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Abstract: Several Klebsiella pneumoniae carpabenemase (KPC) gene mutations are associated with
ceftazidime/avibactam (CAZ-AVI) resistance. Here, we describe four Klebsiella pneumoniae subsp.
pneumoniae CAZ-AVI-resistant clinical isolates, collected at the University Hospital of Tor Vergata,
Rome, Italy, from July 2019 to February 2020. These resistant strains were characterized as KPC-3,
having the transition from cytosine to thymine (CAC-TAC) at nucleotide position 814, with histidine
that replaces tyrosine (H272Y). In addition, two different types of KPC gene mutations were detected.
The first one, common to three strains, was the D179Y (G532T), associated with CAZ-AVI resistance.
The second mutation, found only in one strain, is a new mutation of the KPC-3 gene: a transversion
from thymine to adenine (CTG-CAG) at nucleotide position 553. This mutation causes a KPC
variant in which glutamine replaces leucine (Q168L). None of the isolates were detected by a rapid
immunochromatographic assay for detection of carbapenemase (NG Biotech, Guipry, France) and
were unable to grow on a selective chromogenic medium Carba SMART (bioMerieux, Firenze,
Italy). Thus, they escaped common tests used for the prompt detection of Klebsiella pneumoniae
KPC-producing.

Keywords: ceftazidime/avibactam; multi-drug resistance; antibiotic resistance; beta-lactamase
inhibitors resistance; Q168L substitution

1. Introduction

Antimicrobial resistance (AMR) is currently one of the major concerns in human
health [1,2]. Gram-negative multidrug-resistant (MDR) pathogens represent a major
challenge due to the increase in AMR worldwide [3,4] and the high disease burden,
with increases in hospital stays, disability-adjusted life years, and mortality [1,2]. The
main concern regarding gram-negative AMR includes resistance to carbapenems. A
drug pipeline to tackle this threat has been implemented, with two novel β-lactam beta-
lactamase inhibitor (BLBLI) combinations released in 2015: ceftazidime/avibactam and
ceftolozane/tazobactam [3,5–7]. Ceftazidime/avibactam (CAZ-AVI) is a BLBLI combi-
nation drug active against carbapenem-resistant Enterobacteriaceae (CRE) [3,6–9]. Avibac-
tam recovers the activity of ceftazidime by inhibiting class A, class C, and some class D
beta-lactamases, hence overcoming resistance due to carbapenemases such as Klebsiella
pneumoniae carbapenemase (KPC). However, the combination is not active against class B
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beta-lactamases, such as New-Delhi (NDM) and Verona Integron-encoded (VIM) and other
metallo-beta lactamases.

In Italy, the circulation of CRE is endemic [10,11], mainly due to Klebsiella pneumoniae
subsp. pneumoniae, but national strategies to address the threat have not yet been fully
implemented. CAZ-AVI is frequently used, not only as salvage therapy but also as a first-
line choice even in empiric treatments [8]. Since BLBLI introduction, isolation of pathogens
with phenotypic resistance to CAZ-AVI has been reported, frequently Klebsiella pneumoniae
strains, especially those harboring blaKPC gene isolates. In 2015, the first K. pneumoniae
subsp. pneumoniae isolate resistant to CAZ-AVI was described in Los Angeles, USA [12], in
a patient who was not previously treated with the antibiotic. Subsequently, several other
cases of CAZ-AVI resistance have been reported and led to the publication of the 2018 ECDC
rapid risk assessment on ceftazidime/avibactam resistance in Enterobacteriaceae [13–19].
The emergence of CAZ-AVI-resistant pathogens is a public health threat, carrying serious
consequences for patients, even if surveillance studies report overall low rates of CAZ-AVI
resistance in CRE [20]. Data from clinical reports show a strong association with prior CAZ-
AVI exposure and resistant strain selection in more than two-thirds of cases, highlighting a
selective pressure caused by the BLBLI itself [20]. Resistance to CAZ-AVI can also emerge
from the selection pressure of other antibiotics, such as carbapenems, demonstrating the
pivotal role of antimicrobial stewardship programs.

