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Abstract

The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-CoV-2) has become the current health concern and threat to the entire world.

Thus, the world needs the fast recognition of appropriate drugs to restrict the spread of this

disease. The global effort started to identify the best drug compounds to treat COVID-19,

but going through a series of clinical trials and our lack of information about the details of the

virus’s performance has slowed down the time to reach this goal. In this work, we try to

select the subset of human proteins as candidate sets that can bind to approved drugs. Our

method is based on the information on human-virus protein interaction and their effect on

the biological processes of the host cells. We also define some informative topological and

statistical features for proteins in the protein-protein interaction network. We evaluate our

selected sets with two groups of drugs. The first group contains the experimental unap-

proved treatments for COVID-19, and we show that from 17 drugs in this group, 15 drugs

are approved by our selected sets. The second group contains the external clinical trials for

COVID-19, and we show that 85% of drugs in this group, target at least one protein of our

selected sets. We also study COVID-19 associated protein sets and identify proteins that

are essential to disease pathology. For this analysis, we use DAVID tools to show and com-

pare disease-associated genes that are contributed between the COVID-19 comorbidities.

Our results for shared genes show significant enrichment for cardiovascular-related, hyper-

tension, diabetes type 2, kidney-related and lung-related diseases. In the last part of this

work, we recommend 56 potential effective drugs for further research and investigation for

COVID-19 treatment. Materials and implementations are available at: https://github.com/

MahnazHabibi/Drug-repurposing.

Introduction

Recent studies on coronaviruses as a family of positive-strand RNA viruses tried to find that a

newly emerged virus belongs to a new or any existing species of this family of viruses. The

SARS-CoV-2 as a member of this family differs from SARS-CoV, MERS-CoV, and the other
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coronaviruses introduced earlier. The available clinical data for SARS-CoV-2 showed that this

disease spectrum and transmission differ from SARS-CoV. The wide range of virality and

spectrum from asymptomatic to severe and even fatal in some cases for this virus cases that the

WHO introduced “Coronovirus disease 19” or “COVID-19” for this virus. [1]. According to

the fast spread of SARS-CoV-2, a large number of researchers have been searching for possible

treatment for COVID-19 in the past months. At present, no effective medicine has been intro-

duced for the COVID-19 treatment [2]. Timothy et al [3] introduced new oral broad-spectrum

antiviral inhibitors for SARS-CoV-2 in humans and multiple coronaviruses in mice.

Producing new drugs with a complete profile is a time-consuming, costly, and challenging

procedure. Drug repurposing is one of the effective drug discovery processes from existing

drugs. Drug repurposing can help to find new therapies for diseases in a shorter time and with

lower costs, especially when the preclinical and safety tests have been completed for drugs [4].

The main purpose of drug repurposing is to increase the therapeutic use of available drugs for

more new medical purposes [5]. This process can play a crucial role for patients with rare or

complex diseases when there are no other effective treatments are available. Computational

methods for drug repurposing offer new testable assumptions for systematic reuse of drugs [6,

7]. It is worth mentioning that, targeting single virus proteins mostly has a high chance of drug

resistance as a result of the fast evolution of the virus genome [7].

Viruses need host cellular components for effective replication in the time of infection [7].

Systematic identification of virus-host protein-protein interaction networks provides a pro-

ductive way to clarify the evolution of virus genomes. Therefore, targeting the virus-host inter-

action network can offer an innovative strategy for forming effective cures for viral infections

like SARS-CoV-2 [8].

Since the outbreak of COVID-19, many research groups have been trying to propose net-

work-based methods to find some effective repurposed drugs to perform against SARS-CoV-2

[9, 10]. Fehr et al [10] revealed that SARS-CoV-2 infects human cells by hijacking the host’s

translation mechanism to produce 29 viral proteins. These 29 proteins bind to multiple

human proteins to set up the molecular processes needed for viral duplication and additional

host infection. Gorden et al [11] proposed a map from human proteins and SARS-CoV-2 pro-

teins that were found to interact in the affinity purification mass spectrum method. They

released the 26 proteins from 29 proteins that the SARS-CoV-2 infect in the human body.

They also identified 332 human proteins involved in these viral protein binds. From these 332

proteins, they identified 67 druggable human proteins with 69 existing drugs. It is noticeable

that the identification of dependency between host proteins and virus infection can provide

significant insights to find suitable drug targets for developing antivirals medicine against

SARS-CoV-2.

In this paper, we propose a method based on the topological and statistical properties of

proteins that are druggable in the human PPI network. We also show the distance between

these proteins with the proteins that are hijacked by the virus and measure some properties

concerning these measures. In this method, we define 4 informative topological features and 4

informative statistical features for each protein reported by Uniprot as a drug target concern-

ing the status of that protein or their neighbor proteins in our constructed network. Some of

the topological features are based on the distance of these proteins from other proteins or

hijacked proteins in our constructed PPI network. Some of our defined features are based on

the biological properties that are affected by the virus. After defining all of these topological

and statistical features, our method clusters the set of 2,898 proteins as drug target proteins in

the host cells. The aforementioned method select 800 proteins from these 2,898 proteins with

the highest drug-binding capability for COVID-19 treatment. We show that from 17 unap-

proved drugs used in medical centers for COVID-19 treatment, 15 drugs have at least one
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target in our selected set. We also show that 281 drugs from 328 drugs are undergoing clinical

trials approved with our candidate set. From all of the proteins that are placed in our candidate

sets, we find 35 proteins as a final set of disease-associated genes. Our results show that our

candidate proteins are targeted by a large number of COVID-19 drugs. In the last part of the

results, we also show some significant signaling and disease pathways. Finally, we recom-

mended 56 drugs for more research and investigation that related to the significant disease

pathways as candidate drugs for COVID-19 treatment.

