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A B S T R A C T

Quantitative structure-activity relationship and molecular docking studies were carried out on a

series of quinazolinonyl analogues as anticonvulsant inhibitors. Density Functional Theory

(DFT) quantum chemical calculation method was used to find the optimized geometry of the

anticonvulsants inhibitors. Four types of molecular descriptors were used to derive a quantita-

tive relation between anticonvulsant activity and structural properties. The relevant molecular
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descriptors were selected by Genetic Function Algorithm (GFA). The best model was validated

and found to be statistically significant with squared correlation coefficient (R2) of 0.934,

adjusted squared correlation coefficient (R2
adj) value of 0.912, Leave one out (LOO) cross valida-

tion coefficient (Q2) value of 0.8695 and the external validation (R2
pred) of 0.72. Docking analysis

revealed that the best compound with the docking scores of �9.5 kcal/mol formed hydrophobic

interaction and H-bonding with amino acid residues of gamma aminobutyric acid aminotrans-

ferase (GABAAT). This research has shown that the binding affinity generated was found to be

better than the commercially sold anti-epilepsy drug, vigabatrin. Also, it was found to be better

than the one reported by other researcher. Our QSAR model and molecular docking results cor-

roborate with each other and propose the directions for the design of new inhibitors with better

activity against GABAAT. The present study will help in rational drug design and synthesis of

new selective GABAAT inhibitors with predetermined affinity and activity and provides valuable

information for the understanding of interactions between GABAAT and the anticonvulsants

inhibitors.

� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Epilepsy is a perpetual and regularly dynamic issue described
by the occasional and erratic event of epileptic seizures, which

are brought on by an anomalous release of cerebral neurons [1].
It is a standout among the most widely recognized neurological
issue that influences around 70 million individuals around the
world [2]. Epilepsy causes seizure to occur and these seizures

can cause a variety of symptoms depending on the areas of
the brain affected. Symptoms can vary from mild to severe
and can include complete or partial loss of consciousness, loss

of speech, uncontrollable motor behavior, and unusual sensory
experiences [3]. Gamma aminobutyric acid aminotransferase
(GABAAT) is a validated target for anti-epileptic drugs because

its selective inhibition raises GABA concentration in brain
which has an antiepileptic effect [4]. There is a proceeding with
an interest for new anticonvulsant agents, as it has not been
conceivable to control each sort of seizure with the right now

accessible antiepileptic drugs. Additionally, the present treat-
ment of epilepsy, with advanced antiepileptic medications, is
connected with measurement related symptoms, unending

lethality, and teratogenic impacts [5–6]. Therefore, developing
a new antiepileptic drug with approved therapeutic properties
is an important challenge for medicinal chemists.

Quantitative Structure-Activity Relationships (QSAR) are
mathematical frameworks which interface molecular structures
of compounds with their natural activities in a quantitative

way [7]. The main success of the QSAR method is the possibil-
ity to estimate the properties of new chemical compounds
without the need to synthesize and test them. This analysis rep-
resents an attempt to relate structural descriptors of com-

pounds to their physicochemical properties and biological
activities. This is broadly utilized for the prediction of physic-
ochemical properties in the chemical, pharmaceutical, and

environmental spheres [8]. Moreover, the QSAR strategies
can save resources and accelerate the process of developing
new molecules for use as drugs, materials, and additives or

for whatever purposes [9]. Molecular docking is a computa-
tional method used to determine the binding compatibility of
the active site residues to specific groups and to reveal the

strength of interaction [10,11]. Molecular docking is a very
popular and useful tool used in the drug discovery arena to
investigate the binding of small molecules (ligands) to macro-

molecule (receptor) [12–14]. The objective of this research was
to develop various QSAR models using Genetic Function
Algorithm (GFA) method and to predict the GABAAT inhibi-

tory activity of the compounds. We also docked the com-
pounds against GABAAT protein (10HV) with bound ligand
(quinazolinonyl analogues).
Material and methods

Data sets used

24 Molecules of quinazolinonyl derivatives used as anticonvul-

sant activity were selected from the literature and used for the
present study [15]. The anticonvulsant activities of the mole-
cules measured as ED50 (lM) were expressed as logarithmic
scale as pED50 (pED50 = log1/ED50) was used as dependent

variable, consequently correlating the data linearly with the
independent variable/ descriptors. The observed structures
and the biological activities of these compounds are presented

in Table 1.

