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Novel motor phenotypes in patients with
VRK1 mutations without pontocerebellar
hypoplasia

ABSTRACT

Objective: To describe the phenotypes in 2 families with vaccinia-related kinase 1 (VRK1) muta-
tions including one novel VRK1 mutation.

Methods: VRK1 mutations were found by whole exome sequencing in patients presenting with
motor neuron disorders.

Results: We identified pathogenic mutations in the VRK1 gene in the affected members of 2
families. In family 1, compound heterozygous mutations were identified in VRK1, c.356A.G;
p.H119R, and c.1072C.T; p.R358*, in 2 siblings with adult onset distal spinal muscular atrophy
(SMA). In family 2, a novel VRK1mutation, c.403G.A; p.G135R and c.583T.G; p.L195V, were
identified in a child with motor neuron disease.

Conclusions: VRK1mutations can produce adult-onset SMA andmotor neuron disease in children
without pontocerebellar hypoplasia. Neurology® 2016;87:65–70

GLOSSARY
ALS 5 amyotrophic lateral sclerosis; dHMN 1 PS 5 distal hereditary motor neuronopathy and pyramidal tract signs; SMA 5
spinal muscular atrophies; WES 5 whole exome sequencing.

The spinal muscular atrophies (SMA) are an inherited group of conditions characterized by
motor neuron loss in the spinal cord and brainstem, causing proximal and distal muscle weak-
ness and atrophy. While 96% of autosomal recessive forms of SMA are associated with muta-
tions in SMN1,1 there are a significant minority of cases with non-SMN1-related phenotypes
and diverse genetic causes.2 Similarly, progressive motor neuron disorders involving upper and
lower neurons are also clinically and genetically heterogeneous, with overlap among amyo-
trophic lateral sclerosis (ALS), SMA, and distal hereditary motor neuronopathy and pyramidal
tract signs (dHMN 1 PS).3

The VRK1 gene encodes a ubiquitously expressed serine kinase with a role in embryonic
cortical neuronal proliferation and migration as demonstrated in knockout mouse models.4 In
cellular models, VRK1 has been shown to be associated with cell cycle regulation, histone
modification, DNA repair responses, and disruption of RNA processing,5–7 common patho-
physiologic themes underlying motor neuron diseases.

A nonsense mutation, c.1072C.T (p.R358*), in VRK1 has previously been described to
cause an infantile onset SMA phenotype associated with pontocerebellar hypoplasia and death
in infancy or childhood when present in a homozygous state in a consanguineous family of
Ashkenazi Jewish origin.8
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Another patient presenting with a complex
axonal motor and sensory neuropathy accom-
panied by microcephaly and cerebral dysgene-
sis carried the same homozygous c.1072C.T
(p.R358*) nonsense mutation.9 In the same
study, pathogenic compound heterozygous
VRK1 variants, c.G706A (p.V236M) and
c.G266A (p.R89Q), have been identified in
patients showing a similar distal symmetric
polyneuropathy and microcephaly.9

Analysis of a sporadic patient with adult-
onset motor neuron disease revealed compound
heterozygous variants c.356A.G (p.H119R)
and c.961C.T (p.R321C).10

Here we report VRK1 compound heterozy-
gous mutations in 2 families with adult-onset
SMA and childhood motor neuron disease.

METHODS Genetic analysis. Prior to this study, the affected
index patient in family 1 was prescreened for SMN1 mutations.

Whole exome sequencing (WES) was performed by Axeq Tech-

nologies (Seoul, South Korea) using the Illumina (San Diego,

CA) TrueSeq kit to generate sequencing data. Annotated WES

data were examined for variants in genes selected for relevance to

the phenotype. Preceding Sanger sequencing analysis of SETX,
ALS2, SOD1, LMNA, MFN2, and TRPV4 did not identify any

pathogenic mutations in the affected individual of family 2; sub-

sequently WES was carried out at the University of Washington

Genome Center. Data from VCF files were analyzed using the in-

house Seave analysis pipeline (KinghornCentre for Clinical Genomics,

Sydney, Australia) under homozygous and potentially compound

heterozygote models. The effect of amino acid substitutions for

sequence variants was assessed using the software SIFT11 and

Polyphen2.12

Sanger sequencing was performed to confirm the mutations

in the probands and for segregation analysis in family members.

Clinical phenotype: Family 1. Two affected siblings were from
a nonconsanguineous family of Ashkenazi Jewish origin (figure 1).