Method

In this section, we define 8 informative topological and statistical features for each protein cor-

responding to the position of this protein in the PPI network, the position of this protein with

respect to the host proteins that are targeted by the virus, and the number of biological pro-

cesses that this protein participates. Since the problem of finding the appropriate set of drugs

for COVID-19 treatment is still an open question, it can be considered as a problem without a

response variable or exact answer. Therefore, to find an efficient model, we used only our

defined informative topological features for clustering druggable proteins as a suitable candi-

date set of proteins.

Databases

Protein-Protein Interaction (PPI) network. We use 5 human high-throughput PPI net-

works in this work. The first one, Huri, contains 52,248 binary interactions [12]. The second

one is collected from the Biological General Repository for Interaction Datasets (BioGRID)

and contains 296,046 interactions [13]. The BioGRID dataset contains various interactions

that are created from different techniques. In this work, we just use the physical interactions

between proteins. The three other datasets Human Integrated Protein-Protein Interaction rEf-

erence (Hippie) [14], Agile Protein Interactomes Data Server (APID) [15], and Homologous

Interactions (Hint) [16] that contain 57,428, 171,448, and 64,399 experimentally validated

interactions, respectively. These interactions are derived from high-throughput yeast-two

hybrid (Y2H) and mass spectrometry methods. All of the proteins from these five datasets are

mapped to their corresponding Universal Protein resource (Uniprot) ID [17]. If a protein

could not be mapped to a Uniprot ID, it is removed. The final interactome that we used in this

study contains 20,041 proteins and 304,730 interactions. We also use 332 human proteins that

interact with 26 proteins of the SARS-CoV-2 virus that reveals in [11].

Identification of drugs-human protein interactions. To evaluate our candidate targets,

we use all drugs and their corresponding target interactions reported in the Uniprot. These

interactions contain 6,163 drugs and 2,898 protein targets. We also use 44 experimental unap-

proved drugs for COVID-19 treatment reported in DrugBank [18]. From these 44 drugs

denoted as Covid-Drug, 27 drugs have no target information and the other 17 drugs have the

drug target information. These 17 drugs can target 78 proteins in human cells. The second

group of drugs denoted as Clinical-Drug contains 449 drugs as clinical trials for COVID-19

treatment reported in DrugBank [18]. From these 449 drugs, 328 drugs have target proteins in

our PPI network. These 328 drugs can target 888 proteins in human cells.

Biological process information. We use the information of the biological processes for

proteins published on the Gene Ontology (GO) website [19]. We find that 19,439 proteins

from these 20,041 proteins or 97% of them are annotated. We use the Informative Biological

Process (IBP) concept to avoid achieving the incorrect conclusions caused by biases in the

annotation process. We consider the IBP annotations if it has two properties. First, it needs to

have at least k proteins annotated with it. Second, each of its descendant’s GO terms needs to
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have less than k proteins annotated with them. In this study, we set 3 as a value of k. We note

that 16,021 biological processes corresponding to these 20,041 proteins are participating in our

interactions. From these 16,021 biological processes, 1,374 IBP GO terms affected by the virus

in which a subset of 332 host proteins as possible targets of the virus is involved [11].

We also define the overlap between two biological process p1 and p2 in the following way

(|.| denotes the size):

Overlapðp1; p2Þ ¼
jp1

T
p2j

2

jp1jjp2j
: ð1Þ

Finally, we removed the processes with more than 15% overlaps. With this filtering method,

we have 1,213 non-overlapping biological processes corresponding to SARS-CoV-2.

Representative criteria

Each PPI network is considered as an undirected graph, G = (V, E), where V = {v1, v2, . . ., vn}

is a set of vertices represent proteins in G and eij 2 E is the set of edges represents a functional

interaction between vi and vj. We call two vertices vi and vj as neighbors if there is an edge

between them. Suppose N(vi) is a set of all neighbors for a vertex vi, therefore d(vi) = |N(vi)|
shows the degree of vi. A path between two vertices vi and vj is a sequence of edges that con-

nects a sequence of distinct vertices (vi = v0, v1, . . ., vn = vj) and the number of edges in each

path is defined as path length. The shortest path between two vertices vi and vj is defined as a

path with the minimum length that is indicated by d(vi, vj).
We define two groups of characteristics associated with a graph G = (V, E). The first group

of characteristics rG : V ! R, depends only on the graph topological properties. The group

ρG, contains 4 informative topological features for each protein reported in Uniprot as a drug

target and their interaction with the virus. The second group of characteristics rG;S : V ! R,

depends on a set S that represents statistical information about COVID-related drugs and bio-

logical processes affected by the virus.

Topological features. The following four properties show the informative topological fea-

tures in the group ρG, for each protein reported in Uniprot as a drug target.