Molecular modeling

All molecular modeling studies were done utilizing Spartan’14
version 1.1.2 [16] and PaDEL Descriptor version 2.18 [17] run-
ning on Toshiba Satellite, Dual-core processor window 8.0

operating system. The molecular structures of the compounds
were drawn in the graphic user interface of the software. 2D
application tool was used to build the structures and exported
in 3D format. All 3D structures were geometrically optimized

by minimizing energy. Calculation of the structural electronic
and other descriptors of all the 24 quinazolinonyl derivatives
was conducted by means of density functional theory (DFT)

using the B3LYP method and 6-31G* basis set. The lowest
energy structure was used for each molecule to calculate their
physicochemical properties. The optimized structures that

were from the Spartan’14 version 1.1.2 quantum chemistry
package [16] were saved in sdf format, and transferred to
PaDEL-Descriptor version 2.18 tool kits [17] where the calcu-

lation of 1D, 2D and 3D descriptors took place.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Biological activities of training and test set derivatives.

Comp. number Compound pED50 Pred.Pred.pED50ED50 Residual

1a 1.69 1.67 0.02

2a 1.77 1.77 0.00

3b 1.69 1.68 0.01

4a 1.69 1.67 0.02

5a 1.77 1.78 �0.01

6b 1.77 1.76 0.01

7a 1.84 1.83 0.01

8a 1.77 1.77 0.00

9b 1.77 1.76 0.01

10a 1.69 1.72 0.03

11a 1.77 1.73 0.04

(continued on next page)
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Table 1 (continued)

Comp. number Compound pED50 Pred.Pred.pED50ED50 Residual

12b 1.90 1.83 0.07

13a 1.77 1.77 0.00

14a 1.77 1.77 0.00

15b 1.84 1.81 0.03

16a 1.84 1.83 0.01

17a 1.95 1.95 0.00

18a 1.90 1.90 0.00

19b 1.84 1.88 �0.04

20a 1.90 1.91 �0.01

21a 1.69 1.73 �0.04
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Table 1 (continued)

Comp. number Compound pED50 Pred.Pred.pED50ED50 Residual

22a 1.90 1.88 0.02

23b 1.84 1.82 0.02

24a 1.77 1.80 �0.03

a Training set.
b Test set.
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Computational method

In order to obtain validated QSAR models, the descriptors
(1D-3D) generated from the PaDEL version 2.18 tool kits
[17] were divided into training and test sets. The training set

was used to generate the model, while the test set was used
for the external validation of the model [18]. The correlation
between activity values of the molecules against GABAAT

and the calculated descriptors was obtained through correla-
tion analysis using the material studio software version 8.
Pearson’s correlation matrix was used as a qualitative model,

in order to select the suitable descriptors for regression analy-
sis. The generated descriptors from the PaDEL version 2.18
tool kits [17] were subjected to regression analysis with the

experimentally determined activities as the dependent variable
and the selected descriptors as the independent variables using
Genetic Function Algorithm (GFA) method in material studio
software version. The number of descriptors in the regression

equation was 4, and Population and Generation were set to
600 and 600, respectively. The number of top equations
returned was 4. Mutation probability was 0.1, and the smooth-

ing parameter was 0.5. The models were scored based on
Friedman’s Lack of Fit (LOF). In GFA algorithm, an individ-
ual or model was represented as one-dimensional string of bits.

It was a distinctive characteristic of GFA that it could create a
population of models rather than a single model. GFA algo-
rithm, selecting the basic functions genetically, developed bet-

ter models than those made using stepwise regression methods.
And then, the models were estimated using the LOF, which
was measured using a slight variation of the original Friedman
formula, so that the best fitness score can be received. The

revised formula of LOF [19] is as follows:

LOF ¼ SSE 1� Cþ dp

M

� �2
,

ð1Þ
where SSE is the sum of squares of errors, c is the number of
terms in the model, other than the constant term, d is an user-
defined smoothing parameter, p is the total number of descrip-
tors contained in all model terms (ignoring the constant term)

and M is the number of samples in the training set. Unlike the
commonly used least squares measure, the LOF measure can-
not always be reduced by adding more terms to the regression

model. While the new term may reduce the SSE, it also
increases the values of c and p, which tend to increase the
LOF score. Thus, adding a new term may reduce the SSE,

but actually increases the LOF score. By limiting the tendency
to simply add more terms, the LOF measure resists over fitting
better than the SSE measure (Materials Studio 8.0 Manual).

Quality assurance of the model

The reliability and predictive ability of the developed QSAR
models were evaluated by internal and external validation

parameters.