Different mechanisms have been associated with CAZ-AVI resistance, such as mu-
tation of the KPC gene associated with the loss/reduction in KPC enzyme functionality,
hyperexpression of the blaKPC gene, and finally, the loss of porins [15,21–23]. Some KPC
subtypes, such as KPC-3 (nearly 70% KPC-producing K pneumoniae isolates belonged from
a single dominant strain, multilocus sequence type 258 [ST258]; seven variants of the KPC
have been reported (KPC 2–8) but most ST258 strains produced KPC-3) and specific K.
pneumoniae clones, are more likely to develop resistance [13]. A series of mutations in the
omega loop of KPC-3 have been documented in patients with microbiological failure to
CAZ-AVI treatment, including H272Y, D179Y, V240G, T243M, and EL165-166 [21,24–28].
The D179Y variant, alone or in combination with other mutations, results in restoration of
carbapenem in vitro activity of the K. pneumoniae isolates [28,29].

Here we describe the characteristics of four CAZ-AVI-resistant isolates and the identi-
fication of a new amino acid substitution in KPC-3 in a K. pneumoniae strain resistant to
CAZ-AVI.

2. Materials and Methods
2.1. Bacterial Isolates

CAZ-AVI-resistant K. pneumoniae subsp. pneumoniae clinical isolates obtained from
patients admitted to the University Hospital of Tor Vergata from July 2019 to February 2020
were included in the study. Isolates with resistance mechanisms other than KPC alone were
excluded from the study population. The included isolates were named PTV (acronym
derived from Policlinic Tor Vergata) and numbered sequentially.

The study was approved by the local ethics committee. Given the retrospective nature
of the study, written informed consent was not necessary. The study was conducted in
accordance with the principles of the Declaration of Helsinki.

2.2. Antimicrobial Susceptibility Testing and PCR Analysis

Antimicrobial susceptibility testing (AST) was performed using ITGN Micronaut
panels (Diagnostika Gmbh, Bornheim, Germany, now company of Bruker Daltonics, MA,
USA) run on MICRO MIB (Bruker Daltonics, Billerica, MA, USA) and interpreted follow-
ing the European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical
breakpoint v 9.0. Carba SMART selective chromogenic media (bioMerieux, Firenze, Italy)
was used to screen for carbapenemase-producing Enterobacteriaceae (CPE). Identification
of carbanemases (KPC, VIM, imipenemase [IMP], NDM, oxacillin-hydrolyzing [OXA] 48)
was performed using the immunochromatographic (IC) assay NG CARBA (NG Biotech,
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Guipry, France) according to the manufacturer’s instructions. Carbapenemases detected by
IC assay were also confirmed by a multiplex real-time PCR probe-based assay (our patent
ID MI2014A000327) designed for the simultaneous detection of KPC, OXA-48, VIM, and
NDM in a short time (no longer than 90 min from the extraction of DNA to detection) [30].

2.3. DNA Extraction from the Isolates

DNA was extracted starting from a pure culture (after overnight incubation at 37 ◦C in
an aerobic atmosphere). One colony from a fresh culture of each isolate was suspended in
200 µL of G2TM solution (Qiagen Valencia, CA, USA), and then used to extract DNA using
the EZ1 Advanced XL Tissue Kit, according to the bacterial protocol recommended by the
manufacturers (Qiagen, Valencia, CA, USA). The DNA was eluted in 100 µL of elution
bufferTM (Qiagen), and 1 µL was used to conduct the PCRs as well as sequence analysis.