1. DR(vi): The ratio of the number of neighbors for each protein vi in the PPI network that is

targeted by virus proteins.

DRðviÞ ¼
jNðviÞ

T
Tj

dðviÞ
: ð2Þ

The set, T, shows 332 proteins as possible targets of the virus and |.| indicates the size of a

set. The larger value of DR(vi), indicates that the high ratio of virus’s neighbors are being

targeted.

2. AN(vi): The average ratio of the number of neighbors for each protein vi [20].

ANðviÞ ¼

P
vj2NðviÞ

dðvjÞ

dðviÞ
: ð3Þ

A large value for the average degree of neighbors of each protein, vi, indicates the presence

of essential proteins in its neighborhood.

3. D(vi, T): The minimum distance of each protein vi from all of the vertices of set T. The

smaller value of this distance indicates the closeness of vertex vi to set T.
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4. MD(vi): The average of minimum distance between each protein vj in the vertex’s neighbor-

hood and set T.

MDðviÞ ¼

P
vj2NðviÞ

Dðvj;TÞ

dðviÞ
: ð4Þ

The smaller value of mean distance of the neighbors of each protein indicates the closeness

of the neighbors of this vertex to T.

Statistical features. Let S represents information about COVID-related drugs and biolog-

ical process for each protein reported in Uniprot as a drug target. The following properties

show the informative statistical features in the group ρG,S, for each protein.

1. Suppose that π = {p1, p2, . . ., pk} shows the non-overlapping biological processes corre-

sponding to the virus. We define the number of non-overlapping biological processes

which the protein, vi, is involved as follow:

IBPðviÞ ¼ jfpj 2 pjvi 2 pjgj: ð5Þ

The larger value of IBP(vi) indicates that protein vi is valuable in terms of participating in a

further number of biological processes.

2. Suppose that π = {p1, p2, . . ., pk} shows the non-overlapping biological processes corre-

sponding to the virus. We define the participation rate of each protein, vi, in set π as follow:

PIBPðviÞ ¼ 1 �
X

pi2p

jNðviÞ
T

pijP
pi2p
jNðviÞ

T
pij

 !2

: ð6Þ

The possible values for PIBP(vi) is between 0 and 1. The closer value of PIBP(vi) to 1 shows

the distribution of the neighbors of this vertex in the set of biological processes [21].

3. COV(vi): Indicates the number of drugs in a Covid-Drug group and have targeted protein

vi.

4. CID(vi): Indicates the number of drugs in Clinical-Drug group and have targeted protein vi.

Suggesting the appropriate drugs for COVID-19 treatment

In this subsection, we design a two-step method to find an effective solution for the COVID-

19 treatment problem. In the first step to point out some appropriate COVID-19 associated

genes, we define 8 topological and statistical features. In the second step, we narrow down

these associated genes by considering some of them that contributed to the COVID-19 comor-

bidities. These comorbidities can affect the severity of COVID-19. Finally, we suggest a set of

FDA-approved drugs related to disease pathways with respect to these disease-associated

genes as candidate drugs for more investigation as COVID-19 treatment.

Finding candidate set of target proteins related to COVID-19. Suppose that a set δ
includes all the drugs in the Uniprot that target human proteins. Also assume that a set τ = {v1,

. . ., vm} includes a set of human proteins that is targeted by a drug set δ. Now for each specific

topological feature, ρ = ρG and for each specific statistical feature, ρ = ρG,S, we define a numeri-

cal set ρ(τ) = {ρ(v1), . . ., ρ(vm)} with mean value r.
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Suppose that φ1 contains a set of statistical and topological features (DR(vi) and AN(vi) as

topological features), then for each protein vi 2 τ we define the following measure.

• a(vi): Number of features such that ρ 2 φ1 and rðviÞ > r.

Suppose that φ2 is a set contains two topological features D(vi, T) and MD(vi), then for each

vi 2 τ we define the following measure.

• b(vi): Number of features such that ρ 2 φ2 and rðviÞ < r.

Now for each vi 2 τ we define a new measure s(vi) = a(vi) + b(vi), then three candidate sets

T1, T2 and T3 define as follow.

T1 ¼ fv 2 tjsðvÞ > 4g:

T2 ¼ fv 2 tjsðvÞ > 5g:

T3 ¼ fv 2 tjsðvÞ > 6g:

It is noticeable that the large value corresponding to the features in φ1 and the small value

corresponding to the features in φ2 indicate that a vertex is valuable. As a result, set T1 contains

proteins that have at least five valuable feature, set T2 contains proteins that have at least six

valuable features and set T3 contains proteins that have at least seven valuable features from

eight features.

