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Abstract
Premise: Petal color is an ecologically important trait, and uncovering color variation
over a geographic range, particularly in species with large distributions and/or short
bloom times, requires extensive fieldwork. We have developed an alternative method
that segments images from citizen science repositories using Python and k‐means
clustering in the hue‐saturation‐value (HSV) color space.
Methods: Our method uses k‐means clustering to aggregate like‐color pixels in
sample images to generate the HSV color space encapsulating the color range
of petals. Using the HSV values, our method isolates photographs containing clusters
in that range and bins them into a classification scheme based on user‐defined
categories.
Results: We demonstrate the application of this method using two species: one with a
continuous range of variation of pink‐purple petals in Geranium maculatum, and one
with a binary classification of white versus blue in Linanthus parryae. We demonstrate
results that are repeatable and accurate.
Discussion: This method provides a flexible, robust, and easily adjustable approach
for the classification of color images from citizen science repositories. By using color
to classify images, this pipeline sidesteps many of the issues encountered using more
traditional computer vision applications. This approach provides a tool for making
use of large citizen scientist data sets.
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Variation in floral pigmentation is an ecologically important
trait that is frequently studied in the context of plant
response to biotic and abiotic factors, demographic
changes, population structure, and community interactions
(Endler, 1977). It is particularly intriguing when a species
shows nonrandom variation, such as clines, patches,
and other gradational patterns, across a geographic range.
A well‐known case study of corolla color variation among
populations of Linanthus parryae (A. Gray) Greene in
western North America has been used as a prime example
for the population genetics concept of isolation by distance
described by the renowned geneticist Sewall Wright
(Wright, 1943, but see alternative conclusions by Schemske
and Bierzychudek, 2007). Additional examples of flower

pigmentation revealed natural selection following secondary
contact hybrid zones (Phlox L., Hopkins et al., 2012) and
balancing selection imposed by pollinators (Ipomoea L., Fry
and Rausher, 1997; Raphanus L., Irwin and Strauss, 2005;
and Clarkia Pursh, Eckhart et al., 2006), among others.
Despite the rich evolutionary and ecological insight
provided by patterns of variation across geographical scales,
there are relatively few studies that offer detailed descrip-
tion. This is partly because characterizing natural variation
at a broad geographic level can be difficult, as it not only
requires a great amount of time and effort, but also presents
other challenges inherent to field studies. Short bloom
times in spring ephemerals, inclement weather during field
seasons, long distances between populations, scarcity of
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funding for fieldwork, and travel restrictions all pose
additional barriers to the conventional field surveys used
to collect such data. As a result, researchers have sought
alternative approaches to alleviate some of these challenges.

Recent studies using easily accessible, and often large,
databases generated by ever‐increasing digitization
efforts (e.g., SERNEC for herbarium specimens, https://
sernecportal.org/portal/) present an exciting alternative to
field surveys and allow studies to expand in both spatial and
temporal scales (Willis et al., 2017; Espinosa and Castro,
2018; Koski et al., 2021). One form of digitized data is the
image records found in photograph repositories such as
iNaturalist (https://www.inaturalist.org/) and the Global
Biodiversity Information Facility (GBIF; https://www.gbif.
org/), which stores the subset of iNaturalist images deemed
as “research grade.” With the popularity of smartphones
and the wide coverage of wireless networks, these virtual
collections taken by citizen scientists include photos
illustrating floral pigmentation of fresh samples collected
from a large number of georeferenced locations, thereby
sidestepping the problem of degrading pigments in dried
herbarium samples. Additionally, popular mobile apps like
iNaturalist and Seek by iNaturalist (https://www.inaturalist.
org/pages/seek_app), with support from community cura-
tion and artificial intelligence algorithms aiding species
identification, are steadily increasing the number and
quality of these image records. Indeed, several recent
studies clearly showed the power of extracting the occur-
rence data from these citizen science collections (Li et al.,
2019; Mancinelli et al., 2021; Mesaglio et al., 2021).

Obtaining morphologic data from these records, how-
ever, often requires manually sifting through large numbers
of photographs—a task that is both time‐consuming and
sometimes inaccurate. While feasible, the time and effort
required for manual evaluation can potentially delay
research progress and may introduce biases or inconsistency
due to researcher subjectivity on traits like pigmentation
levels (Webster et al., 2002; Emery et al., 2017). Further-
more, photographs taken in the field without any color
standard pose additional challenges for their use in scientific
research. For example, it is well established that humans
have variable ability to perceive and distinguish saturation
of colors (Cooper et al., 1991; Webster et al., 2002; Emery
et al., 2017). The manual cataloging of images into different
color bins could introduce unwanted noise into the data and
interfere with subsequent analysis. Furthermore, in tradi-
tional red‐green‐blue (RGB) color analysis, changes in
illumination, such as shade or shadows, can alter the R, G,
and B values in a discontinuous and nonlinear manner
(Chavolla et al., 2018), making it difficult to compare the
color data from images collected in the field or other
environments without controlled lighting.

