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Proteolysis is known to play a crucial role in maintaining skeletal muscle

mass and function. Autophagy is a conserved intracellular process for the

bulk degradation of proteins in lysosomes. Although nutrient starvation is

known to induce autophagy, the effect of nutrient repletion following star-

vation on the mTOR pathway-mediated protein translation remains

unclear. In the present study, we examined the effect of glucose starvation

on the initiation of protein translation in response to glucose re-addition in

C2C12 myotubes. Glucose starvation decreased the phosphorylation of p70

S6 kinase (p70S6K), a bonafide marker for protein translation initiation.

Following re-addition of glucose, phosphorylation of p70S6K markedly

increased only in glucose-starved cells. Inhibiting autophagy using pharma-

cological inhibitors diminished the effect of glucose re-addition on the

phosphorylation of p70S6K, whereas inhibition of the ubiquitin-protea-

some system did not exert any effect. In conclusion, autophagy under glu-

cose starvation partially accounts for the activation of translation initiation

by re-addition of glucose.

The regulation of skeletal muscle mass depends on the

balance between overall rates of protein synthesis and

breakdown. The most effective way to enhance skeletal

muscle is increasing protein synthesis and decreasing

protein breakdown. However, growing evidence sug-

gests that muscle protein breakdown is also essential

for muscle hypertrophy.

The skeletal muscle proteolysis is regulated by two

major arms: the autophagy-lysosome pathway [1,2]

and the ubiquitin-proteasome pathway [3–5]. Autop-

hagy is a conserved intracellular process for bulk

degradation of proteins and organelles in lysosomes

[6]. In mammalian cells, the main regulators of

autophagy are hormonal and nutrient factors [7,8].

Glucose [9–11] and amino acid [8,12,13] deprivation/

starvation is known to induce autophagy. However,

the effects of glucose starvation on autophagy are

comparatively less studied than those of amino acids

starvation.

Proteolysis is known to play a crucial role in main-

taining skeletal muscle mass and function. It has been

reported that knock down of Atg7, a crucial autop-

hagy gene, results in profound muscle atrophy [14].

Tribbles homologue 3 (TRB3) knockout in mice atten-

uated muscle fiber atrophy by increasing autophagy

[15]. Overexpression of Sestrins, a family of stress-in-

ducible metabolic regulators, prevents aging- and dis-

use-induced muscle atrophy by upregulating

autophagy [16]. The functional overload-induced mus-

cle hypertrophy is associated with an increase in ubiq-

uitin-proteasome activity [17]. Proteasome dysfunction

in Rpt3-deficient satellite cells impairs proliferation

and differentiation capacity, resulting in defective mus-

cle regeneration [18].
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The serine/threonine protein kinase mammalian

target of rapamycin (mTOR) is one of the critical

factors regulating overall protein synthesis and break-

down. There are two functionally distinct mTOR com-

plexes, mTORC1 and mTORC2 [19]. mTORC1

enhances protein translation through phosphorylation

of p70 S6 kinase (p70S6K) and 4E-binding protein-1

(4E-BP1) in response to hormonal and/or nutritional

stimuli [20]. We have previously reported that insulin,

mechanical stress, and branched-chain amino acids like

leucine can activate the p70S6K in C2C12 myotubes

[21,22]. Under nutrient-rich conditions, mTORC1

stimulates cellular growth and suppresses autophagy,

whereas inhibition of mTORC1 activity has been

shown to increase autophagy [23].

In the present study, we examined the effect of glu-

cose starvation on protein translation initiation in

response to re-addition of glucose in C2C12 myotubes.

Our findings indicate that 24-h glucose starvation

decreased the signals for protein translation initiation.

However, only in glucose-starved cells showed enhanced

phosphorylation of p70S6K in response to re-addition

of glucose. Pharmacological inhibition studies revealed

that autophagy under glucose starvation partially

accounts for this effect. The results of the present study

suggest that appropriate nutrient starvation can modu-

late the cellular protein turnover, and may be effective

at improving muscle protein synthesis.

Materials and methods

Materials

Dulbecco’s modified Eagle’s medium (DMEM, catalogue

number D5796), fetal bovine serum (FBS, F2442), and

Penicillin-Streptomycin Solution (P7539) were purchased

from Sigma-Aldrich (St. Louis, MO, USA). DMEM with-

out glucose (A1443001) was purchased from Thermo Fisher

Scientific (Rockford, IL, USA). Antibodies against total-

p70S6K (9202), phospho-T389-p70S6K (9205), autophagy

marker light chain 3 (LC3, 4599), and b-actin (4970) were

obtained from Cell Signaling Technology (Beverly, MA,

USA). Antibodies against multi-ubiquitinated protein

(D058-3) were obtained from MBL (Nagoya, Japan). Bafi-

lomycin A1 (Baf, ab120497) was obtained from Abcam

(Cambridge, UK). MG132 (M7449) was obtained from

Sigma-Aldrich.