Internal and external validations

The internal and external validation parameters were com-
pared with the minimum recommended value for the evalua-
tion of the quantitative QSAR model [20] as shown in

Table 2. The square of the correlation coefficient (R2) describes
the fraction of the total variation attributed to the model. The
closer the value of R2 is to 1.0, the better the regression equa-

tion explains the Y variable. R2 is the most commonly used
internal validation indicator and is expressed as follows:

R2 ¼ 1�
PðYobs�YpredÞ2PðYobs�YtrainingÞ2 ð2Þ

where Yobs, Ypred, and Ytraining are the experimental prop-
erty, the predicted property and the mean experimental prop-



Table 2 General minimum recommended value for the evaluation of the quantitative QSAR model.

Symbol Name Value

R2 Coefficient of determination P0.6

P(95%) Confidence interval at 95% confidence level <0.05

Q2 Cross validation coefficient P0.5

R2 - Q2 Difference between R2 and Q2 60.3

Next. test set Minimum number of external test set P5

R2
ext Coefficient of determination for external test set P0.6
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erty of the samples in the training set, respectively [20].
Adjusted R2 (R2

adj) value varies directly with the increase in
number of repressors i.e. descriptors; thus, R2 cannot be an
useful measure for the goodness of model fitness. Therefore,

R2 is adjusted for the number of explanatory variables in the
model. The adjusted R2 is defined as follows:

R2
adj ¼ 1� ð1� R2Þ n� 1

n� p� 1
¼ ðn� 1ÞR2 � P

n� pþ 1
ð3Þ

where
n is the number of training compounds.

p= number of independent variables in the model [21].

The leave one out cross validation coefficient (Q2) is given
by the following:

Q2 ¼ 1�
P ðYp�YÞ2P ðY�YmÞ2 ð4Þ

where Yp and Y represent the predicted and observed activity

respectively of the training set and Ym the mean activity value
of the training set [22].

Applicability domain

The applicability domain (AD) of the generated models was
assessed in order to specify the scope of their proposed models
by defining the mathematical model limitations with respect to

its structural domain and response space.

Docking study

Docking materials

Docking preparation and energy (kcal/mol) calculations of

active anticonvulsant compounds and GABAAT receptor were
performed by MGL tool and AutoDock Vina of PyRx virtual
screening software [23]. Autogrid precalculation of the docking

anticonvulsant compounds was performed by Autodock Vina
Fig. 1 (a) Structure of GABAAT (10HV), (b) Structure of G
of Pyrx by describing the target GABAAT protein. The energy
grid was performed based on Lamarckian genetic algorithm

[24]. Ligplot, discovery studio 3.5 and PyMol visualization
software were used to perform the virtual analysis of docking
site.

Preparation of the target receptor

The 3D structure of GABAAT receptor (1OHV) was obtained
from the protein data bank in PDB format. All Heteroatomic

molecules were excluded from the file using Discovery Studio
3.5 software. GABAAT receptor structure was minimized, pro-
tonated and saved in PDBQT file format in all polar residues.

Fig. 1(a and b) shows the prepared three dimensional structure
of GABAAT (10HV).

Preparation of the ligands

The 24 synthesized compounds of quinazolinonyl derivatives
(Table 1) were selected from the literature and used as ligands
[15]. Chemdraw software was used to draw the 2D structures

of these compounds and was then converted to 3D structures,
optimized and saved in pdb file format by Spartan’14 version
1.1.2 [16]. The compounds were converted to PDBQT format
by Autodock 4.2 software. The 3D structures of the prepared

ligands are shown in Fig. 2.

Structure validation

Native ligands present in the protein structure were removed.
In order to check the confirmation, root mean square devia-
tion (RMSD) value was calculated between the original struc-
ture and the ligand deleted structure [25,26].

Analysis of binding

The docking software binding sites were designed such that the
entire ligand binding area was included within the GRID. An

Autodock tool was used to select the ligand binding area of
macromolecule. Docking analysis of GABAAT with the ligands
was carried out using Autodock Vina. Macromolecule
ABAAT(10HV) Preparation of compounds for docking.



Fig. 2 3D structures of the prepared ligands.

Table 5 Pearson’s correlation matrix for descriptors used in

QSAR model for the activities of anticonvulsant molecules.

ETA_Eta_L XLogP PPSA-3 RNCG

ETA_Eta_L 1

XLogP 0.17959 1

PPSA-3 0.1924 �0.25267 1

RNCG �0.57017 �0.35028 �0.54108 1
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(GABAAT) was kept as rigid while ligand molecules were kept
as flexible throughout the docking studies.