To improve the evaluation process for utilizing photo-
graphs taken by citizen scientists, we developed a simple
computer vision methodology to automate the classification
of petal pigmentation in large photograph data sets using
the hue‐saturation‐value (HSV) color system. This method

couples the Anaconda distribution of Python, a program-
ming language that is easily customizable for mathematics
and image processing, and Jupyter Notebooks, an integra-
tive development environment, to generate a pipeline with
four scripts. It uses a relatively low amount of computer
storage, using just over half a gigabyte to store ~5000
records. It is well suited for large floral structures that
display either a gradient in color variation or separate,
discrete colors, and works for both a priori and de novo
color classification. We include two examples, one with a
continuous color gradient in petals and the other with
discrete binary color morphs, to illustrate the range of
usage.

METHODS

The analysis pipeline we have developed downloads and
analyzes photographic records using four Python scripts
(Downloader, Color Cluster Visualizer, Data Collector, and
Classifier; Figure 1) formatted as Jupyter Notebooks
(Kluyver et al., 2016). The notebooks, a quick start guide,
and example data sets are freely available at GitHub (https://
github.com/atudell/Color-Cluster-Kit). The example data
sets provided include the iNaturalist image records for two
flowering plant species, although our pipeline can also work
with similar photographic data from other sources.

The pipeline described consists of four scripts. The first
script, Downloader, downloads and names images onto the
user's computer. The second script, Color Cluster Visualizer,
examines pixel colors of a subset of images and identifies
major color clusters. The same clustering method is used
in the third script, Data Collector, as a form of image
segmentation to isolate the flower from the background for
each image and to return summarized pixel values describing
its colors. The fourth script, Classifier, puts images into color
bins based on user‐specified rules (Appendices S1–S8; see
Supporting Information with this article).

To demonstrate how this pipeline can be used for both
continuous and discrete color variation, we showcase
implementations using Geranium maculatum L. and
Linanthus parryae, respectively. We use the HSV model to
describe the color (H), the amount of gray in the color (S),
and the brightness of the color (V) (Smith, 1978).

Data acquisition

In this study, we used digitized photographs downloaded
from iNaturalist. Photographs were retrieved using Down-
loader, which automates the downloading and naming of
photographs. As written, Downloader works with iNatural-
ist but can be modified for use with any other database.
Mechanically, Downloader loads a specific web page for the
displayed image and interacts with the HTML to download
it. Minimal changes to the URL scheme would be needed to
obtain similar results with other data archives, provided
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those archives use a similar structure. Because the method
determines color on a pixel‐by‐pixel basis, this pipeline is
flexible in terms of the overall photograph quality. For
example, as neither shape nor prominence of the key feature
is critical in our color clustering, our pipeline is able to
extract usable data from flower images that are blurry or off
center. Additional data qualities can be specified depending
on the requirements of individual research projects (see
examples below).

Data preparation

The second script, Color Cluster Visualizer, helps the user
determine the number of clusters needed to distinguish
the color(s) of the target feature from the background. It
also derives an estimate for the typical HSV ranges for
these segments as part of the output. The script uses
k‐means clustering, a statistical method that groups
like‐data points, to explore the pixel properties within
each image. Based on a user‐specified parameter k (the
number of clusters), the pixel colors are placed into
k clusters. The script then outputs k partial images,
each highlighting only the pixels corresponding to one

particular cluster and its average H, S, and V values, as
highlighted in Figure 2.

One of the main goals of the Color Cluster Visualizer
script is to find the optimal value for k, defined as the
smallest cluster number that allows clear separation of the
target from the background. A k value that is too large will
increase the computational time without adding additional
benefit to the output, but one that is too small will not
properly segment the target from the background. In this
pipeline, the optimal k needs to be determined using a
small representative subset of images that encapsulates the
color variation of the target feature. The Color Cluster
Visualizer script will be run iteratively, with the k initially
changing in increments of 5 as coarse adjustment and then
fine‐tuning in smaller increments at the user's discretion.
An optimal k results in all pixels of the target feature (a
flower in this case) falling entirely within one or a set of
clusters. After iterating through the subsample of photos, a
k value should be estimated.

The second main goal of the Color Cluster Visualizer
script is to determine the range of HSV encapsulating color
variation in the target feature that is captured by more than
one cluster. For example, if a flower is captured in multiple
clusters, one petal in its own cluster and the rest in a

F IGURE 1 Workflow of the pipeline. (1) The Downloader script downloads a list of images in a CSV file as well as the images in the JPEG format.
Images are named by their sample ID. (2) The Color Cluster Visualizer script creates image clusters within photographs for visualization. Coarse‐ and
fine‐tuning the parameter k segments the flower to a greater degree from its background at the expense of computational power. Additionally, this script
gives the average H, S, and V for each identified cluster and may be used to derive an estimate of the HSV range. (3) The Data Collector script repeats the
Color Cluster Visualizer script for all photographs and outputs a CSV file with the summary statistics only for clusters that fall within the range defined by
the information obtained from Color Cluster Visualizer. If no cluster exists for a photograph within the defined range, the output is “non‐flowering.” (4) The
Classifier script bins the summary statistics according to user input.
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separate cluster, the HSV values in all clusters in which the
feature appears should be noted and factored into the
estimated HSV range used in the Data Collector script.