Finding disease-associated genes and related drugs. The results of the previous subsec-

tion can be nominated as suitable candidate sets of proteins with important biological roles. It

is noticeable that not all of the selected proteins are appropriate candidates as a drug target for

the COVID-19. Therefore, we narrow down these candidate proteins to the disease-associated

genes. Different patients with COVID-19 show various symptoms from asymptomatic to

death. The severity and death in patients with COVID-19 are related to neutrophils prolifera-

tion elevation and reduction in lymphocytes population (lymphopenia) in patients [22]. It is

noticeable that patients with underlying diseases such as cardiovascular diseases, diabetes, hep-

atitis, lung diseases, kidney disease, and different cancer types have more severe symptoms

than others. Therefore, we correlate the genes associated with these mentioned diseases with

the genes associated with COVID-19 pathology. To identify a set of disease-associated genes

related to COVID-19 as drug targets, we study the subset of genes that are associated with the

aforementioned diseases in our candidate set. We use gene-disease relation from Database for

Annotation, Visualization, and Integrated Discovery (DAVID) to find these disease-associated

genes. We select proteins that are corresponding to four out of five of these specific comorbid

diseases with a significant p-value. We also specify the significant disease-pathway enrich-

ments for our selected disease-associated genes from DAVID tools. Then, we characterize sig-

nificant disease-pathways with a p-value less than 0.06 and detect FDA-approved treatments

for the significant disease-pathways from FDA and Mayo Clinic databases (https://www.

mayoclinic.org).

Results

In this section, we evaluate the candidate drug targets from different perspectives and suggest

some appropriate candidate drugs for COVID-19 treatment.

Evaluation of candidate sets

Statistical properties of candidate sets. In the previous section, we introduced three sets

T1, T2, and T3 as candidate drug targets for COVID-19. Table 1 presents some statistical
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properties of these sets and set τ respectively. The first column shows the number of vertices

for each selected set and the total number of vertices for set τ. The next columns show the aver-

age of the values obtained for each feature. Table 1 shows that, on average, each vertex in the

sets T1, T2, and T3 participates in 5.06, 6.31, and 7.48 biological processes affected by the virus,

respectively. On average, each vertex in set τ is located at a distance of 1.54 from the target of

the virus (T). While each vertex in the selected set T3 is located at a distance of 0.921 from the

set T.

The Venn diagram in Fig 1 illustrates the relation of vertices for the candidate sets and set

T. Fig 1 shows that 45 proteins from set T1, 16 proteins from the set T2, and 5 protein from the

set T3 interact with the virus proteins. In general, the above statistical results show that our

selected sets include a part of proteins that directly interact with virus proteins. These selected

sets also include proteins that are topologically and statistically important and valuable.

Evaluation of candidate sets with respect to random sets

In order to evaluate candidate sets, we compare sets T1, T2 and T3 with randomly generated

subsets of set τ. For each set with known number of vertices n, we have selected 103 randomly

generated sets from set τ as a sample drug target set. Suppose that Ni and Mi for i = 1, . . ., 103

denotes the number of Covid-Drug and Clinical-Drug in i-th randomly generated sets in

group of size n, respectively. Assume that Nco and Ncl show the number of drugs in Covid-

Drug and Clinical-Drug groups, respectively, that are approved by our selected set. Now sup-

pose that Xco = {i|Ni> Nco} and Xcl = {i|Mi> Ncl} for i = 1, . . ., 103 denote the random sets that

performed better than the proposed sets. The null hypothesis, H0, is that our selected drug set

of size n is not important. The alternative hypothesis, H1, is that our selected drug set of size n
is indeed important. We use Exceeding Value (EV) for Covid-Drug and Clinical-Drug as:

EVco ¼
jXcoj

1000
;

EVcl ¼
jXclj

1000
;

where |X| denotes the size of X. If EVco(EVcl)< α then, we reject H0 (α is a threshold value that

we consider to be 0.05). The values of EVco(EVcl) for three selected drug sets are reported in

Table 2 (These values cause extremely significant results). We can conclude that our selected

sets show a better performance than all of these random sets.

In Table 3 for each of the proposed sets, we compare the mean value of each feature for the

two groups of random sets Xco and Xco0 = {i|Ni<= Nco} as well as the random sets Xcl and Xcl0 =

{i|Mi<= Ncl}. Table 3 shows the average value for each feature for two mentioned groups of

random sets. The first group contains random sets that perform better than our candidate sets

in terms of the number of Covid-Drugs and Clinical-Drugs. The second group contains

random sets that do not perform better than our candidate sets in terms of the number of

Table 1. The first column shows the number of proteins for each selected set and the total number of vertices for set τ. The next columns show the average values

obtained for each feature in each of the selected set.(X denotes the average values).

No. Proteins PIBPðviÞ MDðviÞ Dðvi;TÞ ANðviÞ DRðviÞ IBPðviÞ CoDðviÞ ClDðviÞ
T1 800 0.986 1.11 0.967 169.1 0.06 5.06 0.1175 1.753

T2 260 0.987 1.09 0.962 196.59 0.066 6.31 0.303 4.07

T3 64 0.989 1.07 0.921 210.92 0.068 7.48 0.328 4.42

τ 2898 0.917 1.03 1.54 167.3 0.027 3.1 0.05 0.997

https://doi.org/10.1371/journal.pone.0255270.t001

PLOS ONE Topological network based drug repurposing

PLOS ONE | https://doi.org/10.1371/journal.pone.0255270 July 29, 2021 7 / 18

https://doi.org/10.1371/journal.pone.0255270.t001
https://doi.org/10.1371/journal.pone.0255270


Covid-Drugs and Clinical-Drugs. Comparison of these two groups of sets shows that the ran-

dom sets, which include more Covid-Drugs and Clinical-Drugs (Xco and Xcl), contain proteins

that are more valuable and important in terms of topological and statistical properties. It is

noticeable that the comparison of Tables 3 and 1 does not indicate the superiority of the

Fig 1. The Venn diagram shows the relation of vertices of the candidate sets and set T.

https://doi.org/10.1371/journal.pone.0255270.g001

Table 2. The values of EXco and EXcl for three selected drug sets.

