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During pregnancy the human fetus receives timed cues from the circadian rhythms of

temperature, metabolites, and hormones from the mother. This influence is interrupted

after parturition, the infant does not secrete melatonin and their circadian rhythms are still

immature. However, evolution provided the solution to this problem. The newborn can

continue receiving the mother’s timed cues through breastmilk. Colostrum, transitional,

and mature human milk are extraordinary complex biofluids that besides nutrients,

contain an array of other non-nutritive components. Upon birth the first milk, colostrum,

is rich in bioactive, immunological factors, and in complex oligosaccharides which help

the proper establishment of the microbiome in the gut, which is crucial for the infants’

health. Hormones, such as glucocorticoids and melatonin, transfer from the mother’s

plasma to milk, and then the infant is exposed to circadian cues from their mother. Also,

milk components of fat, proteins, amino acids, and endogenous cannabinoids, among

others, have a markedly different concentration between day and night. In the present

review, we give an overview of nutritive and non-nutritive components and their daily

rhythms in human milk and explore their physiological importance for the infant. Finally,

we highlight some interventions with a circadian approach that emphasize the importance

of circadian rhythms in the newborn for their survival, proper growth, and development.

It is estimated that ∼600,000 deaths/year are due to suboptimal breastfeeding. It is

advisable to increase the rate of exclusive breastfeeding, during the day and night, as

was established by the evolution of our species.

Keywords: chrononutrition, melatonin, glucocorticoids, circadian feeding, tryptophan, cannabinoids,

oligosaccharides, secretory IgA

INTRODUCTION

Being active and eating during typical times of rest, as with night-shift work, disrupts circadian
clocks and is related to a higher risk of several metabolic disorders (1). Recent studies have also
found that restricting eating to certain times of day can be beneficial to health (2), and from these
observations the field of chrononutrition has developed (3). The goal of chrononutrition is to
adjust nutrition quality and intake to coordinate with an individual’s biological clock, so that one
consumes the optimal type and quantity of food at the correspondingly optimal time of day (3).
Most of the current understanding of chrononutrition arose from work in adults and thus does
not encompass the lifespan of developing humans. Rest and activity patterns and nutritional needs
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change as humans develop. Unlike adults, newborns ingest
milk during the day and night, and this has an important
biological significance: the concentration of milk components
changes according to the circadian rhythms of the mother.
Moreover, the infant is sensitive to milk and environmental
circadian cues. In the present contribution, we review the current
evidence about these two topics related to rhythms in breastmilk
and environmental conditions and discuss their relevance for
the proper establishment of the infant’s circadian rhythms.
Some studies label the temporal changes of milk components
as circadian but, in most cases, they describe only different
concentrations between specific hours of the day and night; in
the present review, we will refer to them as daily rhythms. Our
main emphasis will be on human studies.

In the womb, the fetus is exposed for approximately
9 months to the circadian, physiological, metabolic, and
behavioral rhythms of the mother. This circadian milieu is
abruptly interrupted upon birth, but nature developed the
perfect substitution: maternal milk whose composition changes
according to the circadian rhythms of the mother (4–7). Not
surprisingly, in humans the newborn ingests milk during the day
and the night, and the nutritive and non-nutritive components
change accordingly. The world health organization recommends
exclusive breastfeeding for at least the first 6 months of age to
improve child survival, healthy growth, and development but
unfortunately, breastfeeding rates in the world are low (8).