The third script, Data Collector, performs the same k‐
means clustering for every photograph in the data set and
aggregates clusters whose averages fall within the HSV range
determined in the Color Cluster Visualizer step. Under ideal
conditions, the HSV range will ensure that only the pixels
associated with the feature of interest are captured.
Consequently, images with no pixels captured are inferred
as missing the feature of interest, and, in our case, are labeled
as “non‐flowering.” The output returns a set of summary
statistics for each photograph that describes the color profile
of the captured pixels. The decision of which summary
statistics to output is species specific. Average H, S, and V
values provide a good baseline description of the colors and
have been set as the default in the script, but the script may
be modified to report any other summary statistics to aid in
color classification. For example, the color continuity found
in G. maculatum suggested that a good way to bin the petal
color is by the average values of S, whereas the distinct blue
and white flowers in L. parryae only required a count of
pixels in the blue color range. We present this in more detail
in the Results section. For users who are strictly interested in
quantifying color variation, this script can serve as the end of
the pipeline, with the output providing enough information
for further analysis of the natural range of colors exhibited
by the target feature. In some circumstances, however, an
additional step to classify the raw color data into bins is
desirable.

Data cataloging

The final script, Classifier, sorts the photographs into their
respective clusters, or bins, for subsequent analysis. The
details of this script are dictated by the user's wishes on
how to classify their data for later analyses and will,
therefore, need to be developed by individual users. Here,
we illustrate how we customize the final step to specifically
fit our two examples. When color bins are established a
priori, a classification scheme may be developed by a simple
algorithm with a predefined set of rules. For example,
L. parryae, being a true example of an unambiguous
classification, lends itself to simple blue and white bins;
however, G. maculatum, whose color represents a contin-
uum, does not naturally favor any particular classification
method. Regardless, researchers artificially coercing flowers
into color bins may find it useful to allow comparisons to
manually collected data. Fortunately, our pipeline provides
enough flexibility to similarly assign colors into bins. The
sample pipeline applications given in the Results section
provide two basic classification schemes. The classification
scheme for G. maculatum utilizes the saturation value as a
percentile of the sample population, while the scheme
applied for L. parryae looks for a large number of blue pixels
in the image. These strategies for placing images into
different bins were developed with preliminary examination
of the images or prior knowledge of the color distribution in
target features. Once the script is finished running, the
resulting output file will include both the raw color data and
the classification.

F IGURE 2 Cluster examples. Original photos (A, B) versus isolated color cluster of interest (C, D) from white (A, C) and blue (B, D) Linanthus parryae
flowers.
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Geranium maculatum specifics

We obtained the records for G. maculatum from iNaturalist
using the designation of “research‐grade,” defined as from a
wild location, georeferenced, and with verified identification
(Appendix S9). A total of 5049 medium‐resolution photo-
graphs were downloaded using our Downloader script.
Additional curation removed 47 records that were posted
outside of the possible flowering time (i.e., between September
and February), were registered in locations missing environ-
mental data from WorldClim (https://www.worldclim.org/),
or were registered in improbable locations (i.e, the ocean).
The photographs required a total of 576 MB of space, which
is relatively small for an average consumer‐grade laptop,
enabling any machine to conduct this type of analysis.

Geranium maculatum is a species with continuous
variation in floral color ranging from light pink to
magenta and deep purple. In previous studies, we
developed a physical color swatch that encompassed the
range of observed petal colors to allow easy scoring of this
continuous variation during field surveys. To create a
scoring system for the iNaturalist images comparable to
the swatch method, we set the parameters for color
clustering in the pipeline to replicate the swatch scales
and preselected three color bins for classification (light,
medium, and dark) (Figure 3). Using a Samsung Galaxy
S10 camera (Samsung, Seoul, South Korea), we took 143
images of greenhouse‐grown G. maculatum flowers
whose color had been designated using the swatch
method. The greenhouse images were then processed
using the Color Cluster Visualizer script, and an estimated
value of k = 25 was found to best separate flower(s) from
their respective backgrounds. In addition, the HSV
averages of the cluster(s) in which the flower(s) appeared
were noted and used to estimate an HSV range
(H: 246–314°, S: 5.9–100%, V: 0–100%). This initial step
revealed that the variety of colors found in G. maculatum
fell within a small hue range and most of the variation in
colors observed was from color saturation.