C2C12 cell culture

C2C12 cells (a mouse myoblast cell line) were cultured in

DMEM, supplemented with 25 mM glucose, 10% FBS,

100 units�mL�1 penicillin, and 100 mg�mL�1 streptomycin

sulfate in a 5% CO2-humidified chamber at 37 °C. Cells

were grown to approximately 90% confluence, and then,

the culture medium was then replaced with differentiation

medium (DMEM supplemented with 25 mM glucose, 2%

horse serum, 100 units�mL�1 penicillin, and 100 mg�mL�1

streptomycin sulfate). Differentiation was carried out for

4 days to form multi-nucleated myotubes. Differentiation

medium was changed every 48 h.

Glucose starvation and re-addition

Differentiated C2C12 cells were divided into two groups

that were cultured for additional 24 h with differentiation

medium supplemented with or without glucose (high glu-

cose, 25 mM: HG; no glucose: NG). Then, glucose was

added to half of each group. After 30 min of incubation,

all cells were rinsed with ice-cold PBS and lysed with RIPA

lysis buffer (Santa Cruz Biotechnology, Dallas, TX, USA).

In experiments with pharmacological inhibitors, cells were

incubated with Bafilomycin (at a final concentration of

20 nM) or MG132 (20 lM) for 24 h.

Western blotting

Protein concentration in the cell lysate was determined using

a BCA protein assay kit (Thermo Fisher Scientific). Equal

amounts of total cellular protein were subjected to SDS/

PAGE and transferred to polyvinylidene difluoride mem-

branes (Immobilon-P; Merck Millipore, Burlington, MA,

USA) for immunoblotting. The membrane was blocked with

Tris-buffered saline (pH 7.4), containing 0.05% (v/v) Tween-

20 and 5% skimmed milk. Following an overnight incuba-

tion with the indicated primary antibodies, the membranes

were washed and then incubated with horseradish peroxi-

dase-conjugated anti-rabbit IgG or anti-mouse IgG for 1 h

at room temperature. Immuno-reactive protein bands were

visualized by Immobilon ECL Ultra Western HRP Substrate

(Thermo Fisher Scientific) with an ImageQuant LAS500

image analyzer (GE Healthcare UK Limited, Chicago, IL,

USA). The band intensity was quantified using a computer

analysis package (IMAGEJ, open sourse software).

Intracellular ATP assays

Intracellular ATP concentration was measured using an

intracellular ATP determination kit (Toyo B-net, Tokyo,

Japan) following the manufacturer’s instructions. For this

assay, C2C12 myotubes were cultured in 96-well plates.

Statistical analyses

Data are presented as mean, and error bars represent SD.

Statistical analysis for multiple comparisons was performed

using one-way or two-way ANOVA followed by the Sch-

effe’s post hoc test. Differences were considered statistically

significant at P < 0.05.
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Results

Effect of glucose starvation and re-addition on

the phosphorylation of p70S6K

The phosphorylation-induced activation of the

mTORC1/p70S6K pathway is a key step in regulation

of translation initiation. The phosphorylation of

p70S6K at threonine 389 (T389) is positively corre-

lated with its kinase activity [24] and is associated with

the increased activation of protein translation initia-

tion [25]. Glucose starvation for 24 h significantly

decreased the phosphorylation of p70S6K (Fig. 1).

Addition of 5.5 mM glucose significantly increased the

phosphorylation of p70S6K in the NG group com-

pared with that in the HG group. However, total pro-

tein levels of p70S6K were not affected by glucose

starvation and/or glucose re-addition.

Effect of glucose concentration on the

phosphorylation of p70S6K after glucose

starvation

The phosphorylation status of p70S6K was determined

in response to varying amounts of glucose (final con-

centrations of 2.8, 5.5, and 12.0 mM) following glucose

starvation for 24 h. After 30 min of incubation with

increasing concentrations of glucose, the phosphoryla-

tion of p70S6K was significantly higher than in the

0 mM group in all cases (Fig. 2). The phosphorylation

of p70S6K in 5.5 and 12.0 mM groups was higher than

that in the 2.8 mM group, whereas the 5.5 and

12.0 mM groups showed the same level.

Effect of glucose starvation and re-addition on

the concentration of intracellular ATP

Next, we found the concentration of intracellular ATP

was not affected either by glucose starvation or glu-

cose re-addition in our system (Fig. 3). As a positive

control, addition of 2-deoxyglucose (2-DG), a nonme-

tabolizable glucose analog that inhibits the glycolytic

pathway, markedly decreased the concentration of

intracellular ATP.

