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� Inhibiting ferroptosis could alleviate
acute kidney injury following crush
syndrome.

� Iron overload produced by myoglobin
degradation is a risk factor for
ferroptosis.

� HMGB1 and souble-stranded DNA
trigger ferroptosis via multiple
signaling pathways.

� Crosstalk between inflammation and
ferroptosis.

� Inhibition of ferroptosis by alleviating
inflammation and anti-lipid
peroxidation.
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Background: Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life
after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria,
hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS.
There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death.
However, the role of ferroptosis has not been fully revealed in CS-AKI.
Aim of review: This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related
molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new
ideas for the treatment of CS-AKI.
Key scientific concepts of review: One of the main pathological manifestations of CS-AKI is renal tubular
epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin.
Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the
normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron
levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis.
Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules
(HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to pro-
mote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target
remains unclear. In our current work, we systematically reviewed the occurrence and underlying mech-
anism of ferroptosis in CS-AKI.
� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Crush syndrome (CS), also known as traumatic rhabdomyolysis,
is a group of symptoms characterized by ischemic necrosis of mus-
cle tissue resulting from prolonged compression of the limbs or
trunk by gravity, accompanied by acute kidney injury (AKI), elec-
trolyte metabolism disorder, and hypoglycemic shock after the
release of compression [1,2]. AKI is one of the most fatal complica-
tions of CS [3]. The pathogenesis of CS-AKI is very complex and
may be related to renal ischemia–reperfusion injury (I/R), systemic
inflammation and excessive myoglobin (Mb) deposition in renal
tubules released by damaged muscle tissue [4,5]. It was reported
that 41.6 % of patients with CS developed AKI after the Wenchuan
earthquake in China [6]. Although some therapies have tried to
improve outcomes through dialysis and kidney transplantation,
most patients die from multiple organ failure as a result of sys-
temic inflammatory response [7].

Ferroptosis is defined as a new form of cell death and character-
ized by intracellular iron retention, reduced glutathione (GSH)
level, and accumulation of iron-dependent lipid reactive oxygen
species (ROS) [8,9]. The morphological characteristics of ferropto-
sis are different from apoptosis, necroptosis or autophagy, which
are manifested by mitochondrial contraction, increased mitochon-
drial membrane density and disappearance of mitochondrial crest
[10,11]. Direct evidence suggested that ferroptosis inhibitors
improved renal function in CS-AKI mice [12]. This suggested that
ferroptosis played an important role in AKI following CS and might
be a potential therapeutic target.

Given the association between elevated serum iron levels and
poor outcomes in patients with AKI, ferroptosis might be a risk fac-
tor in CS complicated with AKI. In this paper, we reviewed recent
studies to elucidate the pathological process of CS-AKI from the
perspective of ferroptosis, and to provide new targets and clues
for the treatment of this fatal disease.
Pathogenesis and diagnosis of CS complicating AKI

CS was first described by Bywaters et al. who found that the
patients buried in the collapsed building showed the characteris-
tics of limb swelling, circulatory disorder, dark urine (now identi-
fied as myoglobinuria) and finally died of kidney failure [13]. AKI
is one of the serious complications of CS. The pathogenesis of CS-
AKI has not been fully understood, but is currently thought to
include at least the following aspects: I/R, systemic inflammation
and rhabdomyolysis [4,5]. Prolonged stress reduces renal blood
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flow, and when the crush is lifted, the kidney regains blood supply
and the subsequent I/R leads to ROS production as well as inflam-
matory response [5]. During rhabdomyolysis, muscle cells break
down releasing large amounts of Mb, while Mb enters the renal
tubules after glomerular filtration and then precipitates to form
casts that blocking the tubules and causing severe damage or even
death of tubular epithelial cells, eventually leading to AKI [14]. AKI
is defined as a sudden (within 48 h) decline in renal function, clin-
ically observed as an absolute increase in serum creatinine greater
than or equal to 0.3 mg/dl, or a decrease in urine output (recorded
less than 0.5 mL/kg/h for more than 6 h). In addition, continuous
creatinine clearance test (within 1–24 h), urine analysis and urine
microscopy are also used as diagnostic reference indicators [15].
Ferroptosis is a new link between CS and AKI