The estimates for k and HSV were entered into the Data
Collector script once the averages of H, S, and V were
obtained, and the script was run using photographs down-
loaded from iNaturalist. Any photographs that did not return
a cluster within the HSV range were labeled as “no flowers.”
Given the number of observations and the value of k, the
script took approximately 10 hours to complete and return a
file detailing each observation and its summary statistics.
To calibrate our results, we used the greenhouse images to
develop a simple binning system where flowers with an S
value below 27.5% were classified as “Light,” those with S
values from 27.5% to 36.1% were classified as “Medium,” and
those 36.2% and greater were classified as “Dark.” We then
applied this simple system in the Classifier script and made
the final color classification for each observation in the
iNaturalist data set.

Linanthus parryae specifics

Linanthus parryae displays two flower color morphs: one
with a blue corolla and one with a white corolla (Figure 4).
The pipeline for this species first describes the HSV space of
the blue seen in L. parryae and then determines a metric
with which to classify a flower. Records from iNaturalist
were obtained in the same manner as for G. maculatum.
The Downloader script collected 282 photographs, utilizing
38.9 MB of space (Appendix S10). All research‐grade
photographs of this species contained at least one flower,
and some contained both color morphs. We removed the
images displaying more than one color morph and retained
224 images in our final data set, each having either a white
or blue corolla.

Validations

We validated our results from the reported pipeline for the
following three aspects. First, for the classification of the

F IGURE 3 Petal morphs of Geranium maculatum showing (from left to right) light, medium, and dark petals. Note: Although the petal color of this
species shows continuous variation, the images shown represent the artificial bins used in the study examples.
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presence/absence of flowers, we manually examined a
random subset of the images classified by the pipeline as
“non‐flowering” or “flowering” to determine the pipeline's
accuracy. Second, because the petal color of G. maculatum is a
continuous trait varying between pink and purple, it is
difficult to directly validate the outcome of the Data Collector
script (see “Data Preparation,” above). Instead, we focused on
the classification of the G. maculatum petal colors into
Light, Medium, and Dark bins, as described in the “Data
Cataloging” section. To do so, all three authors of this paper
independently evaluated a subsample of 150 images using the
same swatch scales used for field surveys. We had two goals in
this validation step: (i) to compare the results between manual
evaluations and the pipeline classification, and (ii) to evaluate
consistency between researchers in determining color classifi-
cation when using the same color swatch. Finally, we similarly
examined a subset of the L. parryae images to determine the
accuracy of the pipeline. Because the floral coloration in
L. parryae is discrete, the manual examination was able to
separate images into discrete bins.

RESULTS

In the continuous color example, we observed that
G. maculatum's petal pigmentation ranges from light pink
to dark purple. Preliminary analysis showed that this petal
color variation is largely explained by the change in S value,
with the H and V values showing relatively less variation
among individuals (Appendix S11). In our discrete color
example, L. parryae presents either blue or white petals that
differ in all three metrics of H, S, and V.

Application of the pipeline: Example 1 – petal
pigmentation of Geranium maculatum

Although the petal color of G. maculatum varies in a
continuous fashion (Appendix S11), we found that the key

metric that covaried with our G. maculatum swatch scales
was the saturation value, with relatively minimal variation in
the H and V values. From this pilot study, we chose S = 27.5%
and S = 36.1% as the criteria to separate our Light, Medium,
and Dark bins. These values were chosen arbitrarily to
correspond to existing categories on the swatch used in our
previous field studies.

Out of the 5004 input photographs, 818 (16.3%)
occurrences were classified as non‐flowering. We selected
the HSV values to purposefully make the algorithm more
conservative (i.e., favoring the classification of flowering
images as non‐flowering) to minimize the introduction of
false positives into the data set at the expense of the final
sample size. Our manual validations found that 87.0% of the
“non‐flowering” and 92.8% of the “flowering” images were
classified accurately (Appendix S12). Of the 36 records
incorrectly classified as flowering, 30 photographs contained
leaf litter in the background whose shades of gray caused the
script to falsely label them as light flowers.

Of the 4186 records labeled as flowering, 2874 were
classified as Light, 832 as Medium, and 480 as Dark. Our
manual validation of a subset of 150 images showed that we
unanimously agreed on a classification for approximately
73% of the images, highlighting the inherent human
variability in identifying nuances in color variation, as
well as the likely variation in computer monitor display
(Figure 5A). Of the observations for which there was
unanimous agreement using manual scoring, the algorithm
gave the same score 85.3% of the time (Figure 5B). Among
the observations that did not receive a unanimous vote, the
algorithm always agreed with at least one of the scorers.