Effect of proteasome inhibitor on glucose re-

addition

To determine the effect of proteasome inhibitor on

glucose re-addition, cells were treated with 20 lM
MG132 (dissolved in DMSO) or vehicle. MG132 is a

potent cell-permeable proteasome inhibitor that

Fig. 1. Effect of glucose starvation and re-

addition on p70S6K phosphorylation.

C2C12 myotubes were cultured in HG or

NG medium for 24 h, and half of each

group was subjected to glucose re-

addition for 30 min. A representative

western blot image for phospho-p70S6K,

total-p70S6K, and b-actin is shown in the

upper panel. Quantitative data for

phosphorylation of p70S6K are shown in

the lower panel. Data are expressed as

percentages relative to the HG-Glucose

(�) group (100%). The difference was

analyzed using two-way ANOVA followed

by the Scheffe’s post hoc test. Data are

presented as mean, and error bars

represent SD (n = 6). *P < 0.05 vs. HG

group. #P < 0.05 vs. Glucose (�) group.

MW, molecular weight marker.
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reduces the degradation of ubiquitinated proteins in

mammalian cells. The abundance of ubiquitinated pro-

tein was significantly higher in the MG132 groups than

in the vehicle (Fig. 4A,B). The phosphorylation of

p70S6K in response to glucose re-addition was compa-

rable between DMSO and MG132 groups (Fig. 4A,C).

Effect of autophagy inhibitor on glucose re-

addition

To determine the effect of autophagy inhibitor on glu-

cose restoration, 20 nM bafilomycin (Baf, dissolved in

ethanol) was added to the cells. LC3 is a mammalian

ortholog of yeast ATG8. The conversion of LC3-I to

LC3-II serves as a specific marker for autophagy in

mammalian cells [26,27]. The LC3-II/LC3-I ratio was

markedly higher in the Baf group than in the EtOH

group after 24 h of glucose starvation (Fig. 5A,B).

The phosphorylation of p70S6K in the glucose (�)

group was significantly decreased by addition of Baf

(Fig. 5A,C). The phosphorylation of p70S6K in

response to glucose re-addition was partly inhibited by

Baf.

Discussion

In the present study, we examined the effects of glu-

cose starvation on protein translation initiation in

response to glucose re-addition in C2C12 myotubes.

The results suggest that autophagy under glucose star-

vation partially accounts for the activation of transla-

tion initiation by glucose re-addition.

Glucose starvation for 24 h decreases the phospho-

rylation levels of p70S6K. This is in line with previous

studies suggesting that glucose is essential to maintain

Fig. 2. Effect of glucose concentration on

the phosphorylation of p70S6K following

glucose starvation. C2C12 myotubes were

cultured in NG medium for 24 h, and

different amounts (final concentration at 0,

2.8, 5.5, and 12.0 mM) of glucose were

added to the cells and incubated for

30 min. A representative western blot

image for phospho-p70S6K, total-p70S6K,

and b-actin is shown in the upper panel.

Quantitative data for phosphorylation of

p70S6K are shown in the lower panel.

Data are represented as percentages

relative to Glucose 0 mM group (100%).

The difference was analyzed using one-

way ANOVA followed by the Scheffe’s

post hoc test. Data are presented as

mean, and error bars represent SD (n = 4).

Values with different letters are

significantly different (P < 0.05).

Fig. 3. Effect of glucose starvation and re-addition on intracellular

ATP. C2C12 myotubes were cultured in HG or NG medium for

24 h. Cells were lysed at 30 min after the addition of H2O or

glucose or 2-DG. Data are expressed as percentages relative to the

HG-H2O group (100%). The difference was analyzed using one-way

ANOVA followed by the Scheffe’s post hoc test. Data are

presented as mean, and error bars represent SD (n = 5). Values

with different letters are significantly different (P < 0.05).
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the phosphorylation levels of p70S6K [10,11]. In

addition, we found that re-addition of glucose augmented

the phosphorylation levels of p70S6K in 24-h glucose-

starved cells but not in the nonstarved myotubes. These

results suggest that 24-h glucose starvation modulates

cellular metabolism regulating protein synthesis.

Firstly, we hypothesized that reduced cellular energy

status by glucose starvation leads to inactivation of

p70S6K. It has been reported that reduced intracellu-

lar ATP/ADP ratios stimulate AMP-activated protein

kinase (AMPK) and hence inhibit the mTORC1/

p70S6K pathway. However, in our study, the concen-

tration of intracellular ATP neither decreased by glu-

cose starvation nor increased by glucose re-addition.