The proband reached normal motor milestones in childhood and

had normal growth parameters. In retrospect, she had difficulties

performing sporting activities from the age of 15 years. She pre-

sented to medical attention at the age of 35 years with progressive

lower limb weakness requiring the use of a walking stick. The

impairment of motor function was progressive and at age 56 years

she required a scooter and long arm crutch to mobilize. There were

no significant ocular, bulbar, or sensory symptoms seen over the

course of the illness and she had normal intellectual function.

Clinical examination was consistent with a profound sym-

metric distal muscle wasting affecting the upper and lower limbs

symmetrically (figure 2). There was a predominantly distal

Figure 1 Compound heterozygous VRK1mutations in adult-onset distal spinal muscular atrophy and childhood amyotrophic lateral sclerosis

(A) Segregation of compound heterozygous sequence variants in family 1 and 2. Solid symbols indicate affected individuals. Symbols with dots illustrate
carriers. Arrows indicate proband. Genotypes are demonstrated below tested individuals. (B) Schematic graph of the VRK1 coding region and the corre-
sponding VRK1 protein shows the position of mutations identified in family 1 (blue) and 2 (green).
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pattern of weakness of greater severity in the lower than upper

limbs, with relative preservation of proximal strength. Reflexes

were absent in the lower limbs but symmetrically brisk in the

upper limbs. There was no evidence of cerebellar ataxia.

Neurophysiology showed preservation of sensory responses

but severe and progressive reduction in compound motor

action potential amplitudes with relative preservation of con-

duction velocities. EMG identified evidence of chronic and

active denervation consistent with motor neuron pathology.

Motor evoked potentials from the upper limbs were prolonged

with a central component suggesting upper motor neuron

involvement in the disease, which is consistent with MRI find-

ings of atrophy of the spinal cord (figure 3A). A brain MRI

showed nonspecific mild to moderate generalized atrophy.

Pontocerebellar hypoplasia or other developmental anomalies

as reported in other patients previously described with VRK1
mutations were absent (figure 3). Respiratory muscle weakness

resulted in reduced mean inspiratory and expiratory pressures

and a nonprogressive elevation of blood gas CO2. Other respi-

ratory parameters had been stable for 5 years with no require-

ment for assisted ventilation. Serum creatine kinase was not

elevated and an MRI of the lower limbs showed profound

proximal and distal muscle atrophy with fat replacement.

There was relative preservation of the iliopsoas and adductor

compartments bilaterally (figure 3).

The proband has a similarly affected older brother with

a slightly later onset of progressive motor weakness in the late

teenage years, progression to requiring a walking stick in his early

30s, and the requirement for an articulated walking device and

wheelchair in his late 40s. Neurophysiology showed a chronic

active denervating process.

Clinical phenotype: Family 2. The patient was a 3-year-old
girl with short stature and microcephaly who presented with

initial distal lower limb muscle weakness and amyotrophy

combined with pathologically brisk deep tendon reflexes and

normal sensation. Weakness progressed in a caudalocephalic

direction, with loss of ambulation by 10 years of age and

complete dependence for activities of daily living at 18 years.

Severe thoracolumbar scoliosis required surgical rod insertion at

age 14 years. Respiratory dysfunction developed with dyspnea

and weak cough accompanied by reduction of forced vital

capacity to below 40% predicted. Speech became progressively

hoarse and soft. Ocular signs of brainstem or cerebellar

dysfunction were absent. Skeletal and endocrine assessments for

short stature did not identify any specific etiology.

Neurophysiology studies at age 11 years demonstrated severe

reduction in compound muscle action potential amplitudes com-

bined with chronic and active denervation, consistent with motor

neuropathy/neuronopathy. Sensory responses were initially pre-

served but subsequently were reduced on repeat testing at age

19 years. Muscle histopathology showed marked atrophy of entire

fascicles, confirming a significant neurogenic process.

Brain and spine MRI at 7 and 16 years were normal. Brain

MRI at 20 years demonstrated normal structure (figure 3B).

The clinical possibility of juvenile ALS, with the presence of

upper and lower motor neuron signs in more than 2 spinal re-

gions and clinical progression, prompted Sanger sequencing as

described above.

Standard protocol approvals, registrations, and patient
consents. Participating individuals were enrolled through the

Neurogenetics Clinic Concord Hospital and the Paediatric

Figure 2 Clinical images of the spinal muscular atrophy proband

Clinical images demonstrate symmetrical, distal wasting in legs and arms.
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Neuromuscular clinic at Sydney Children’s Hospital Randwick.

Genomic DNA was isolated from peripheral blood or saliva.

These procedures were performed with informed consent accord-

ing to protocols approved by the Human Ethics Committees of

Sydney Local Health District, Concord Hospital (HREC/11/

CRGH/105), and South Eastern Sydney Local Health District

(HREC/13/POWH/203), Australia.