2.4. Sequence Analysis

For the typing of the blaKPC gene, overlapping PCR reactions were performed using
the following primer pairs: F-5′CGGAACCATTCGCTAAACTC3′ and R-3′GGCGGCGTTAT
CACTGTATT5′; F-5′CGCCGTGCAATACAGTGATA3′and R-3′CGTTGACGCCCAATCC5′

(Goldfarb et al. [31]). Amplification products were purified using the Montage PCR Cen-
trifugal Filter Device (Millipore Corporation, Billerica, MA, USA), and sequencing was
performed by Big Dye Terminators V1.1 (Applied Biosystems, Foster City, CA, USA) and
migrated with an automated sequencer (ABI Prism 310; Applied Biosystems). Sequences
were aligned and compared using the National Center for Biotechnology Information
database (http://www.ncbi.nlm.nih.gov, 13 November 2021).

2.5. BlaKPC Cloning

The blaKPC gene of KPC-3 with the Q168L substitution (PTV4 isolate) was amplified
using the following primers: F prot (ACAGCCGTTACAGCCTCTG) of our design and
R874 (Naas et al. [32]). The amplicon, purified using the QIAquick PCR Purification Kit
(Qiagen Valencia, CA, USA), was inserted into the pGem Teasy Vector System II (Promega;
Milan, Italy) following the manufacturer’s instruction.

The chimeric plasmid was used to transform Escherichia coli HB101 competent cells,
included in the kit (Promega). Transformants were selected on SuperCAZ/AVI medium
(Lifilchem, Roseto degli Abbruzzi, Italy) and screened by multiplex real-time PCR to
confirm the presence of blaKPC genes. Finally, to establish the CAZAVI-MIC, transformants
were tested using a microbroth dilution test (ITGN, Biomedical service) as above reported.

3. Results

Seven CAZ-AVI-resistant (CAZ-AVI-R) isolates were identified in biological samples
collected from patients hospitalized from 3 July 2019 to 5 February 2020 at Policlinic Tor
Vergata University Hospital, Rome, Italy. Isolates were all Klebsiella pneumoniae, of which
two expressed class B-beta-lactamases (non-KPC) and one had more than one resistance
mechanism. Four isolates (57.1%) expressed only the KPC genotype, representing our final
study population (Figure 1).

http://www.ncbi.nlm.nih.gov
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Figure 1. Flow chart showing K. pneumoniae CAZ-AVI-R strains selection criteria.

All patients had CAZ-AVI-sensitive K. pneumoniae (CAZ-AVI-S) prior to isolating a
CAZ-AVI-R strain. Sample details and timing of collection are shown in Table 1. All but
one CAZ-AVI-R isolates were resistant to carbapenems exhibiting an MIC for meropenem
ranging from 16 to >64 mg/L. The time elapsed from the isolation of a CAZ-AVI-R in
patients with previous isolates of CAZ-AVI-S ranged from 1 to 52 days. The antimicrobial
susceptibility results for the four CAZ-AVI-R isolates are shown in Table 2.

Table 1. Details on CAZ-AVI-R and CAZ-AVI-S Klebsiella pneumoniae strains.

Isolate
ID

Admission
Ward Type of Specimen

Date of
Specimen
Collection

Meropenem
MIC

CAZ-AVI
MIC

Time from Isolation of
CAZ-AVI-R in Patients with

Previous CAZ-AVI-S

PTV1 Vascular
surgery

Urine culture 30/04/2019 >16 2
52 days

Rectal swab 21/06/2019 4 >8

PTV2
Cardio
surgical

intensive
care

Wound swab
(sternotomy) 22/07/2019 >16 ≤1

44 daysBronchoalveolar
lavage 04/09/2019 2 >8

PTV3 Transplant
surgery

Blood culture 15/11/2019 ≤0.125 8
1 dayIntrabdominal

abscess 16/11/2019 2 64

PTV4 Medicine
ward

Urine culture 01/02/2020 >64 2
4 days

Blood culture 05/02/2020 ≤0.125 32

Table 2. Antimicrobial susceptibilities of the four CAZ-AVI-R strains.