T1 T2 T2

Xco 5 11 45

Xcl 0 0 28

EVco 0.005 0.011 0.045

EVcl 0 0 0.028

https://doi.org/10.1371/journal.pone.0255270.t002
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random sets Xco and Xcl compared to our candidate sets in terms of having more valuable pro-

teins with respect to the topological and statistical features.

In addition, Figs 2 and 3 demonstrate the boxplot of the results of the random sets for each

drug set. The green line in each boxplot shows the number of drugs in Covid-Drug and Clini-

cal-Drug that are approved by our selected set respectively. These two figures show that the

results of our selected sets are significantly better than random sets. It means that random sets

can not have acceptable results in comparison to our selected sets, and our results are

completely different from the random sets.

Evaluation of candidate sets with respect to the number of approved drugs

Since there is no specific and exact set of drugs for COVID-19, we used two groups Covid-

Drug and Clinical-Drug to evaluate the obtained candidate sets. The first group includes

unconfirmed drugs used in medical centers for COVID-19 (Covid-Drug) and the second

group includes recommended drugs that are currently in clinical trials (Clinical-Drug). In

addition, we used another group of drugs to find some appropriate drugs for COVID-19 base

Table 3. The first column shows two groups of random sets in each selected set. The next columns show the average values obtained for each feature in each of the

selected set. (X denotes the average values).

T1 PIBPðviÞ MDðviÞ Dðvi;TÞ ANðviÞ DRðviÞ IBPðviÞ CoDðviÞ ClDðviÞ
Xco 0.918 1.296 1.542 166.554 0.028 3.217 0.062 1.193

Xco0 0.9067 1.303 1.547 167.241 0.026 3.015 0.050 1.003

T2 PIBPðviÞ MDðviÞ Dðvi;TÞ ANðviÞ DRðviÞ IBPðviÞ CoDðviÞ ClDðviÞ
Xco 0.991 1.403 1.557 167.588 0.029 3.094 0.101 1.555

Xcl 0.817 1.302 1.541 160.301 0.017 3.102 0.049 0.982

T3 PIBPðviÞ MDðviÞ Dðvi;TÞ ANðviÞ DRðviÞ IBPðviÞ CoDðviÞ ClDðviÞ
Xco 0.931 1.103 1.554 167.630 0.033 3.245 0.221 2.855

Xco0 0.916 1.304 1.475 165.534 0.027 3.118 0.044 0.951

Xcl 0.938 1.303 1.431 167.561 0.038 3.235 0.022 3.039

Xcl0 0.916 1.304 1.543 165.807 0.027 3.111 0.047 0.973

https://doi.org/10.1371/journal.pone.0255270.t003

Fig 2. The boxplot of the results of the random sets for Covid-Drug.

https://doi.org/10.1371/journal.pone.0255270.g002
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on candidate target sets. This group of drugs (All-drug) includes all the drugs available on the

Uniprot site. Table 4 provides a comparison between the proteins of three candidate sets as tar-

get proteins and the proteins that are targeted by these three groups of drugs (Covid-Drug,

Clinical-Drug, and All-drug). The first row presents the total number of proteins targeted by

these three groups of drugs. The number of proteins targeted by these drugs in sets T1, T2, and

T3 are reported in the second, third, and fourth rows respectively. The ratio of the number of

targets presented in the second, third, and fourth rows to the total number of proteins targeted

by these three groups of drugs reported in the fifth, sixth, and seventh rows respectively. As

shown in Table 5, we also evaluate the number of approved drugs in three groups of drugs. In

Table 5, the first row presents the total number of drugs in each candidate for three groups of

drugs. The number of drugs approved by these drugs in sets T1, T2, and T3 are reported in the

second, third, and fourth rows respectively. The ratio of the number of approved drugs pre-

sented in the second, third, and fourth rows to the total number of drugs in these three groups

of drugs reported in the fifth, sixth, and seventh rows respectively.

Fig 3. The boxplot of the results of the random sets for Clinical-Drug.

https://doi.org/10.1371/journal.pone.0255270.g003

Table 4. The number of protein targets in each candidate set for All-drug, Clinical-Drug, and Covid-Drug groups

reported in the four first rows. The ratio of the number of targets presented in the second, third, and fourth rows to

the total number of proteins targeted by these three groups of drugs reported in the fifth, sixth, and seventh rows

respectively.