Due to the complexity of AKI pathogenesis, more and more cell
death forms have been observed, including apoptosis, necrosis,
autophagy and ferroptosis, etc (Fig. 1). In animal studies related
to CS-AKI, apoptosis and autophagy of renal tubular epithelial cells
(RTECs) have been reported, which are thought to correlate with
the severity of AKI. For example, 0.9 mg/mL Mb could enhance
apoptosis by upregulating autophagy levels in BUMPT cells (a RTEC
cell line), while glycerol-induced AKI (8.0 mL/kg of 50 % glycerol
intramuscularly injection, this model was considered to be the
ideal chemically induced CS-AKI model to simulate rhabdomyoly-
sis in the CS state [16]) was significantly attenuated in autophagy-
deficient mice, which was thought to be associated with activation
of EGFR-STAT3/ATG7 axis [17]. Deferiprone is an iron-chelating
agent that has been shown to relieve glycerin-induced AKI in rats
[18]. Degradation of Mb in the rhabdomyolytic kidney resulted in
unnecessary release of free iron [19]. Melania et al. further demon-
strated that Mb induced ferroptosis in RTECs during rhabdomyoly-
sis [12]. These evidences indicated that there were various forms of
cell death in CS state, and a full understanding of these cell death
mechanisms is helpful for the treatment of CS-AKI.

The concept of ferroptosis was first formally proposed by Dixon
et al. in 2012 [20]. Prior to this concept, related inducers had been
synthesized. In 2003, Dolma et al. reported a novel compound era-
stin killed tumor cells with oncogenic RAS mutations without
involving nuclear changes and activation of caspase-3. And this
form of cell death could further block by iron chelators and antiox-
idants. These results suggested that the form of cell death was
related to the accumulation of intracellular iron and active oxida-
tion products [21,22]. Now, we have gradually understood the rela-



Fig. 1. Several main forms of cell death in AKI. The forms of cell death that have been revealed in AKI include apoptosis, necroptosis, autophagy, ferroptosis, and so on.
Apoptosis: cells contracted, nuclear chromatin condensed, DNA broken, and cells decomposed into several apoptotic bodies. Necroptosis: cells and organelles swelled and
disintegrated, cell membranes broken, and cell contents leaked. Autophagy: autophagosomes were formed and transported to lysosomes to form autophagosomes.
Subsequently, aging and damaged organelles in autophagosomes were degraded. Ferrotosis: the volume and cristae of mitochondria decreased, the density of mitochondrial
membrane increased, and the mitochondrial membrane ruptured.
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tionship between ferroptosis and some diseases, such as tumor
[23], cardiovascular disease [24], and Alzheimer’s disease [25]. As
we know that, inhibition of cystine/glutamate antiporter system
(system Xc

�) on cell membrane depleted intracellular GSH [26].
As a result, glutathione peroxidase 4 (GPX4) was limited in con-
verting lipid hydroperoxides into lipid alcohols by GSH, and could
not effectively scavenge ROS and lipid reactive substances, conse-
quently inducing ferroptosis [27]. Iron bound with transferrin
(TF) in plasma mainly in the form of Fe3+ and was transported to
bone marrow or other iron-requiring tissues [28]. The transferrin
carrying Fe3+ further bound to the transferrin receptor 1 (TFR1)
on the cell surface to form TF-TFR1 complex, which was internal-
ized into endosomes [29,30]. Subsequently, endosomal acidifica-
tion resulted in the separation of Fe3+ from TF, which was then
reduced to Fe2+ and transported to the cytosol through divalent
metal ion transporter-1 (DMT1) [31]. Under physiological condi-
tions, intracellular Fe2+ was maintained at 0.2–0.5 lM to maintain
metabolic requirements [32]. When iron was overloaded, Fe2+

could produce a large number of lipid reactive oxygen free radicals
through Fenton reaction [33]. In addition, Fe2+ also participated in
the synthesis of lipoxygenase and then catalyzed lipid peroxidation
[34], both of which could induce ferroptosis.

Currently, a potential link between AKI and ferroptosis has been
confirmed in several studies. For example, tubular cells were
highly sensitive to ferroptosis in vitro [35]. Li et al. demonstrated
that Α-Lipoic acid could alleviate the folic acid induced AKI by
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reducing the accumulation of ROS, lipid peroxidation and intracel-
lular iron overload [36]. Oreoluwa et al. suggested that HO-1 could
antagonize ferroptosis to alleviate AKI severity [37]. AKI caused by
CS (CS-AKI) was not uncommon in clinic. Curcumin reduced rhab-
domyolysis induced kidney injury by alleviating ferroptosis in a rat
model of glycerol intramuscularly injection (10 mg/kg of 50 % glyc-
erol) [12]. Although the potential pathogenic mechanism has not
been clarified, several key links have been revealed. The systemic
inflammatory response following CS as well as Mb metabolism-
induced iron overload were the major causes of ferroptosis in
RTECs, which were described in detail in the following sections.