Isolate ID MICs mg/L

AK CEF CTZ CAA CFT CIP COL GN IMI MEM LEV PZT TSU

PTV1 8 >8 >32 >8 >8 >8 ≤1 0.5 4 4 >8 >128 >8

PTV2 ≤4 >8 >32 >8 >8 >8 ≤1 ≤0.25 ≤1 2 >8 >128 >8

PTV3 ≤4 >16 >64 64 >64 >1 1 >8 NA 2 >8 128 >8

PTV4 ≤4 >16 >64 32 64 >1 <0.5 >8 NA ≤0.125 4 16 >8

AK: Amikacin; CEF: Cefepime; CTZ: Ceftazidime; CAA: Ceftazidime/Avibactam; CFT: Ceftolozane/Tazobactam; CIP: Ciprofloxacin;
COL: Colistin; GN: Gentamycin; IMI: Imipenem; MEM: Meropenem; LEV: Levofloxacin; PZT: Piperacillin/Tazobactam; TSU: Trimetho-
prim/Sulfamethoxazole; MIC: minimum inhibitory concentration. NA: not available
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All CAZ-AVI-R strains were unable to grow on the selective chromogenic medium
Carba SMART (bioMerieux, Firenze, Italy). All CAZ-AVI-R isolates were investigated
by immunochromatographic assay (NG CARBA Biotech, Guipry, France), and the KPC
enzyme was undetectable. In contrast, molecular assays detected the presence of the blaKPC
gene in all strains, and the KPC-3 variants were identified by sequencing (Table 3).

Table 3. Details on CAZ-AVI-R strains.

Isolate ID Type of Specimen Carbapenemases
Detected Mutation Amino Acid Substitution

PTV1 Rectal swab bla KPC-KPC3 C814T
G523T

H272Y—Histidine vs. Tyrosine
D179Y—Aspartic Ac vs. Tyrosine

PTV2 Bronchoalveolar lavage bla KPC-KPC3 C814T
G523T

H272Y—Histidine vs. Tyrosine
D179Y—Aspartic Ac vs. Tyrosine

PTV3 Intrabdominal abscess
drainage bla KPC-KPC3 C814T

G523T
H272Y—Histidine vs. Tyrosine

D179Y—Aspartic Ac vs. Tyrosine

PTV4 Blood culture bla KPC-KPC3 C814T
553/CTG-CAG

H272Y—Histidine vs. Tyrosine
Q168L—Glutamine vs. Leucine

For all isolates, the blaKPC gene showed a mutation at position 814 that was a transition
from cytosine to thymine CAC-TAC (UAC), identifying the KPC-3 variant, in which
histidine replaced tyrosine (H272Y). PTV1-3 exhibited a substitution D179Y, owing to a
single base mutation G532T (33). Sequence analysis of the KPC gene in the PTV4 strain
showed an additional mutation at position 553, a transversion from thymine to adenine
(CTG-CAG), that caused a variant in which glutamine replaced leucine (Q168L) (Table 3).
The complete blaKPC gene sequencing was deposited into the NCBI (accession number
MT939316).

The blaKPC cloning studies demonstrated that transformants carrying the Q168L
mutation were resistant to CAZAVI, being the CAZAVI-MIC equal to 32 µg/mL in a
microbroth dilution test (data not shown).

Figure 2 shows the 3D structure of mutant and native KPC enzymes of PTV4 strain.
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results.jsp?time=16_5_30_665_7-10-2020_All&md5=295b5b0r3v0mlj1k&targetname=striatin-4#TS (ac-
cessed on 13 November 2021).

https://www.reading.ac.uk/bioinf/servlets/nFOLD/IntFOLD6results.jsp?time=16_5_30_665_7-10-2020_All&md5=295b5b0r3v0mlj1k&targetname=striatin-4#TS
https://www.reading.ac.uk/bioinf/servlets/nFOLD/IntFOLD6results.jsp?time=16_5_30_665_7-10-2020_All&md5=295b5b0r3v0mlj1k&targetname=striatin-4#TS


Microorganisms 2021, 9, 2356 6 of 9

4. Discussion

We reported data on four genotypically characterized Klebsiella pneumoniae KPC-
producing strains resistant to CAZ-AVI, one of which showed a new mutation conferring
resistance to CAZ-AVI.