NUTRIENTS IN HUMAN MILK THROUGH
LACTATION

Human milk is an extremely complex biofluid with dynamic
composition, beginning with the first milk, colostrum, through
transitional and mature milk; it changes significantly depending
on the maternal diet, environmental factors, and whether milk
is produced for preterm or term infants (9–11). Mature human
milk composition contains 88% water, 7% carbohydrates, 4% fat,
and 1% protein (9). Protein and total amino acid concentration
is highest in colostrum 14–16 g/L, then steadily decreases to 7–8
g/L in mature milk (12). Caseins and whey proteins are the main
proteins in milk, but proteomic analysis has identified ∼1,700
different proteins (13). Fat concentration has an increasing trend
from 26 g/L in colostrum to 37 g/L in mature milk (11).
Carbohydrates are the most abundant macronutrient, in which
lactose concentration is very stable during lactation with a mean
concentration of 61.4 g/L (4), with a lower concentration in
colostrum (56 g/L) than in mature milk in which it reaches its
highest concentration (68 g/L)to support the increasing growth
of the infant [Figure 1; (16)]. Moreover, milk also has vitamins,
enzymes and coenzymatic factors, hormones, and immunological
factors [(14); Figure 1].

NON-NUTRITIVE COMPONENTS AND
IMMUNOLOGICAL FACTORS

The immune system of the newborn is immature and
human milk is rich in immunological factors. It contains

immunoglobulins, immune cells, complement proteins,
and immunomodulatory and antimicrobial factors (17–19).
Immunoglobulin A (IgA), Immunoglobulin G (IgG) and
Immunoglobulin M (IgM) are present in colostrum, but IgA
is different from that found in plasma. It is a dimer with a
joining J chain protein and a secretory component named
secretory IgA (SIgA), which increases its resistance to proteolytic
degradation in the intestine (20). Consistent with this finding,
significant quantities of SigA are found in the infant stool,
which decreases in parallel with that in milk (21). Levels of
sIgA are much larger in colostrum, in comparison with IgG and
IgM. Their levels decline from 5.4 g/L in colostrum to 1.3 g/L
in mature milk [(17); Figure 1]. Lactoferrin, an iron-binding
glycoprotein with bacteriostatic and bactericidal activity against
Escherichia coli, Candida albicans, and other pathogens, such as
viruses (22), is higher in colostrum (5 g/L) than in mature milk
[1.4g/L; (17); Figure 1]. In addition, human breast milk contains
pluripotent stem cells and leucocytes (23–26), plus inflammatory
and anti-inflammatory cytokines (27). Polyunsaturated fatty
acids, such as docosahexaenoic (DHA) and arachidonic (ARA)
acids, have immunomodulatory properties and participate in
several developmental and cognitive processes (28). Contrary
to the common belief that human milk is sterile, it has been
established that in mature milk, the infant consumes ∼8 X
104-106 commensal bacteria, fungi, and viruses that colonize the
infant gut to form a microbiome that allows proper development
of the immune system (9, 29). Also, breastmilk contains ∼1,400
species of mature microRNAs that are absorbed by the intestinal
epithelial cells and are involved in immunomodulatory and
epigenetic regulation (30, 31). Milk also contains a complex
array of approximately 200 oligosaccharides, which have
important immunological properties and are essential to the
development of a “healthy” microbiome. Their concentration is
highest in colostrum (20–25 g/L) and decrease through lactation
to 5–20 g/L (14, 32). Cannabinoids are among the several
neurochemicals found in milk; these include anandamide (AEA)
and 2-arachidonoyl glycerol (2-AG), the latter in much larger
concentration [(33); Figure 1]. Thus, milk is a complex biofluid
that contains myriad nutritive and non-nutritive components.
Human milk has an addition allevel of complexity: it reflects
circadian rhythms of the mother.

DIURNAL CHANGES IN MILK
COMPONENTS

In human milk, there are circadian hormonal variations,
including glucocorticoids (GLUC), melatonin, (MEL), Leptin,
Ghrelin, and others. Plasma GLUC increases during the last
phase of the night, reaches a peak during the morning, and then
decreases (34). In contrast, MEL increases during the night and
it is almost negligible in plasma during the day (35). GLUC and
MEL may communicate “time of day and night” to the body;
they are associated with alertness and sleep phases. GLUC and
MEL are transferred to breast milk, and their concentration
mirrors that in plasma. GLUC concentration in human milk
is higher in the morning. MEL levels are low in the evening
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FIGURE 1 | Components of human milk and differences between colostrum and mature milk. (A) Macro and micronutrients, components of the immune system, and

other components. Modified from (7, 9, 10, 14, 15). (B) Concentration of some components in colostrum and in mature milk. Modified from (4, 11–14, 16).