Major induced mechanisms of ferroptosis in CS-AKI

As mentioned above, we have introduced the pathological
mechanism of CS-AKI and the relationship between ferroptosis
and CS-AKI. In this section, we will fully describe the mechanism
of ferroptosis in CS-AKI, including Mb degradation, systemic
inflammation, and danger/damage-associated molecule pattern
(DAMP) molecules.

Iron overload caused by Mb degradation
It is considered that excessive Mb released by ruptured muscle

cells was one of the main pathological factors in CS-AKI [4]. Mb is a
binding protein composed of a globin and a heme prosthetic group,
which mainly exists in myocardium and skeletal muscle [38]. Mb



O. Qiao, X. Wang, Y. Wang et al. Journal of Advanced Research 54 (2023) 211–222
generally presents a hollow spherical structure, and almost all
polar amino acid residues are distributed on the surface of the
spherical structure, so that Mb has good water solubility, while
non-polar amino acid residues are distributed inside the spherical
structure to form a hydrophobic hole (Fig. 2) [39]. A heme pros-
thetic group consisting of a porphyrin ring and a divalent iron
ion is embedded in the hole. The divalent iron ion is located in
the center of the porphyrin ring. The nitrogen atom on the plane
of the porphyrin ring formed four coordination bonds with iron
atom, and the N atom on the imidazole ring of the 93rd histidine
residue of the globin forms the fifth coordination bond with iron
atom. Two conserved amino acid residues (histidine at position
64 and valine at position 68) are located near the sixth coordina-
tion bond of iron atom, and the gap between them accommodates
one oxygen molecule. Globin provides a hydrophobic hole for the
heme prosthetic group, preventing iron divalent from being oxi-
dized, so as to ensure the oxygenation ability.

One of the pathological mechanisms associated with CS-AKI is
the release of free divalent ions from the heme of Mb. The interac-
tion between Mb and RTECs, especially the mechanism of Mb
degradation and utilization by RTECs, needs to be further analyzed.
Previous studies have shown that Mb released from more than
100 g of damaged muscle tissue would exceed the body’s clearance
capacity, and free Mb was deposited in renal tubules [40]. In the
renal tubules, Mb bound with uromodulin (formerly known as
tamm-horsall protein) and uric acid to form tubular casting, which
led to acute renal tubule obstruction and AKI [41]. It was reported
that the endocytic receptors megalin and cubilin might be involved
in the uptake of Mb by tubular cells [42]. Subsequently, Mb was
then phagocytized by lysosomes to produce free iron and Fe2+

[19,43,44]. Excessive Mb filtration resulted in increased Mb degra-
dation products and iron overload of RTECs. Free Fe2+ could be
cytotoxic because of its ability to produce reactive hydroxyl radi-
cals through the Fenton reaction [45]. The Fenton reaction used
iron ions to catalyze the conversion of endogenous hydrogen per-
oxide to hydroxyl radicals, which were the most reactive oxidants
found in biology [46]. Thus, triggering the Fenton reaction could
promote oxidative damage and aggravate cell damage [47].
Another mechanism did not require the release of iron from heme
Fig. 2. Potential mechanisms of ferroptosis caused by Mb. Excessive Mb released
from damaged muscle cells accumulated in renal tubules and was taken up by
RTECs in receptor-mediated endocytosis (megalin and cubilin). Mb was subse-
quently acidified and degraded in the lysosomes to produce Fe2+. Accumulated Fe2+

