), and that in human participants, volitional move-
ments have been found to facilitate hippocampus-dependent 
memory (Voss et al., 2011).

On top of this, in a control analysis comparing raw power 
spectra during probe trial and resting state period, it emerged that 
participants show larger alpha-amplitudes and higher alpha-peak 
frequency during the resting state period of trials with high one-
trial place memory performance, compared to trials with low per-
formance. Interestingly, previous studies have shown similar 
effects, relating higher alpha-peak frequency to better cognitive 
performance. Most notably, alpha-peak frequency has been 
shown to correlate with working memory performance (Posthuma 
et al., 2001), as well as with general intelligence (Grandy et al., 
2013). However, alpha-peak frequency also serves as a predictor 
of low-level processing measures like pain sensitivity (Furman 
et al., 2018). While this may have, to some extent, contributed 
particularly to the negative correlation of alpha-power (in base-
line-corrected data) with enhanced memory performance, the 
further investigation of the mechanisms behind this apparent 
alpha frequency effect in the present data set is beyond the scope 
of this article.

Gamma oscillations and spatial navigation

Previous studies – for example (Cornwell et al., 2014; Kaplan 
et al., 2014; Pu et al., 2018) – suggest that not only theta- but also 
gamma-oscillations play an important role for place memory per-
formance, with distinct suggested roles of different hippocampal 
gamma frequencies for encoding and retrieval (Colgin et al., 
2009) and a suggested mechanism for theta–gamma coupling 
(Lisman and Jensen, 2013). In this report, we focused on low-
frequency, including theta oscillations. These low-frequency 
oscillations have generally a much higher signal-to-noise ratio in 
human non-invasive recordings compared to gamma oscillations. 
In this study, where we correlate ongoing brain activity during a 
navigation tasks involving free viewing and (virtual) movement 
with a global behavioural measure (rather than an event-related 
design with repeated, and highly structured trials), the signal-to-
noise ratio particularly of gamma oscillations, which overlap 
spectrally with muscular activity, can be expected to be particu-
larly low. This is particularly true for EEG recordings that are 
known to suffer from a substantially lower signal-to-noise ratio 
compared to MEG recordings specifically in the higher frequency 
gamma-band (Muthukumaraswamy and Singh, 2013). In a pre-
liminary analysis of the gamma-band, we were not able to iden-
tify a significant relationship between gamma oscillations and 
behavioural measures in our virtual DMP task. However, this 
does not preclude the possibility that such a relationship may be 
revealed, particularly if making use of sophisticated forward 
models that would enhance the accuracy of the source recon-
struction and thereby the signal-to-noise ratio of (source) pro-
jected neural activity time courses, as well as generally more 
complicated analysis strategies. This, however, was not the pur-
pose of this study; instead, the aim here was to show that it is 
possible to reveal inter-individual differences in oscillatory activ-
ity that predict differences in memory performance using (rela-
tively) simple EEG recordings.

Conclusion and future directions
We have shown that, even when using a basic canonical forward 
model, surface EEG recordings in combination with the virtual 
DMP task can reveal the approximate neuroanatomy of a spatial 
memory system in the human brain on the basis of inter-individ-
ual variation in memory performance. This approach holds great 
potential for future studies on the potential oscillatory correlates 
of inter-individual differences, including in relation to age-
related changes in spatial memory (Coughlan et al., 2018; 
Driscoll et al., 2005; Hort et al., 2007; Lester et al., 2017) with a 
task that is suitable for different age groups (our own unpub-
lished work with elderly participants and previous work using a 
related task in children (Buckley et al., 2015)). Some studies 
have already shown the great potential of the combination of sur-
face EEG with similar tasks for clinical translation (Adams et al., 
2020; Cornwell et al., 2010).

Of particular interest will also be the combination with neu-
ropharmacological techniques to study the neurochemistry of 
such brain oscillations (Newman et al., 2012), as well as their 
importance for inter-individual differences in healthy (Richter 
et al., 2014) and clinical populations (Meng et al., 2018). The 
comparably low costs and the availability of EEG recordings 
may make this also suitable as a diagnostic tool for clinical prac-
tice. Regarding the question of the more mechanistic role of theta 
oscillations for interactions between different parts of the (puta-
tive) network that was revealed by our source analysis, these may 
be more suitably be addressed by MEG studies with sophisti-
cated forward models (Meyer et al., 2017).
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