Application of the pipeline: Example 2 – petal
pigmentation of Linanthus parryae

The algorithm required for a binary color classification in
L. parryae is simpler than the G. maculatum case; we only
needed to accurately recognize one morph and assign the

F IGURE 4 Petal morphs of Linanthus parryae showing (from left to right) a blue morph, a white morph, and a morph with white petals and a blue
center.
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remainders to the other morph. We chose blue because of
the rocky white background in most photographs. We used
50 images of blue flowers to derive an estimation of its HSV
color range for the Data Collector script. To accommodate
the fact that a small portion of white flowers contain
blue pigments in their corolla tubes (as shown in Figure 4),
we modified the Data Collector script to exclude photo-
graphs with less than 3000 blue pixels. This number was
empirically determined based on the actual values observed
in the images and only meant as a cut‐off measure specific
to this species. We chose the absolute number, rather than a
percentage, of pixels in the images, because the photos
varied in resolution and the flowers varied in their
prominence within the photos. This value successfully
distinguished the white flowers with the blue corolla tube
from blue flowers because images of the latter contain a
significantly larger number of blue pixels. Our pipeline
predicted the presence of a blue flower with a precision
of 91.5%. There were no images in this data set without
flowers.

DISCUSSION

We present in this paper an efficient, reliable, and
automated color classification system that can allow
researchers to tap into the wealth of citizen‐contributed
images available in public databases that are currently
underutilized. The use of a computer algorithm greatly
reduces the time and effort required to score large data sets
and also provides a much more consistent method of
classification than conventional manual scoring. The color
identification and classification methods used in our
pipeline are flexible, can generate discrete and unambiguous
classifications, and can be used with floral features that

display continuous variation. Finally, this method also
allows users to easily modify the analysis scripts to fit their
needs for subsequent analyses. These qualities make the
method reported here a great improvement from the
existing hand classification method for documenting and
classifying floral pigmentation at large geographical scales.

Our method provides an easy interface with citizen
science data and returns respectable results. While citizen
scientists offer a trove of curated and georeferenced records,
the pictures are often difficult for a computer to decipher
because they are taken from various angles, with variation in
the subject's prominence within the image, with variable
numbers of species present, using a variety of camera types,
and under many different lighting conditions. Performing
image segmentation using only color alleviates most of these
concerns. Simply by searching the image for pixels within a
target color range and ignoring other traditional hallmarks
of computer vision, such as shape and texture (Nilsback and
Zisserman, 2008; Guru et al., 2010), we can sidestep the
issue of images taken from various angles and distances.
In addition, by breaking down an image into its pixel
components and analyzing the color mathematically, our
pipeline avoids the intrinsic biases or inconsistencies
introduced when colors are manually scored, as was
demonstrated by the moderate level of agreement among
the three authors scoring the same set of images.

The conversion of color data into the HSV space in our
methodology addresses a major concern for color analysis
using iNaturalist images, which are often taken under
variable lighting conditions. This issue makes the traditional
RGB color space less suitable because the values of R, G, and
B vary widely in photographs taken under shady conditions
(Chavolla et al., 2018). Other existing floral classification
systems avoid this problem by using curated data sets that
employ high‐quality images taken with prominent blooms

F IGURE 5 Venn diagrams representing agreements among the reviewers and the algorithm in color classification. (A) Reviewer agreement on the color
classification of Geranium maculatum. Each circle represents the classifications of an individual reviewer. (B) Algorithm and reviewer agreement. The left
circle represents the classifications for which all three reviewers agreed on a classification, and the right circle represents the computer classification. It is
worth noting that at least one of the reviewers agreed with the classification by the algorithm for all images.
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and/or fruit from consistent angles and reliable lighting
conditions (Blasco et al., 2009; Singh et al., 2011; Rosyani
et al., 2018). Our approach enables images taken in the field,
such as those from iNaturalist, to be used for analysis by
using the HSV color space. In the HSV color space, changes
in illumination primarily affect V values and minimally
impact H and S values (Chavolla et al., 2018). As a result,
our approach allows images to be used even when taken
under different light conditions and at different angles.

Another advantage of our method is its simplicity and
flexibility compared to other approaches commonly used in
computer visualization. Many other machine learning
approaches attempt to classify floral images using texture
and shape in addition to color. Consequently, these
methods are often computationally expensive, difficult to
understand and implement for non‐experts, and overly
complex for simple color classifications (Nilsback and
Zisserman, 2008; Guru et al., 2010). Cutting‐edge computer
vision approaches, such as neural networks, generally also
require the manual drawing of bounding boxes for large
training and testing data sets to properly calibrate deep
learning (Venegas et al., 2021). Finally, for especially large
data sets, specialized (and often expensive) equipment, such
as multiple graphics processing units (GPUs), may be
required (Van Horn et al., 2018). Although these other
approaches may produce complex measurements of target
features, the stringent requirements and complexity of these
methods make them less accessible to many researchers.