The emergence of K. pneumoniae CAZ-AVI-R is a worrisome issue, posing important
therapeutic and public health challenges [15,19–22]. Risk factors for resistance selection
have not yet been fully elucidated, however, several authors have identified suboptimal an-
tibiotic exposure as one of the main factors associated with CAZ-AVI-R emergence [13]. In
this study, K. pneumoniae strains were obtained from patients with a previous long exposure
time to CAZ-AVI. However, the development of isolates resistant to CAZ-AVI occurred
after 4 days of therapy in one case, therefore, it is difficult to establish the critical duration
of exposure to CAZ-AVI associated with resistance. Strains of K. pneumoniae resistant to
CAZ-AVI have been isolated from anatomical sites other than those of susceptible strains;
therefore, it is reasonable to hypothesize an easier selection of resistant CAZ-AVI isolates
in anatomical sites less accessible to the antibiotic, where the presence of subtherapeutic
drug concentrations is conceivable. However, the limited number of strains studied, and
the lack of pharmacokinetic data do not allow definitive conclusions on this issue.

As reported by other studies [20,33–37], restoration of susceptibility to meropenem
was noticed in K. pneumoniae isolates switching to CAZ-AVI resistance. This phenomenon
has been related to amino acid substitutions and conformational changes in the active site
of carbapenemase enzymes, that resulted in the restoration of low minimum inhibitory
concentrations (MICs) to meropenem. The use of meropenem in these cases was, however,
not recommended, as it is often followed by the rapid restoration of resistance to the
drug [20,21,37,38].

Our study specifically addresses CAZ-AVI resistance in Klebsiella pneumoniae KPC,
highlighting the presence of important diagnostic challenges. None of the CAZ-AVI-R
strains were detected as KPC-producing strains by the immunochromatographic assay, and
they did not grow on a selective chromogenic medium. This behavior, already described
by Antonelli and colleagues [29], raises the serious problem of a shortage of diagnos-
tic tools that clinical microbiology laboratories should be aware of. Limitations of the
immunochromatographic assay should be considered when testing Klebsiella pneumoniae
isolates, especially in patients receiving treatment with CAZ-AVI. The rapidity of im-
munochromatographic tests has important clinical value; hence, the validity of the test
should be thoroughly assessed. Accurate epidemiological studies and the identification
of risk factors for the development of resistance to CAZ-AVI could help to identify target
populations in which use specific molecular assays instead of relying on rapid diagnostic
tools. In situations where there is a strong suspicion of possible resistance to CAZ-AVI,
genotypic testing in combination with the resistance profile remains the only reliable option
for detecting the resistance mechanism, to be confirmed by sequencing the allelic variant.

Finally, in addition to the mutation at position 532, a transition that causes aspartic
acid to replace tyrosine (D179Y) known to be associated with CAZ-AVI resistance in KPC,
the PTV4 isolate presented another site mutation at position 553. This mutation, never
described before, is a transversion from thymine to adenine (CTG-CAG). The mutation
causes a KPC variant in which glutamine replaces leucine (Q168L). Observing 3D images
of the KPC variant, we can speculate that the amino acid substitution causes a change
in the omega loop of KPC-3, which causes resistance to CAZ-AVI. The blaKPC cloning
demonstrated that the new mutation was able to confer resistance to CAZ-AVI being the
MIC of CAZ-AVI, performed on transformants in a microbroth dilution test, equal to
32 µg/mL.

Continuous reporting of new mutations in the KPC gene is essential, and the identi-
fication of risk factors for CAZ-AVI resistance is useful in optimizing the use of the new
BLBLI for the treatment of K. pneumoniae KPC-producing infections. Microbiologists should
be particularly vigilant in monitoring resistance in patients infected and colonized with K.
pneumoniae KPC-producing strains by using all available diagnostic tools. National studies
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with a greater number of patients would allow us to better identify the risk factors for
CAZ-AVI resistance and address the challenge of emerging MDR pathogens.
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