Covid-Drug Clinical-Drug All-Drug

τ 78 888 2898

T1 42 337 800

T2 31 187 260

T3 14 64 64

Ratio of T1 to all 0.5385 0.379 0.276

Ratio of T2 to all 0.397 0.2103 0.0897

Ratio of T3 to all 0.179 0.072 0.221

https://doi.org/10.1371/journal.pone.0255270.t004
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Evaluation of candidate genes associated with COVID-19 pathology

Evaluations of the previous subsection showed that set T1 with 800 proteins has the highest

drug approval rate among the two Covid-Drug and Clinical-Drug groups. To identify disease-

associated genes as drug targets related to COVID-19, we study the subset of disease-associated

genes correlated with mentioned diseases in the selected set (T1). Set E contains the 35 proteins

annotated to four out of five of these specific comorbid diseases in T1. These proteins are

selected with respect to a significant p-value obtained by DAVID tools. Table 6 shows these

disease-associated genes that are related to COVID-19 pathology. We find that from 17 drugs

in Covid-Drug, 11 drugs including Azithromycin, Bevacizumab, Chloroquine, Colchicine,

Darunavir, Dexamethasone, Fingolimod, Ibuprofen, Methylprednisolone, Ritonavir, and

Tocilizumab are approved by set E. We also find that from 328 drugs in the Clinical-Drug

group 179 drugs are approved by set E.

We study the signaling-pathway enrichments identified by bio-pathway DAVID tools

related to 35 disease-associated genes (E set). Table 7 shows the top significantly enrichment

signaling pathways. These pathways have a significant p-value (less than 0.06). Some of these

pathways enrichment related to COVID-19 like (HIF-1, PI3K-Akt) have been introduced in

the other studies [23, 24].

One of the most significant signaling pathways in our results is the HIF − 1 signaling path-

way. This pathway plays an important role as the first reaction of the body upon pathogens.

This pathway and its downstream signaling cascade have a major role in the dominant

Table 5. The number of drugs in each candidate set for All-drug, Clinical-Drug, and Covid-Drug groups reported

in the four first rows. The rate of the number of drugs presented in the second, third, and fourth rows to the total

number of drugs in each group reported in the fifth, sixth, and seventh rows respectively.

Covid-Drug Clinical-Drug All-Drug

δ 17 328 6163

T1 15 281 3721

T2 13 251 2500

T3 9 138 138

Ratio of T1 to all 0.833 0.856 0.603

Ratio of T2 to all 0.722 0.765 0.4056

Ratio of T3 to all 0.5 0.42 0.022

https://doi.org/10.1371/journal.pone.0255270.t005

Table 6. Disease genes in set E associated with COVID-19 pathology.

Uniprot ID Gene name Uniprot ID Gene name Uniprot ID Gene name

O14746 TERT P00533 EGFR P00734 F2

P01130 LDLR P01375 TNF P02649 APOE

P02751 FN1 P03372 ESR1 P11021 HSPA5

P04179 SOD2 P04637 TP53 P05181 CYP2E1

P05362 ICAM1 P08684 CYP3A4 P09211 GSTP1

P09601 HMOX1 P10415 BCL2 P10635 CYP2D6

P15692 VEGFA P16410 CTLA4 P16860 NPPB

P28482 MAPK1 P29460 L12B P29474 NOS3

P31749 AKT1 P35228 NOS2 P35354 PTGS2

P35568 IRS1 P38936 CDKN1A P40763 STAT3

P42345 MTOR P48357 LEPR P78527 PRKDC

Q8WTV0 SCARB1 Q9NR96 TLR9

https://doi.org/10.1371/journal.pone.0255270.t006
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response of innate immunity against infection. The innate immune response to pathogens is

related to some important immune cells like neutrophils and macrophages. The hyperactivity

of these cells can drive the production of a high amount of inflammatory cytokines or “cyto-

kine storm” in the region of infection. It is noticeable that the previous studies showed that

SARS-CoV-2 result in a high inflammatory response and cytokine storm in severe cases.

HIF − 1α has a major role in response to the hypoxia microenvironment in the site of inflam-

mation. It works as a main regulator in the phagocytes. It can increase the inflammatory

response with up-regulation of the angiogenesis factors like VEGF. Therefore, HIF − 1α inhab-

itation with pharmacological strategies might introduce a new approach for COVID-19

Table 7. Some of the significantly enrichment signaling pathways associated with COVID-19.

Annotation Cluster 1 (Enrichment

Score: 3.32)

Term Associated proteins P-value

hsa04066:HIF-1 signaling pathway P42345, P29474, P15692, P10415, P28482, P31749, P38936,

P00533, P09601, P35228, P40763

1.73E-11

hsa04151:PI3K-Akt signaling

pathway

P42345, P29474, P15692, P10415, P04637, P28482, P31749,

P38936, P00533, P35568, P02751

3.94E-06

hsa04068:FoxO signaling pathway P28482, P31749, P38936, P00533, P35568, P40763, P04179 4.19E-05

hsa04150:mTOR signaling pathway P42345, P28482, P31749, P35568, P01375 1.75E-04

hsa04370:VEGF signaling pathway P29474, P15692, P28482, P31749, P35354 2.13E-04

hsa04071:Sphingolipid signaling

pathway

P29474, P10415, P04637, P28482, P31749, P01375 2.76E-04

hsa04012:ErbB signaling pathway P42345, P28482, P31749, P38936, P00533 8.29E-04

hsa04915:Estrogen signaling pathway P29474, P28482, P31749, P03372, P00533 0.001344

hsa04919:Thyroid hormone signaling

pathway

P42345, P04637, P28482, P31749, P03372 0.002334

hsa04722:Neurotrophin signaling

pathway

P10415, P04637, P28482, P31749, P35568 0.002726

hsa04921:Oxytocin signaling pathway P29474, P28482, P38936, P00533, P35354 0.006057

hsa04022:cGMP-PKG signaling

pathway

P16860, P29474, P28482, P31749, P35568 0.007266

hsa04910:Insulin signaling pathway P42345, P28482, P31749, P35568 0.030046

hsa04010:MAPK signaling pathway P04637, P28482, P31749, P00533, P01375 0.034867

Annotation Cluster 2 (Enrichment

Score: 2.71)