could generate hydroxyl radicals through Fenton reaction. Both Fe2+ and hydroxyl
radicals could aggravate the oxidation process of PUFAs in cell membrane, resulting
in lipid peroxidation damage, and eventually ferroptosis. Fe2+ could be transported
by mitoferrin 2 to accumulate in the mitochondria, thus causing oxidative stress in
the mitochondria. The chemical and molecular mechanisms in this process remains
to be investigated. DMT1, divalent metal transporter 1; Mitoferrin 2, also known as
mitochondrial RNA-splicing protein 3/4 homolog (MRS3/4) or solute carrier family
25 member 28 (SLC25A28); PUFAs, polyunsaturated fatty acids; ACSL4, acyl-CoA
synthetase long-chain family member 4; FA-CoA, fatty acyl coenzyme A; LPCAT3,
lysophosphatidylcholine acyltransferase 3; 15-LO, 15-lipoxygenase; PLOOH, phos-
pholipid hydroperoxides.
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to play its deleterious role in the complex, which implied that
intact heme (Fe2+-heme) was involved in redox reactions [48]. In
kidneys, Fe2+-heme was oxidized by lipid peroxidase to generate
Fe3+-heme, which could induce lipid peroxidation through redox
action and cause oxidative damage to the kidney [48,49]. Iron over-
load and lipid peroxidation played an important role in Mb-
induced AKI, and both were considered to be major features of
ferroptosis.

However, some studies have suggested that Mb also induced
apoptosis of RTECs [50], which indicated that the damage of Mb
to RTECs was multifaceted. It is necessary to deeply explore the
mechanism of Mb-induced RTECs death. In terms of treatment,
the combination therapy of multiple targets should be considered
in the future.

Systemic inflammatory responses
Dysregulated levels of inflammatory factors. Recent studies in ani-
mal models of CS-AKI have shown dysregulation of the expression
of inflammatory factors at serum and tissue levels under patholog-
ical conditions [51]. For example, it has been shown that the levels
of IL-17 and IL-6 were significantly increased in serum and kidney
tissue of CS-AKI rats, which was thought to promote a pro-
inflammatory response dominated by Th17 cells [52]. Murata
et al. also observed that within 24 h of reperfusion in CS model rats,
the levels of serum TNF-a and IL-1b were significantly increased
[53]. As reported in several studies, ferroptosis caused different
degrees of inflammatory responses [54,55], and whether inflam-
matory factors can also promote ferroptosis is very important in
CS-AKI.

Currently, there are several studies supported the idea that
inflammatory factors also trigger ferroptosis. IL-6 is an important
pro-inflammatory factor in a variety of inflammation-related dis-
eases and has been suggested as a potential inducer of ferroptosis.
Overexpression of IL-6 in goat mammary epithelial cells could
enhance LPS-induced ferroptosis by down-regulating GPX4 expres-
sion and promoting Fe2+ accumulation [56]. Pre-treatment of bron-
chial epithelial cells with the ferroptosis inhibitor ferrostatin-1
(Fer-1) reversed IL-6-induced lipid peroxidation and dysregulated
iron homeostasis [57]. Further studies suggested that IL-6 might
promote ferroptosis by up-regulating hepcidin levels via activating
the JAK2/STAT3 pathway [58]. IL-1b has also been shown to pro-
mote ferroptosis in multiple cellular models. In a study of ATDC5
cells (a mouse chondrogenic cell line), treatment of cells with
10 ng/mL IL-1b resulted in an approximately 2-fold increase in
Fe2+ concentration and a significant decrease in the expression
levels of GPX4 and solute carrier family 7 member 11 (SLC7A11)
[59]. The cytotoxicity of IL-1b on chondrocytes was attenuated
using the Fer-1, indicating that IL-1b induced ferroptosis in chon-
drocytes. Moreover, IL-1b was also thought to be essential in high
fat diet-induced iron accumulation and dysfunction in retinal pig-
ment epithelial cells, and the pattern of IL-1b dependent iron accu-
mulation was defined as a cellular iron sequestration response
[60]. Notably, the maturation and release of IL-1b depend on
NOD-like receptor protein (NLRP, such as NLRP3 and NLRP1)
inflammasome formation and subsequent caspase-1 activation
[61]. Although accumulating evidence suggested that NLRP activa-
tion was a prominent feature of pyroptosis [62,63], some recent
studies also suggested that the expression level of NLRP3 inflam-
masome was linked with ferroptosis [64]. Moreover, ferroptosis
and NLRP were mutually affected. In a model of oxidative stress
in HTR-8/SVneo cells, silencing NLRP1 decreased the level of
GPX4 but increased the levels of TFR1 and acyl-CoA synthetase
long-chain family member 4 (ACSL4). On the other hand, inhibition
of ferroptosis with Fer-1 significantly decreased the expression
levels of NLRP1, NLRP3, IL-1b and caspase-1 [65]. The interaction
between NLRP and ferroptosis biomarkers indicated that ferropto-