and the first part of the night, then increase again (5, 36). At
3–4 days after parturition MEL is below the limit of detection
between 1,400 and 1,700 h, but during the night between 0200
and 0400 it reaches a concentration of 99 ± 26 pmol/L (6, 35).
Concentration in human milk of another hormone, Leptin,
is significantly higher during 10 pm and 4 am compared to
10 am−10 pm (37). Lipids increase in the morning, reach a
peak from midday to evening, and reach lower values at night
(38–40). Ghrelinisalso present in human milk as well as insulin,
adiponectin, obestatin, and other metabolic hormones (15, 41).
No diurnal differences have been found among these latter
hormones or in total proteins, carbohydrates, and lactose, or
there are controversies about their diurnal differences (42, 43).
However, of 17 amino acids explored, only a clear rhythm of
tryptophan was observed in colostrum, transitional, and mature
humanmilk with an acrophase at approximately 0400 h, and then
its levels decrease and reach a nadir during the afternoon (7). In
mature milk, clear rhythms were detected also in methionine,
aspartic acid, histidine, phenylalanine, and tyrosine, with an
acrophase at different times of the day (7). In mature milk, there
are also rhythms of nucleotides, adenosine 5’monophosphate
(5’AMP), guanosine 5’monophosphate (5’GMP), uridine
5’monophosphate (5’UMP),cytidine5’monophosphate (5’CMP)
and inosine 5’mono‘hosphate (5’IMP), the first three with higher
levels during the night and the latter two during the day (44). In
mature milk, 2-AG showed significantly higher concentration
during the day than during the night, which mirrored plasma
levels in the mother [(33); Figure 2A].

DIURNAL CHANGES IN IMMUNOLOGICAL
FACTORS

Earlier studies reported no differences in concentration of IgA,
IgM, and IgG between day and night (46, 47). Further, in a

study of 36 mothers, colostrum, transitional and mature human
milk, sIgA was higher during the day at 12:00 h than during
the night at 24:00 h. IgG and IgM were also higher during the
day than during the night in transitional and mature milk [(48);
but see (19)]. C3 and C4 complement proteins, which opsonize
pathogens and participate in the innate and adaptive response,
increased significantly in colostrum during the diurnal period in
humans (48). There are also reports about significant differences
between day and night concentrations of cytokines IFNγ, IL4,
IL5, and IL10 (49, 50). No diurnal differences have been found
in Lactoferrin concentrations (46).

PHYSIOLOGICAL IMPORTANCE OF
DIURNAL CHANGES IN MILK
COMPONENTS

During late pregnancy the fetus expresses rhythms of total
activity, heart rate, and general and breathing movements (51–
53). This is not only a response to maternal rhythms, as the
fetal brain is necessary for the integration of the mother’s cues
(54). Disruption of circadian rhythms during pregnancy leads
to an array of negative pregnancy outcomes, such as increased
frequency of miscarriage, preterm infant delivery, and low birth
weight (55). Upon birth the newborn is exposed to a variety
of manipulations and environmental changes and time of the
establishment of circadian rhythms of CORT,MEL and day/night
rest and sleep rhythm vary widely at 3–6 months of age (56).
In a study in which the infant was breastfed on demand during
the day and night and exposed to light only during day time,
the circadian rhythms of temperature, sleep/wake, and MEL
were detected during the first week and at 30 and 45 days of
life, respectively (57), significantly earlier than most reports.
Accumulating evidence reveals the benefits of changes in milk
components and environmental conditions for the infant.
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FIGURE 2 | Daily rhythm in some milk components and effect of light/dark conditions on infant development. (A) Changes in concentration of glucocorticoids (GLUC),

melatonin (MEL), tryptophan (TRP), fat and 2-arachidonoyl glycerol (2-AG) in 24 h. Modified from (5, 6, 33, 35, 36). (B) Effect of constant light (Light/Light) or 12 h light

and 12 h dark (Light/Dark) on food intake (FI), weight gain (WG), and length of hospital stay in infants at the neonatal intensive care unit (NICU). Blue line and dashed

lines infants in Light/Dark; Red line and dashed lines infants in Light/Dark. Note the shorter hospital stay and the increase in food intake and weight gain in infants in

Light/Dark cycle in comparison to infants in Light/Light conditions. Modified from (45).