Results and discussion

QSAR studies

All the four developed QSAR models were recorded out of
which the best model (model 1) was identified and reported
due to the statistical significance. The name and symbol of

the descriptors used in the QSAR optimization model are
shown in Table 3 below. Table 4 gives the result of Validation
of the Genetic Function Algorithm (GFA) of model 1 that was

generated from material studio. Minimum recommended value
of validation Parameters for a generally acceptable QSAR
model [20] was in agreement with the model 1 parameters.

Based on this analysis, Model 1 was selected and reported as
the best QSAR model.

Model 1
pED50 = 0.114383001 * ETA_Eta_L + 0.190098515 *

XLogP + 0.028759587 * PPSA-3 + 4.201924750 * RNCG �
0.690224604, N = 17, R2

ext ¼ 0.72028, R2 ¼ 0:934053,

R2
a = 0.912071, Q2

cv = 0.869587, LOF ¼ 0:002815, Min expt.

error for non-significant LOF (95%) = 0.018506.
Table 3 List of some physiochemical descriptors used for the best

S/NO Symbol Names of descriptors

1 ETA_Eta_L Local index Eta_local

2 XLogP XLOgP

3 PPSA-3 Charge weighted partia

4 RNCG Relative negative charg

Table 4 Validation of the genetic function approximation from ma

Eq. (1)

Friedman LOF 0.002815

R-squared, R2 0.934053

Adjusted R-squared, R2
a 0.912071

Cross validated R-squared, Q2
cv 0.869587

Significant regression Yes

Significance-of-regression F-value 42.49129

Critical SOR F-value (95%) 3.306215

Replicate points 0

Computed experimental error 0

Lack-of-fit points 12

Min expt. error for non-significant LOF (95%) 0.018506
Model 2
pED50 = 0.279901890 * VP-6 + 0.188955711 * XLogP +

0.033018384 * PPSA-3 + 3.694884401 * RNCG � 0.404755657,

N= 17, R2
ext = 0.62704, R2 = 0.932637, R2

a = 0.910182,

Q2
cv = 0.832929, LOF ¼ 0:002876, Min expt. error for non-

significant LOF (95%) = 0.018704.
Model 3
pED50 = 0.148446854 * VP-4 + 0.190534973 * XLogP +

0.032884549 * PPSA-3 + 4.028075797 * RNCG� 0.595730073,

N= 17, R2
ext ¼ 0:703963, R2 ¼ 0:931777, R2

a = 0.909036,

Q2
cv ¼ 0:806221, LOF ¼ 0:002912, Min expt. error for non-

significant LOF (95%) = 0.018823.
model.

Class

2D

2D

l positive surface area 3D

e – most negative charge/total negative charge 3D

terial studio.

Eq. (2) Eq. (3) Eq. (4)

0.002876 0.002912 0.003107

0.932637 0.931777 0.92723

0.910182 0.909036 0.902973

0.832929 0.806221 0.87158

Yes Yes Yes

41.53468 40.97325 38.22585

3.306215 3.306215 3.306215

0 0 0

0 0 0

12 12 12

0.018704 0.018823 0.01944



Table 6 GABAAT active site residues involved in docking interactions with the inhibitors and docking scores.

Ligand(s) Receptor Binding Affinity

(kcal/mol)

Hydrophobic interaction Hydrogen bonding Hydrogen

bond length (Å)

1a GABAAT �6.0 Pro91,Glu50,Gln92, Ser95,Val94,Pro82, Val85, Arg53 2.80

2a GABAAT �8.1 Ile72,Glu270,Tyr69, Tyr348,Ile351, Asn423,Ser427,Arg430, Ile426, His44,Gly438 3.05,3.04

3b GABAAT �8.0 Gly438,Tyr69, Glu270,Phe351,Ile105, Ile72,Tyr348,His44, Ser427 Asn423 3.19

4a GABAAT �8.3 Phe351,Ile72,Glu270, Tyr348,Asn423, Arg430,Ser427,Ile426, Tyr69 His44,Gly438 3.02,3.05

5a GABAAT �8.0 His44,Tyr348,Ile105, Ile72,Phe351,Glu270,Tyr69,Gly438, Ser427 Asn423 3.13