Fig. 3. Molecular mechanisms of ferroptosis caused by several identified DAMP molecules in CS (rhabdomyolysis) –AKI (A) Damaged muscle cells released a large amount of
HMGB1, which was recognized by RAGE and TLRs in RTECs, causing ROS accumulation and lipid peroxidation damage by blocking Nrf2 pathway. dsDNA could activate cGAS
to up-regulate AFT and directly inhibit SLC7A11 expression, resulting in GSH depletion. System Xc� was an important intracellular antioxidant system, which consisted of two
subunits, SLC7A11 and SLC3A2. SLC7A11 was responsible for the major transport activity and was highly specific for cystine and glutamate, whereas SLC3A2 acted as a
chaperone protein. Inhibition of System Xc� activity would inhibit the cystine uptake and affected the synthesis of GSH, leading to reduced GPX4 activity and reduced cellular
antioxidant capacity, thereby promoting ferroptosis. (B) Activated platelets induced macrophages to form ETs during rhabdomyocytolysis, which have been shown to
promote ferroptosis via dsDNA, HMGB1, and so on. HMGB1, high mobility group box 1; RAGE, the receptor for advanced glycation end products; TLRs, toll-like receptors;
Nrf2, nuclear factor erythroid 2-related factor 2; dsDNA, double-strand DNA; cGAS, cyclic GMP-AMP synthase; AFT3, activating transcription factor 3; SLC3A2, solute carrier
family 3 member 2; SLC7A11, solute carrier family 7 member 11; GSH, glutathione; GPX4, glutathione peroxidase 4.
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sis was associated with other forms of cell death, but further
molecular biological experiments were needed to prove.

Leaked DAMP m0128olecules. In addition to dysregulation of
inflammatory cytokines, another cause of systemic inflammation
caused by CS-AKI is the release of a large number of DAMP mole-
cules, such as high mobility group box 1 (HMGB1), double-strand
DNA (dsDNA), etc. These DAMPs were endogenous dangerous
molecules released by damaged muscle cells or other cells during
215
rhabdomyolysis, which were not only thought to contribute to
aseptic inflammatory outbursts, but were also considered to be
potential inducers of ferroptosis.

HMGB1 has been shown to be released in large amounts in CS-
related animal models [66]. HMGB1 is one of the major members
of the high mobility family of proteins and is a eukaryotic intranu-
clear DNA binding protein that localized to human chromosome
13q12, and its main intracellular role is to stabilize the structure
of chromosome [67]. HMGB1 consists of 215 amino acid residues
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and contains three structural domains, the A box located at amino
acid residues 9–79 in the N-terminus, the B box located at amino
acid residues 89–163, and the acidic C-terminal structural domain
consisting of aspartate and glutamate residues with various
lengths located at amino acid residues 186–215 in the carboxyl ter-
minus [68]. The A box of HMGB1 contains the binding site for the
HMGB1 protein receptor, while the B box serves as a pro-
inflammatory structural domain [69]. Extracellular HMGB1 mainly
acts as an inflammatory mediator, causing a strong inflammatory
response by up-regulating the expression of inflammatory cytoki-
nes such as IL-1b, TNF-a and IL-6 through the receptor for
advanced glycation end products (RAGE) and toll-like receptors
(TLRs) [70]. HMGB1 is expressed in almost all human cells and is
released by dying cells and activated immune cells [71]. Recently,
it has been suggested that the massive release of HMGB1 might be
the trigger of ferroptosis (Fig. 3A). For example, it has been shown
that knockdown of HMGB1 in HL-60/NRASQ61L cells alleviated
erastin-induced ferroptosis by decreasing TFR1 expression, which
might be associated with JNK/p38 signaling pathway [72]. In the
high glucose-induced mesangial cells model, HMGB1 was demon-
strated to regulate glucose-induced ferroptosis through Nrf2 sig-
naling [73]. Unfortunately, the release of HMGB1 from cells has
been shown to be the result of ferroptosis, causing an undesirable
vicious cycle [74]. These evidences suggested that HMGB1 might
be a new regulator of ferroptosis.