Our pipeline simplifies analysis by focusing only on the
color range of the target feature; it therefore requires
minimal manual labor and can be performed quickly on
consumer‐grade computers using large numbers of
medium‐resolution images. Although we showed two
simple methods of predetermined classification in our
examples, the data generated from the first three scripts can
be readily fed into other more complex classification
methods such as support vector machines or random
forests (Cortes and Vapnik, 1995; Breiman, 2001) with a
predetermined number of color bins. If there is no prior
knowledge or preference for the number of bins, one can
use unsupervised machine learning techniques such as
OPTICS or DBSCAN (Ester et al., 1996; Ankerst et al., 1999)
to create color bins using the HSV data collected in the Data
Collector script. Discussion of these approaches is beyond
the scope of this paper, but information can be found in
Kanagala and Krishnaiah (2016). Moreover, this method
may be extended to identify any arbitrary number of
morphs by deriving HSV estimates for multiple colors and
running images iteratively through the pipeline.

Even though our method provides many strengths for
working with citizen scientist data, it does have some
limitations. For example, this method works best for large,
conspicuous blooms that display high contrast relative to
the background. Small, inconspicuous blooms, or blooms
that blend in with their background, would generally
require additional image segmentation and machine learn-
ing. However, in some cases, creative workarounds can be

established, as illustrated in our L. parryae example in which
we used blue pixels, showing that it is possible to use the
flexibility of our scripts against this limitation.

A second limitation is that, by ignoring shape, our
algorithm cannot distinguish between separate bodies with
the same color and will aggregate them together. Conse-
quently, the presence of a second species within the same
color range, other flowers of the same species but with
different color profiles, or even another object in the photo
with a similar color will skew the resulting data. For
example, in the case of G. maculatum, if both dark and light
morph flowers were present in the same image, the
algorithm would combine and average out their colors,
giving a result that does not accurately convey the colors of
the individual flowers. Similarly, our algorithm will average
differences in coloration patterns present within the same
flower, such as dark veins or a dark inner corolla, even if
human judgement often places a higher degree of priority
on the edges.

Certain aspects of the image classification by our
algorithm prove to be messier than hand classification, as
reflected in the misclassification rate of 9–10% in both
species analyzed. In the case of G. maculatum, we selected a
more stringent HSV range in order to avoid false positives
(e.g., the photographer's hand or reddish leaves), but this
resulted in mistakenly excluding ~10% of images. While not
a low error rate, this is an acceptable compromise because
(1) the initial number of images was large enough to sustain
this level of reduction and (2) the demand in time and effort
to manually classify a large number of images is high.
However, the same error rate may not be acceptable when
the starting sample size is already small (e.g., rare species).
In these situations, we recommend adding a “triaging” step
at the start of the workflow to separate images with flowers
from those without before using our pipeline.

Lastly, our algorithm is not able to account for other
factors that can affect the quality of citizen scientist
photographs such as the presence of additional objects in
photographs (e.g., people, trash, keys fobs), a lack of
standardization of cameras, and photomanipulation, which
can potentially skew color perception. For example,
discrepancies in how various cameras capture color can
distort the results, and many smartphone cameras, while
incredibly accessible to citizen scientists, also allow the
option of applying filters to an image that may disrupt the
ability to capture the natural color of a plant. To this extent,
we provide recommendations for taking photographs for
this type of usage in Appendix S13 to help guide the
creation of new data sets or broaden the viability of existing
citizen scientist data sets.

AUTHOR CONTRIBUTIONS
R.A.P. developed the idea for this project and the pipeline,
cowrote the Python scripts, and contributed to the writing
of the manuscript. A.T.U. cowrote the Python scripts,
including developing the k‐means approach for the pipeline,
and contributed to the writing of the manuscript. S.M.C.

8 of 10 | PIPELINE FOR SUPERVISED PETAL COLOR CLASSIFICATION



contributed to the development of the idea, provided the
biological details during pipeline development, and con-
tributed to the writing of the manuscript. All authors
approved the final version of the manuscript.

ACKNOWLEDGMENTS
The authors thank all the contributors to iNaturalist for their
invaluable documentation. Chazz Jordan and Riley Thoen
(University of Georgia) tested an earlier version of this pipeline
and helped improve its development. Summer Blanco's
(University of Georgia) creative contribution to the illustration
of Figure 1 is highly appreciated. Comments from Ashley Early,
Patrick Smallwood, Summer Blanco, and Norris Armstrong
(University of Georgia) significantly improved an earlier version
of this paper. A grant to R.A.P. from the University of Georgia
Libraries Graduate Student Open Access Fund covered the
article publication charge for this article.

DATA AVAILABILITY STATEMENT
The scripts, Jupyter notebooks, quick start guide, and
example data sets used in this study are freely available
at GitHub (https://github.com/atudell/Color-Cluster-Kit).
Annotated scripts and raw data for Geranium maculatum
and Linanthus parryae are provided in the Supporting
Information.