These results suggest that the intracellular concentra-

tion of ATP is not associated with the phosphorylation

levels of p70S6K during glucose starvation or in

response to glucose re-addition.

Glucose deprivation is a known factor for stimulat-

ing protein breakdown. The autophagy-lysosome sys-

tem [9–11] and ubiquitin-proteasome system [28,29] are

also reported to be accelerated by glucose starvation.

Thus, we examined the role of the autophagy-lysosome

system and the ubiquitin-proteasome system in our

glucose re-addition-induced activation of p70S6K by

using pharmacologic inhibitors. We treated the cells

with bafilomycin and confirmed the disruption of lyso-

somal activity by evaluating the increasing ratio of

LC3-II/LC3-I [26,27]. Bafilomycin-mediated inhibition

of autophagy also attenuated the phosphorylation of

p70S6K in response to glucose re-addition. On the

other hand, inhibition of proteasome activity by

Fig. 4. Effect of proteasome inhibitor on glucose re-addition. C2C12 myotubes were cultured in NG medium for 24 h with or without

MG132, dissolved in DMSO. Equal volume of DMSO was added to the control cells. Cells were lysed at 30 min after the re-addition of

5.5 mM glucose. A representative western blot image for ubiquitinated protein, phospho-p70S6K, total-p70S6K, and b-actin is shown in the

left panel (A). Quantitative data for ubiquitinated protein are shown and expressed as percentages relative to the DMSO-Glucose (�) group

(100%) (B). Quantitative data for phosphorylation of p70S6K are shown and expressed as percentages relative to the DMSO-Glucose (�)

group (100%) (C). The difference was analyzed using two-way ANOVA followed by the Scheffe’s post hoc test. Data are presented as

mean, and error bars represent SD (n = 4). *P < 0.05 vs. DMSO group. #P < 0.05 vs. Glucose (�) group. MW, molecular weight marker.
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MG132 did not affect the phosphorylation of p70S6K

by glucose re-addition, but resulted in accumulation of

multi-ubiquitinated proteins. These results suggest that

autophagy under glucose starvation enhances the sig-

naling of protein translation initiation in response to

glucose re-addition in C2C12 myotubes and that the

ubiquitin-proteasome system is not involved in this

process.

The effects of autophagy inhibition on mTORC1 sig-

naling under amino acid deprived conditions in C2C12

myotubes have been reported; results showed that

autophagy is required to sustain mTORC1 signaling

during amino acid starvation [30]. In the present

study, glucose starvation for 24 h with autophagy inhi-

bition further diminished the phosphorylation levels

of p70S6K, in line with the previous report. It is

known that lysosomes facilitate mTOR activation by

generating an internal pool of amino acids through pro-

tein degradation [31]. In the present study, adequate

amounts of amino acids were presented in culture med-

ium even during glucose starvation and the basal level

of phosphorylation of p70S6K was significantly reduced

by inhibiting autophagy. Thus, further study is required

to determine the effect of intracellular concentrations of

amino acids during glucose starvation.

Although the phosphorylation levels of p70S6K at

threonine 389 is reported to be correlated with the

protein translation initiation [25], the actual protein

synthesis rate should be confirmed using labeled amino

acids or the SUnSET assay [32]. Moreover, the effect

of repeated glucose starvation and restoration on myo-

tubes should be explored in future.

In the present study, we assessed the effect of glu-

cose restoration following 24-h nutrient stress by

Fig. 5. Effect of autophagy inhibitor on glucose re-addition. C2C12 myotubes were cultured in NG medium for 24 h with or without

bafilomycin (Baf), dissolved in EtOH. Equal volume of EtOH was added to the control cells. Cells were lysed at 30 min after the re-addition

of 5.5 mM glucose. A representative western blot image for LC3-I, LC3-II, phospho-p70S6K, total-p70S6K, and b-actin is shown in the left

panel (A). Quantitative data for ratio of LC3-II/LC3-I are shown in the panel (B). Quantitative data for phosphorylation of p70S6K are shown

in the panel (C). Data are expressed as percentages relative to the EtOH-Glucose (�) group (100%). The difference was analyzed using two-

way ANOVA followed by the Scheffe’s post hoc test. Data are presented as mean, and error bars represent SD (n = 4). *P < 0.05 vs. EtOH

group. #P < 0.05 vs. Glucose (�) group. MW, molecular weight marker.
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glucose starvation alone. Further studies are required

to evaluate the optimum starvation period to maximize

the effect of glucose restoration on protein synthesis.

We believe that adequate nutritional stress (such as

intermittent fasting) might be useful for improving

skeletal muscle mass and function.
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