Term Associated proteins P-value

hsa04920:Adipocytokine signaling

pathway

P42345, P31749, P48357, P35568, P01375, P40763 2.09E-05

Annotation Cluster 3 (Enrichment

Score: 2.59)

Term Associated proteins P-value

hsa04620:Toll-like receptor signaling

pathway

P28482, P31749, P29460, Q9NR96, P01375 0.001731

hsa04668:TNF signaling pathway P28482, P31749, P05362, P35354, P01375 0.001792

hsa04660:T cell receptor signaling

pathway

P16410, P28482, P31749, P01375 0.012871

Annotation Cluster 4 (Enrichment

Score: 2.23)

Term Associated proteins P-value

hsa04917:Prolactin signaling pathway P28482, P31749, P03372, P40763 0.005014

https://doi.org/10.1371/journal.pone.0255270.t007
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treatment. It is worth mentioning that HIF − 1α has a positive impact on the autophagy pro-

cess. It can suppress the viral infection of SARS-CoV-2 in the host cells and decrease the virus

proliferation [23, 24]. Fig 4 shows the schematic illustration of SARS-CoV-2 infection and the

role of HIF − 1α on SARS-CoV-2 pathogenesis. This Figure shows that after infection, the

HIF − 1α induction in the severe situation. In this situation, the inflammatory condition stabi-

lizes inflammatory cells like macrophages and neutrophils. It also enforces cytokine produc-

tion by these cells and makes cytokine storms.

We analyze the significant disease-pathway enrichments for the candidate proteins related

to COVID-19 (set E). We also investigate FDA-approved treatments for the significant dis-

ease-pathways. In Table 8, we report some of these significant disease-pathways like (Hepatitis
C, Influenza A, Tuberculosis) that have significant p-values. These pathways contain disease-

associated genes that are reported through our method. Some of these drugs like Cyclosporine,
Enzalutamide, and Imatinib are undergoing clinical trials. From 56 drugs reported in Table 8,

26 drugs are reported in other studies as possible candidates for COVID-19 drug repurposing.

The other drugs that are reported through our method, can be suitable candidates for more

investigation in clinical trials for COVID-19 treatment.

Conclusion and discussion

Drug repurposing is a beneficial field of research and its importance has been increasing in the

past years. This field has several advantages. For example, it makes the clinical trial procedure

shorter. It also helps in discovering previously unknown relationships between diseases. The

urgent need to find effective drugs for COVID-19 has hardly pushed this area of research in

the past months. Computational methods play an important role to find effective drugs among

available drugs for COVID-19 treatment. One of the best ways to identify effective drugs in dif-

ferent diseases is to find disease pathways related to the pathology of diseases. Most of the drug

repurposing methods are based on finding biological properties for drug targets. Therefore,

Fig 4. Schematic illustration of SARS-CoV-2 infection and the role of HIF − 1α on SARS-CoV-2 pathogenesis.

https://doi.org/10.1371/journal.pone.0255270.g004
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Table 8. Some of the significant disease-pathways associated with COVID-19. (Drugs in Clinical-Drug group are highlighted in bold font).

Annotation Cluster 1 (Enrichment

Score: 3.32)

Term Associated proteins P-value FDA Approved Reference

hsa05205:Proteoglycans in cancer P42345, P15692, P04637, P28482, P29460, P38936, P03372, P00533, P01375,

P40763, P31749, P02751

1.52E-09 Vismodegib [25]

Afuresertib

Afuresertib

hydrochloride

Dacomitinib

Necuparanib

Lumretuzumab

hsa05200:Pathways in cancer P10415, P04637, P28482, P31749, P35354, P35228, P42345, P15692, P09211,

P02751, P40763, P38936, P00533

1.78E-07 glucocorticoid

Cyclosporine [18, 26]

hsa05160:Hepatitis C P01130, P04637, P28482, P31749, P38936, P00533, P01375, P40763 Q8WTV0 1.88E-07 Interferon

Ribavirin [18, 27]

hsa05215:Prostate cancer P42345, P10415, P04637, P28482, P31749, P38936, P00533 3.72E-06 Enzalutamide [18, 26,

28]

hsa05206:MicroRNAs in cancer P42345, P15692, P10415, P04637, P00533, P35354, P09601, P35568 P38936,

P40763

6.86E-06 Decitabine [18]

hsa05212:Pancreatic cancer P15692, P04637, P28482, P31749, P40763, P00533 1.45E-05 Erlotinib

hydrochloride

hsa05214:Glioma P42345, P04637, P28482, P31749, P38936, P00533 1.45E-05 Disopyramide

hsa05219:Bladder cancer P15692, P04637, P28482, P38936, P00533 4.43E-05 Erdafitinib

hsa05222:Small cell lung cancer P10415, P04637, P31749, P35354, P35228, P02751 5.37E-05 Trilaciclib

hsa05161:Hepatitis B P10415, P04637, P28482, P31749, P38936, P01375, P40763 6.54E-05 Peginterferon alfa-2a

hsa05230:Central carbon metabolism

in cancer

P42345, P04637, P28482, P31749, P00533 2.56E-04 Pralsetinib

Selpercatinib

Telaglenastat

hsa05218:Melanoma P04637, P28482, P31749, P38936, P00533 3.82E-04 Trametinib [29]