RESULTS Testing identified compound heterozygous
VRK1mutations NM_003384.2 (VRK1):c.(356A.G);
(1072C.T) (p.[H119R];[R358*]) in the individuals

with SMA in family 1 and NM_003384.2 (VRK1):c.
(403 G.A); (583T.G) (p.[G135R];[L195V]) in the
patient with juvenile ALS in family 2. No pathogenic
variants were identified in other genes associated with
SMA or ALS in either patient or genes associated with
short stature.

DISCUSSION The present cases with adult-onset
distal SMA and childhood motor neuron disease
broaden the clinical spectrum of patients with

Figure 3 MRI of the spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) proband

(A) MRI of proband in family 1 (SMA). (A.a–A.c) T2 images and (A.d) sagittal T1 image demonstrate mild nonspecific gener-
alized atrophy and absence of pontocerebellar hypoplasia. (A.e) T2 image sagittal and (A.f) transverse spinal image dem-
onstrate cord atrophy. (A.g–A.i) T2 images of upper thigh, calf, and STIR sequence of thigh demonstrate diffuse fatty
replacement of muscle and relative sparing of adductor compartments. (B) MRI of proband in family 2 (ALS). (B.a–B.c) T2
images and (B.d) sagittal T1 image demonstrate absence of pontocerebellar hypoplasia.
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VRK1mutations. The identification of VRK1mutations
among these various motor phenotypes, with clinical
overlap among juvenile ALS, dHMN 1 PS, and
SMA, may serve to further unite concepts of
pathogenesis among motor neuron disorders.

The results for family 1 are consistent with an autoso-
mal recessive mode of inheritance with segregation of
both VRK1 variants with the disease (figure 1A). The
c.1072C.Tmutation is well-characterized and described
as pathogenic in the Ashkenazi Jewish population when
in a homozygous state.8 The c.356A.G variant (ESP
frequency ,0.01%) encodes a histidine residue that is
conserved across multiple vertebrate species and is in the
protein kinase domain of the VRK1 gene (figure 1B). It
was assessed with in silico tools (Polyphen2 score 1 and
0.999, PROVEAN13 score 23.804) and is classified as
damaging. The c.356A.G missense substitution was
reported in one recent case of a 32-year-old man with
a 5-year history of ALS without cerebellar hypoplasia.9

This sequence variant is most likely to be pathogenic as
it is present in both the affected members of family 1 and
a reported sporadic ALS case.10

In family 2, both substituted amino acids are highly
conserved across multiple species and the frequency of
the novel c.583T.G mutation in public databases was
2 in 121382. Online database tools supported pathoge-
nicity for c.403 G.A and c.583T.G mutations (Poly-
Phen2 scores 1 and 0.997, probably damaging; SIFT
score 0 and 0, deleterious; and CADD score 22.6 and
19.05, respectively). The mutations were Sanger
sequenced for confirmation and each parent was found
to carry one of the variants, supporting autosomal reces-
sive inheritance (figure 1).

Three-dimensional structural protein analysis of
the p.Gly135Arg VRK1 variant with the HOPE14

Protein structure analysis suite database suggested
a difference in charge, size, and hydrophobicity re-
sulting in disturbances in local structure and protein
misfolding. Similarly, the p.Leu195Val VRK1 vari-
ant altered the amino acid size, causing an empty
space in the core of the protein.

Other phenotypes have recently been associated
with VRK1 mutations. Gonzaga-Jauregui et al.9

described childhood-onset distal sensory motor axo-
nal neuropathy with microcephaly with a simplified
gyral pattern and in a second case there was a similar
motor and sensory axonal neuropathy with an under-
developed cerebellar vermis.

The latter case and this report suggest that
VRK1 is not only important in development of
motor system architecture, but are also important
in the longer term in maintenance of motor neu-
rons. VRK1 mutations should therefore be consid-
ered in the differential diagnosis of patients
presenting with adult-onset SMA and childhood
motor neuron disease.
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MACRA Changes How Neurologists Are Paid

What Is MACRA, and Why Is It Necessary?

The Medicare Access and CHIP Reauthorization Act of 2015—MACRA—replaced the
Medicare Sustainable Growth Rate formula for calculating physician payments. The rapidly rising
costs of health care in the US are unsustainable. Changes in the health care system are essential and
must happen now.

How Will MACRA Affect Physician Payment?

Our health care system is moving from “fee-for-service” payments to a wider array of “value-based”
payment models that put the patient at the center of care by calling for the improvement of the
quality, safety, and overall experience of patient care while demonstrating cost-effectiveness by
providing care that is less expensive and delivers similar or improved clinical outcomes.

Learn more at AAN.com/view/MACRA.
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