6b GABAAT �7.0 Ile72,His206, Arg430,Ser427,Tyr348

7a GABAAT �7.9 Ile72,His206, Arg430,Ser427,Tyr348

8a GABAAT �8.1 Ile72,His206, Arg430,Ser427,Tyr348

9b GABAAT �7.2 Ala381,Gly409,Leu388, Gly407,Leu227,Asn234, Glu238,Val231,Leu223, Ser277 Arg208 2.90,3.18

10a GABAAT �8.2 Asn423,Arg423,Tyr69, Ile72,Tyr345,Ser427, phe351 Arg192,Act500 2.87,2.92

11a GABAAT �7.0 His275,Ser277,Leu227, Tyr225,Gly407,Arg406, Ala276,Arg408 Asp278,Asp279 3.05,2.07

12b GABAAT �8.6 Gly438,His44,Ile426, Arg430,Lys203,His206, Glu270,Cys439, Arg422,Tyr348,Ile72, Tyr69 Gly440 2.79

13a GABAAT �9.5 Cys439,Asn423,Arg422, His44,Arg430,Leu436, Ile426,Tyr438,Ile72, Tyr69,His206,Gly438, Lys203,Glu270 Gly440 3.04

14a GABAAT �8.8 Lys203,Gly438,Cys439, Tyr69,Ile72, Phe351,Ile105,Ala42, His44,Glu41,Asn423, Glu419, Glu270 3.24

15b GABAAT �9.4 Ile426, Arg430, Arg422, Tyr348, His44, Ile72, Ile105, Glu270, His206, Lys203, Cys439 Tyr69, Gly440 3.04,3.05

16a GABAAT �8.8 Arg422, Arg430,His44, Tyr69,Gly438,Tyr348, His206,Ile105 Asn423 3.04

17a GABAAT �9.0 Ser277,Leu223,Asn234, Leu227,Arg408,Leu388, Gly407,Asp278

18a GABAAT �7.1 Ser277,Leu223,Asn234, Leu227,Arg408,Leu388, Gly407,Asp278

19b GABAAT �8.9 Gly438,His44,Ile426, Asn423,Lys203,Glu419, Ile205,His206,Tyr348, Arg422

20a GABAAT �9.1 Arg430,Ile426,His44, Ile72,Ile105,Tyr69, Tyr348,Glu270,His206, Lys203,Cys439 Gly440 3.07

21a GABAAT �9.1 Phe351,Ile72,Arg422, Cys439,Gly438,Glu419, Ile205,Lys203,Ile105, Tyr348,Tyr69 Gly440 2.99

22a GABAAT �8.5 Ile105,Phe351,Ile72, Tyr348,Tyr69,Ile426, Asn423,Ser427 His44,Arg430,Gly438 2.83,3.16,3.13

23b GABAAT �8.7 Tyr270,Phe351,Ile105, Ile72,His44, Tyr69,Lys203,Pro347, Ala346, Ile205,Tyr348

24a GABAAT �9.2 Arg422,Tyr69, Ile105,Ile72,Phe351, Tyr348,Glu270, Ile205,Lys203,Glu419 Gly440 3.06

4
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Fig. 3 Three-dimensional docked GABAAT - Ligands Complex. (A) Interactions between GABAAT and Ligand 13a. (B) Interactions

between GABAAT and Ligand 15b. (C) Interactions between GABAAT and Ligand 24b. Ligand:H-bond interactions, green dashed lines:

Hydrophobic interactions, red dashed line.
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Model 4
pED50 = 0.109267006 * SP-6 + 0.197509169 * XLogP +

0.029112087 * PPSA-3 + 4.163767660 * RNCG� 0.562852003,

N= 17, R2
ext = 0.69, R2 = 0.92723, R2

a = 0.902973,
Q2
cv ¼ 0:87158, LOF ¼ 0:003107, Min expt. error for non-

significant LOF (95%) = 0.01944.

The result from the Correlation matrix (Table 5) shows
clearly that the correlation coefficients between each pair of
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descriptors are very low, and this means that there exist no sig-
nificant inter correlation among the descriptors used in devel-
opment of the model. Suppl. Fig. 1 gives the plot of predicted

activities of both training and test sets against observed activ-
ities; the reliability of the model (best QSAR model) was fur-
ther confirmed as the GFA derived R2 value was in

agreement with R2 value of 0.93 recorded in this graph.
The Williams plot, the plot of the standardized residuals

against the leverage (suppl. Fig. 2), was used to visualize the

applicability domain (AD) [27]. Leverage indicates a com-
pound’s distance from the centroid of X. The leverage of a
compound in the original variable space is defined as follows:

hi ¼ XT
i ðXTXÞ�1

Xi ð5Þ
The danger leverage (h*) is defined as follows:

hi ¼ 3ðPþ 1Þ
N

ð6Þ

where N is the number of training compounds, and p is the
number of predictor variables. Where Xi is the descriptor vec-
tor of the considered compound and X is the descriptor matrix
derived from the training set descriptor values. In suppl. Fig. 3,

it is obvious that all compounds in the test set fall inside the
domain of the model (the danger leverage limit is 0.88). All
the training and test sets are good leverages since none of

the chemical compounds go beyond the danger hi value, so
they can be regarded as good prediction for the model.