ORCID
Rachel A. Perez‐Udell http://orcid.org/0000-0003-
0625-8742
Shu‐Mei Chang http://orcid.org/0000-0002-6005-2238

REFERENCES
Ankerst, M., M. M. Breunig, H. Kriegel, and J. Sander. 1999. OPTICS:

Ordering points to identify the clustering structure. ACM SIGMOD
Record 28: 49–60.

Blasco, J., S. Cubero, J. Gomez‐Sanchis, P. Mira, and E. Molto. 2009.
Development of a machine for the automatic sorting of pomegranate
(Punica granatum) arils based on computer vision. Journal of Food
Engineering 90(1): 27–34.

Breiman, L. 2001. Random forests. Machine Learning 45: 5–32.
Chavolla, E., D. Zaldivar, E. Cuevas, and M. A. Perez. 2018. Color spaces:

Advantages and disadvantages in image color clustering segmenta-
tion. In A. Hassanien and D. Oliva [eds.], Advances in soft computing
and machine learning in image processing, 3–22. Springer Interna-
tional Publishing, Berlin, Germany.

Cooper, B. A., M. Ward, C. A. Gowland, and J. M. McIntosh. 1991. The use
of Lanthony New Color Test in determining the effects of aging on
color vision. Journal of Gerontology 46(6): 320–324.

Cortes, C., and V. Vapnik. 1995. Support‐vector networks. Machine
Learning 20: 273–297.

Eckhart, V. M., N. S. Rushing, G. M. Hart, and J. D. Hansen. 2006.
Frequency‐dependent pollinator foraging in polymorphic Clarkia
xantiana ssp. xantiana populations: Implications for flower colour
evolution and pollinator interactions. Oikos 112(2): 412–421.

Emery, K. J., V. J. Volbrecht, D. H. Peterzell, and M. A. Webster. 2017.
Variations in normal color vision. VI. Factors underlying individual
differences in hue scaling and their implications for models of color
appearance. Vision Research 141: 51–65.

Endler, J. A. 1977. Geographic variation, speciation and clines. Princeton
University Press, Princeton, New Jersey, USA.

Espinosa, F., and M. P. Castro. 2018. On the use of herbarium specimens for
morphological and anatomical research. Botany Letters 165(3–4): 361–367.

Ester, M., H. Kriegel, J. Sander, and X. Xu. 1996. A density‐based algorithm
for discovering clusters in large spatial databases with noise.
Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining 96: 226–231.

Fry, J., and M. D. Rausher. 1997. Selection on a floral color polymorphism
in the tall morning glory (Ipomoea purpurea): Transmission success
of the alleles through pollen. Evolution 51(1): 66–78.

Guru, D. S., Y. H. Sharath, and S. Manjunath. 2010. Texture features and
KNN in classification of flower images. International Journal of
Computers and Applications 1: 21–29.

Hopkins, R., D. A. Levin, and M. D. Rausher. 2012. Molecular signatures of
selection reproductive character displacement of flower color in Phlox
drummondii. Evolution 66: 469–485.

Irwin, R. E., and S. Y. Strauss. 2005. Flower color microevolution in wild
radish: Evolutionary response to pollinator‐mediated selection.
American Naturalist 165(2): 225–237.

Kanagala, H. K., and V. V. J. R. Krishnaiah. 2016. A comparative study of
k‐means, DBSCAN and OPTICS. Proceedings of the 2016 Interna-
tional Conference on Computer Communication and Informatics
(ICCCI). https://doi.org/10.1109/ICCCI.2016.7479923

Kluyver, T., B. Ragan‐Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, et al. 2016. Jupyter Notebooks – a publishing format for
reproducible computational workflows. In F. Loizides and B. Schmidt
[eds.], Positioning and power in academic publishing: Players, agents and
agendas, 87–90. IOS Press, Amsterdam, the Netherlands.

Koski, M. H., D. MacQueen, and T. Ashman. 2021. Floral pigmentation has
responded rapidly to global change in ozone and temperature.
Current Biology 30: 4425–4431.e3.

Li, E., S. S. Parker, G. S. Pauly, J. M. Randall, B. V. Brown, and B. S. Cohen.
2019. An urban biodiversity assessment framework that combines an
urban habitat classification scheme and citizen science data. Frontiers
in Ecology and Evolution 7: 277.

Mancinelli, G., R. Bardelli, and A. Zenetos. 2021. A global occurrence database
of the Atlantic blue crab Callienectes sapidus. Scientific Data 8: 111.

Mesaglio, T., A. Soh, S. Kurniawidjaja, and C. Sexton. 2021. ‘First known
photographs of living specimens’: The power of iNaturalist for recording
rare tropical butterflies. Journal of Insect Conservation 25: 905–911.