The higher concentration of tryptophan and nucleotides
5’AMP, 5’GMP, and 5’UMP may play an important role as
sleep promoters. It has been established that adenosine decreases
cellular activity and is a somnogen (58). In agreement, there
is an increase of 5’GMP in adult human plasma during sleep
in the night in comparison to the period of wakefulness (59).
In human milk, the concentration of 5’AMP, 5’GMP, and
5’UMP is higher during the night than during the day (44).
The effect of the differential concentration of tryptophan and
the nucleotides was tested in children. Sleep-wake cycle in
newborns is not established and they nurse during the day and
the night (60). They ingest tryptophan and nucleotides during
the night, when the concentrations are highest. Tryptophan
is a precursor of the hormone melatonin, and its ingestion
corresponds with the variable levels of 6-sulfatoxymelatonin in
urine, a metabolite of melatonin (61). To test the effect of
this amino acid on sleep, tryptophan was added to formula
milk, along with 5’AMP and 5’UMP to children 4–20 weeks
of age. Children that received formula with this amino acid
and nucleotides from 18:00 to 06:00 h showed a reduction in
their latency to sleep as well as an increase in their hours of
sleep (62). In another study of the same group, 8–16 month
old children were fed a cereal enriched with tryptophan, 5’AMP,
and 5’UMP during the night. Actigraphic recording revealed
an improvement in sleep parameters (63). These experiments
support the assumption that tryptophan, 5’AMP, 5’UMP, and
MEL in human milk during the night improve infant sleep and
help to consolidate their sleep/wake cycle. Vitamin B12 also may
improve sleep in children. In humans, it has been associated
with the modulation of sleep and circadian rhythms (64–66),
and its deficiency during pregnancy has been associated with
a subsequent increase in the infants’ crying (67). Together the
evidence indicates that there are chronobiotic substances in milk
that contribute to the establishment of the sleep-wake cycle of the
infant. Indeed, a recent study demonstrates that breastfed infants

achieved a circadian rest-activity rhythm at 6th week age in
contrast to 12 weeks in mixed, formula and breastmilk-fed babies
(68). Exclusively breastfed infants had better sleep parameters
in comparison to formula-fed infants (69). Infants at 2 months
of age who were breastfed, in contrast to formula-fed infants,
had a significantly lower frequency of colic attacks and severity
of irritability attacks, which was associated with the night-time
consumption of MEL through milk (70).

MEL has a strong interaction with the immune system.
Human lymphocytes contain membrane MEL receptors
which suggest that they can detect physiological changes in
this hormone (71). In vitro studies have demonstrated an
effect of MEL on the phagocytic activity of mononuclear
and polymorphonuclear lymphocytes from colostrum. When
exposed to Escherichia coli, in the presence of MEL, these cells
increase their phagocytic, and bactericidal activity by stimulating
cellular oxidative metabolism (6). In another example, TNF-α, a
regulator of inflammatory processes, which is present in human
milk, inhibits the in vitro synthesis of MEL in the ratpineal gland
(72). This information is relevant, as cesarean section delivery
in humans increased the production of TNF-α in colostrum, in
parallel with a suppression of the nocturnal MEL increase (50).
This can lead to an inflammatory process and to a disruption of
the beneficial actions of MEL in the newborn. There are reports
that the addition of nucleotides to formula milk significantly
increased weight gain (73) and the rate of the occipitofrontal
head circumference gain in infants 2 months of age (74). Infants
fed with milk supplements enriched with DHA had a lower
incidence of bronchiolitis and bronchitis during the first year of
age (75).