Molecular docking studies

Molecular docking studies were carried out between the targets
(GABAAT) and the inhibitors. All the compounds were found

to strongly inhibit by completely occupying the active sites in
the target protein (GABAAT). All inhibitors showed low
energy values (high docking scores) than the binding energies
of vigabatrin (-4.4 kcal/mol), the standard antiepileptic drug.

For target protein, binding energy values range from -6.0 to
-9.5 kcal/mol. In Table 6, most of the inhibitors were found
to involve in both the hydrophobic interactions and hydrogen

bonding with the receptor (GABAAT). In addition, ligand
number 13a with binding energies of -9.5 kcal/mol showed bet-
ter binding energies than other co-ligands.

Binding mode of inhibitors

Table 6 shows the docking scores, hydrogen bond length (in

angstrom) and interacting residues involved in the docking
of inhibitors (ligands) at the active site of GABAAT. Fig. 3
shows the best first-three docking results. Ligand number
24a shows that Arg422, Tyr69, Ile105, Ile72, Phe351, Tyr348,

and Glu270 residues of target are involved in hydrophobic
interactions. In addition, it also forms hydrogen bonds
(3.06 Å) with Gly440. Strong inhibitor binding is also reflected

by the frequency of hydrogen bonds as shown in Table 4.
Compound 15b made two hydrogen bonds (3.04 Å and
3.05 Å) with two residues Tyr69 and Gly440, while hydropho-

bic interactions are observed with Ile426, Arg430, Arg422,
Tyr348, His44, Ile72, Ile105, Glu270, Act500, His206,
Lys203, and Cys439. Compound 13a (compound with the best
binding score of -9.5 kcal/mol) forms a hydrogen bond with

Gly440 (3.04 Å), and hydrophobic interactions with Cys439,
Asn423, Arg422, His44, Arg430, Leu436, Ile426, Tyr438,
Ile72, Tyr69, His206, Gly438, Lys203, and Glu270.

Conclusions

It has been clearly demonstrated that the approach utilized in
this study was successful in finding novel GABAAT inhibitors

from the data set developed by computational methods. The
model generated from various physicochemical descriptors
corresponds to the essential structural features of quinazoli-

nonyl analogues and found to have significant correlation
coefficient of determination (R2) of 0.934 with GABAAT

inhibiting activity. Substituted quinazolinonyl analogues

showed good interactions with GABAAT protein. Compound
(13a), in particular, showed high binding affinity with docking
score of -9.5 kcal/mol against GABAAT in docking analysis

and predicted pED50 value of 1.77 in QSAR analysis. The
ligand was docked deeply within the binding pocket region
forming a hydrogen bond with Gly440 (3.04 Å), and
hydrophobic interactions with Cys439, Asn423, Arg422,

His44, Arg430, Leu436, Ile426, Tyr438, Ile72, Tyr69, His206,
Gly438, Lys203, and Glu270. From the docking analysis, we
realized that the binding scores generated were found to be

better than the one proposed by other researcher [28].
Furthermore, all the quinazolinonyl analogues were found

to be docked to GABAAT better than the standard anti-

epilepsy drug (vigabatrin). The physicochemical descriptors
used in QSAR analysis (model 1) in this study were important
parameters to consider in improving the potency of these sub-
stituted quinazolinonyl analogues as inhibitors of GABAAT.

Our QSAR model (high correlation coefficient of determina-
tion R2 of 0.934) and molecular docking results (high binding
affinity with docking score of �9.5 kcal/mol) corroborate with

each other and propose the directions for the design of new
inhibitors with better activity toward GABAAT. This study will
help in rational drug design and synthesis of new selective

GABAAT inhibitors with predetermined affinity and activity
and provides valuable information for the understanding of
interactions between GABAAT and the novel compounds

and might pave the way toward discovery of novel GABAAT

inhibitors.
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