Nilsback, M., and A. Zisserman. 2008. Automated flower classification over
a large number of classes. Proceedings of the Sixth Indian Conference
on Computer Vision, Graphics and Image Processing. https://doi.org/
10.1109/ICVGIP.2008.47

Rosyani, P., M. Taufik, A. A. Waskita, and D. H. Apriyanti. 2018.
Comparison of color model for flower recognition. Proceedings of the
3rd International Conference on Information Technology, Informa-
tion System and Electrical Engineering (ICITISEE). https://doi.org/
10.1109/ICITISEE.2018.8721026

Schemske, D. W., and P. Bierzychudek. 2007. Spatial differentiation for
flower color in the desert annual Linanthus parryae: Was Wright
right? Evolution 61(11): 2528–2543.

Singh, S., D. Dhyani, A. K. Yadav, and S. Rajkumar. 2011. Flower colour
variations in gerbera (Gerbera jamesonii) population using image
analysis. Indian Journal of Agricultural Sciences 81(12): 1130–1136.

Smith, A. R. 1978. Color gamut transform pairs. Computer Graphics 12(3):
12–19.

Van Horn, G., M. O. Aodha, Y. Song, Y. Cui, S. Sun, A. Shepard, H. Adam,
et al. 2018. The iNaturalist species classification and detection dataset.
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (IEEE), 8796–8778.

Venegas, P., F. Calderon, D. Riofrıó, D. Benítez, G. Ramón, D. Cisneros‐
Heredia, M. Coimbra, et al. 2021. Automatic ladybird beetle detection
using deep learning models. PLoS ONE 16(6): e0253027.

Webster, M. A., S. M. Webster, S. Bharadway, R. Verma, K. Jaikumar,
G. Madam, and E. Vaithilingham. 2002. Variations in normal color
vision. III. Unique hues in Indian and United States observers.
Journal of the Optical Society of America 19(19): 1951–1962.

PIPELINE FOR SUPERVISED PETAL COLOR CLASSIFICATION | 9 of 10

https://github.com/atudell/Color-Cluster-Kit
http://orcid.org/0000-0003-0625-8742
http://orcid.org/0000-0003-0625-8742
http://orcid.org/0000-0002-6005-2238
https://doi.org/10.1109/ICCCI.2016.7479923
https://doi.org/10.1109/ICVGIP.2008.47
https://doi.org/10.1109/ICVGIP.2008.47
https://doi.org/10.1109/ICITISEE.2018.8721026
https://doi.org/10.1109/ICITISEE.2018.8721026


Willis, C. G., E. R. Ellwood, R. B. Primack, C. C. Davis, K. D. Pearson,
A. S. Gallinat, J. M. Yost, et al. 2017. Old plants, new tricks:
Phenological research using herbarium specimens. Trends in Ecology
& Evolution 32(7): 531–546.

Wright, S. 1943. Isolation by distance. Genetics 28: 114–138.

SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. The Downloader script annotated for
Geranium maculatum, built for downloading the images
cataloged in the raw data set in Appendix S9.

Appendix S2. The Color Cluster Visualizer script annotated
for Geranium maculatum, built to provide a visual
representation of k‐means clustering on an image.

Appendix S3. The Data Collector script annotated for
Geranium maculatum, built to collect color summary
statistics for each photograph within the G. maculatum
data set.

Appendix S4. The Classifier script annotated for Geranium
maculatum, built to assign a color classification to each
photograph within the G. maculatum data set.

Appendix S5. The Downloader script annotated for
Linanthus parryae, built for downloading images cataloged
in the raw data set in Appendix S10.

Appendix S6. The Color Cluster Visualizer script annotated
for Linanthus parryae, built to provide a visual representa-
tion of k‐means clustering on an image.

Appendix S7. The Data Collector script annotated for
Linanthus parryae, built to collect color summary statistics
for each photograph within the L. parryae data set.

Appendix S8. The Classifier script annotated for Linanthus
parryae, built to assign a color classification to each
photograph within the L. parryae data set.

Appendix S9. A CSV file containing Geranium maculatum
raw data downloaded from iNaturalist. The columns of
interest are k‐means data providing the raw output of
Appendix S3.

Appendix S10. A CSV file containing Linanthus parryae
raw data downloaded from iNaturalist. The columns of
interest are k‐means data providing the raw output of
Appendix S7.

Appendix S11. Hue (H) and saturation (S) values for
Geranium maculatum, with the resulting classifications.
(Top) Each dot represents one image and is colored in the
average HS value (V was held stable at 94%) of the flower
cluster from that image. (Bottom) The resulting classifica-
tions of light, medium, or dark. Note the difference in the y‐
axis of the two figures; the first figure shows the entire range
of possible hue in the HSV color space (0–179) while the
second figure is restricted on the range of hue found in G.
maculatum (approx. 120–160). The H and S values used in
these graphs are the converted values used in the Python
library OpenCV due to memory efficiency. To convert these
values into true color space, use Hue*2 and Saturation/255.

Appendix S12. Verification of the accuracy of flowering versus
non‐flowering classifications in Geranium maculatum.

Appendix S13. Recommendations for photographing floral
structures for submission to iNaturalist and other citizen
science repositories.
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