The high level of 2-AG cannabinoids in human milk may
modulate the infant’s food intake, and this also can be influenced
by the weight of the mother. Milk of overweight and obese
mothers has a larger concentration of 2-AG and this may have an
impact on the body mass index of the infant because of the effect
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of endocannabinoids on food intake and the hedonic properties
of food (33, 76, 77). Overweight mothers give birth to overweight
babies (78). Cannabinoids are involved in development, as the
administration of an antagonist of the CB1 receptor within the
first day after birth in mice; inhibited milk ingestion due to an
impairment of the pup’s suckling response (79). This evidence
and that cannabinoids are one of the few compounds in human
milk with diurnal variation; suggest that they play an important
role for the infant. It is noteworthy that breastfeeding also has
important benefits for the mother, as it reduces the risk of ovarian
cancer, mammary cancer, and postpartum depression (80).

EFFECTS OF ENVIRONMENTAL
LIGHT/DARK CYCLE ON NEONATES

The importance of circadian rhythms for the wellbeing of infants
has been reported in preterm infants in a neonatal intensive care
unit. After parturition, premature infants were separated from
their mothers and usually did not ingest their mother’s milk.
The infant’s pineal in humans does not secrete MEL, and those
infants were maintained in constant light conditions (81). This
strategy severely affected their survival. Infants in this facility
maintained in constant light had a lower weight gain, spent more
days on the ventilator and on phototherapy, displayed lower
motor coordination, and showed a delayed response to be fed
orally, in contrast to babies maintained in a cycled light-dark
condition (81). In another study, a personalized helmet over the
head of the infant that covered their eyes but permitted airflow
was used to maintain 12:12 h, light/dark condition, and infants
were fed withmother’s milk. Infants under this procedure showed
faster weight gain, improved oxygen saturation, more rapidly
developed a melatonin rhythm, and attained a shorter discharge
stay in the hospital [(45); Figure 2B]. These studies are examples
of the importance of circadian rhythms after birth in infant.
Fortunately, the compelling evidence of the benefits of exposing
premature infants to a light/dark cycle is leading neonatal care
societies to recommend this practice for clinical applications (82).

CONCLUSION

The complexity of milk stands in sharp contrast to the concept
of simple food for the infant. The analysis of milk components
and their diurnal changes has led to the enrichment of milk

substitutes. Unfortunately, there is only limited research on the
role of breastfeeding and control of light-dark conditions in
the establishment of infant circadian rhythms and wellbeing.
Based on the evidence reviewed herein, we consider this issue
to deserve attention, as regarding infant nutrition, there is
increasing use of milk supplements, which are devoid of myriad
nutritive and non-nutritive components, and lack the diurnal
rhythms inherent in breastmilk. Long-term studies demonstrate
that breastfeeding, in contrast to infant formula, has multiple
benefits: decreased risk of developing obesity and type 2
diabetes, gastrointestinal, ear, and respiratory tract infections,
and improved cognitive neurodevelopment and mental and
behavioral health (83–85). Many of these benefits are epigenetic,
via the components of breast milk, including the infant’s
microbiome (86). In a recent survey of 130 countries, it
was concluded that suboptimal breastfeeding causes ∼600,000
child deaths/year primarily from pneumonia and diarrhea (87).
Moreover, breastfeeding since birth is effective in preventing
death in premature babies, in contrast to conventional care
practices (88). A milk substitute cannot replace the complex
composition and diurnal dynamic changes of breastmilk, so
major approaches must be developed to promote the benefits
of breastfeeding over commercial formula to optimize infant
nutrition and subsequent health. Thus, the control of the
light/dark conditions (89) in addition to the circadian variations
in milk components through exclusive breastfeeding every 2–
5 h (57), is strongly recommended as an important strategy to
improve health and proper infant development.
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