Encorafenib [30]

hsa05221:Acute myeloid leukemia P42345, P28482, P31749, P40763 0.0025575 Midostaurin [31]

Gilteritinib fumarate

hsa05223:Non-small cell lung cancer P04637, P28482, P31749, P00533 0.0025575 Gefitinib [28]

Erlotinib

hydrochloride

[28]

Crizotinib [28]

hsa05210:Colorectal cancer P10415, P04637, P28482, P31749 0.0034196 5-Fluorouracil

Capecitabine

hsa04210:Apoptosis P10415, P04637, P31749, P01375 0.0034196 Etanercept [32]

Lenalidomide [31]

Talazoparib

hsa05220:Chronic myeloid leukemia P04637, P28482, P31749, P38936 0.0052143 Imatinib [18]

hsa05014:Amyotrophic lateral

sclerosis (ALS)

P10415, P04637, P01375 0.0250501 Edaravone [34]

Riluzole

Annotation Cluster 2 (Enrichment

Score: 2.71)

Term Associated proteins P-value FDA Approved Reference

hsa04930:Type II diabetes mellitus P42345, P28482, P35568, P01375 0.0016394 Metformin [18]

Sulfonylureas [35]

DPP4 inhibitors [36]

(Continued)
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the main idea of this paper is to find a set of disease pathways related to the pathology of

COVID-19 that can help us find some appropriate drugs for COVID-19 treatment. For this

purpose, we proposed a method that used disease-associated genes, biological properties that

are affected by the virus, topological and statistical properties. In the first part of our method,

we defined 4 informative topological features and 4 informative statistical features for each

protein reported by Uniprot as a drug target. Our results for the first part suggested a set of

proteins that have valuable topological and biological properties compared to other protein

sets with respect to the number of Covid-Drugs and Clinical-Drugs approved by this candidate

set. In the second part of this work, we studied genes associated with some underlying diseases

to identify a subset of genes related to COVID-19 pathology. These underlying diseases were

cardiovascular diseases, diabetes, hepatitis, lung diseases, kidney disease, and different cancer

types. Our results for the second part presented 35 genes associated with at least four of five

underlying mentioned diseases as genes related to COVID-19 pathology. The resulted genes

from this part of our method are evaluated with respect to different measures. The first mea-

sure was based on drug targets. We found that from these 35 genes 9 genes are targeted by the

Covid-Drug group and 24 genes are targeted by the Clinical-Drug group. The second measure

was based on the related significant signaling pathways related to COVID-19. We explored

that some pathways like the HIF-1 signaling pathway or PI3K-Akt signaling pathway are

affected by the SARS-CoV-2 virus. It is noticeable that, From 56 drugs recommended through

our method, 26 drugs are reported in other studies as possible candidates for COVID-19 drug

repurposing. 7 drugs Cyclosporine, Ribavirin, Enzalutamide, Decitabine, Imatinib, Metfor-

min, Oseltamivir, and Acyclovir are reported in DrugBank that are under clinical trials for

Table 8. (Continued)

Annotation Cluster 3 (Enrichment

Score: 2.59)

Term Associated proteins P-value FDA Approved Reference

hsa05145:Toxoplasmosis P01130, P10415, P28482, P31749, P29460, P35228, P01375, P40763 8.32E-07 Pyrimethamine

Sulfadiazine

hsa05152:Tuberculosis P10415, P28482, P31749, P29460, Q9NR96, P35228, P01375 1.97E-04 Isoniazid [33]

Rifampin [33]

hsa05140:Leishmaniasis P28482, P29460, P35354, P35228, P01375 3.82E-04 Amphotericin B

miltefosine

hsa05143:African trypanosomiasis P29460, Q9NR96, P05362, P01375 5.44E-04 Pentamidine [33]

Suramin [37]

Melarsoprol

Eflornithine [38]

Nifurtimox

hsa05133:Pertussis P28482, P29460, P35228, P01375 0.0058445 Erythromycin

hsa05164:Influenza A P28482, P31749, P29460, P05362, P01375 0.0101454 Oseltamivir [18]

hsa05146:Amoebiasis P29460, P35228, P02751, P01375 0.0150504 Metronidazole [28]

hsa05168:Herpes simplex infection P04637, P29460, Q9NR96, P01375 0.0606792 Acyclovir [18]

Famciclovir

Annotation Cluster 4 (Enrichment

Score: 2.23)

Term Associated proteins P-value FDA Approved Reference

hsa05212:Pancreatic cancer P15692, P04637, P28482, P31749, P00533, P40763 1.45E-05 Capecitabine

Fluorouracil

https://doi.org/10.1371/journal.pone.0255270.t008
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COVID-19 treatment. It can be concluded that other drugs reported through our method can

be effective and suitable candidates. They could be good candidates for further research in clin-

ical trials for COVID-19 treatment.
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