Recently, endogenous release of dsDNA was also considered to
play a role in the pathogenesis of CS-AKI (Fig. 3A). In the rhab-
domyolysis induced AKI mouse model, the damaged muscle cells
released a large amount of dsDNA to trigger the kidney epithelial
injury and inflammation [75]. It has been shown that dsDNA could
be recognized by cyclic GMP-AMP synthase (cGAS), leading to
innate immune response and/or cell death [76]. cGAS was a known
dsDNA sensor that recognized dsDNA to induced various forms of
cell death via the cGAS-STING signal transduction [77–79]. Activat-
ing transcription factor 3 (ATF3), a common stress sensor, has been
reported to promote ferroptosis by directly inhibiting SLC7A11 to
reduce GSH levels in cells [80,81]. Although it has been reported
that cGAS might trigger ferroptosis through the ATF3-SLC7A11-
GPX4 axis [82], the regulation of ATF3 expression by the cGAS sig-
naling pathway in CS-AKI needed to be further investigated. More-
over, the mechanism by which the activation of cGAS signaling by
dsDNA triggers ferroptosis in CS-AKI remains to be determined.

In addition, another form of DAMP extracellular trap (ET) was
also thought to be associated with ferroptosis (Fig. 3B). ETs were
first discovered in neutrophils, which were formed by releasing
histones, combination of DNA, antimicrobial peptides, and granule
proteins from neutrophils to the extracellular area in response to
stimulation [83]. ETs were originally considered as a host defense
against bactericidal proteins and peptides [84]. However, some
studies have raised the negative impact of ETs. For example, Wei
et al. suggested that neutrophil ETs and their histone components
had significant inflammatory damage to mammary epithelial cells
[85]. Currently, more immune cells have been found to participate
in the formation of ETs, including macrophages, mast cells and
eosinophils [86]. In the study of CS-AKI related animal models,
heme-activated platelets released from necrotic muscle cells pro-
moted the production of macrophage ETs (METs) by increasing
ROS levels and histone citrullination, which aggravated rhabdomy-
olysis induced AKI [87]. Moreover, the SFK-signaling pathway was
demonstrated to be involved in heme-activated platelet-induced
METs formation [88]. Notably, METs have been shown to drive
hepatocyte ferroptosis in hepatic I/R and could be reversed by
the METs specific inhibitor Cl-amidine [89]. Therefore, exploring
the mechanism of MET and regulating it appropriately was helpful
to treat and control CS-AKI.
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Treatment targets of AKI based on ferroptosis

Current treatment options mainly focus on early fluid resuscita-
tion, diuresis and kidney replacement therapy which including
hemodialysis, kidney transplantation, etc [2,90]. However, these
treatment options are often limited by the lack of equipment at
the disaster site and the high technical difficulty, making it difficult
to administer effective treatment to patients. The research on
pharmacological treatment of CS is important.

Anti-inflammatory effects via down-regulating ACSL4
Given the above-mentioned relationship between ferroptosis

and inflammation, it was not difficult to understand that inhibition
of ferroptosis might reduce the inflammatory response in patients
with AKI. Recently, several studies have reported that ferroptosis
inhibitors showed significant benefits in certain diseases via anti-
inflammatory effects.

ACSL4, a critical isoenzyme of polyunsaturated fatty acid meta-
bolism, has been identified as not only a sensitive regulator of fer-
roptosis but also an important factor in the occurrence of
ferroptosis [91]. ACSL4 used longer polyunsaturated fatty acids
(PUFAs) as substrates, such as arachidonic acid. ACSL4 catalyzed
the conversion of free arachidonic acid to arachidonic acid-CoA
ester, which was then esterified through interaction with mem-
brane phospholipids, leading to ferroptosis [92,93]. Emerging evi-
dence suggested that ACLS4 might be a key node linking
ferroptosis and inflammation. In the renal tissue of ACSL4-
deficient mice, the levels of inflammation and macrophage infiltra-
tion were down-regulated and ferroptosis was alleviated [94]. Tao
et al. found that dexmedetomidine could significantly attenuate
ferroptosis-mediated kidney injury and effectively down-regulate
the inflammatory response after kidney injury, while overexpres-
sion of ACSL4 attenuated the alleviating effects of dexmedeto-
midine on ferroptosis and inflammation [95]. In addition,
activation of ferroptosis and up-regulation of ACSL4 in ker-
atinocytes contributed to the release of pro-inflammatory cytoki-
nes [96]; ACSL4 could also activate ferroptosis to aggravate the
severity of ischemic stroke and promote microglia-mediated
inflammatory response [54]. Therefore, ACSL4 has a critical role
between inflammation and ferroptosis. However, the disease
model mechanism of the above studies was complex, and it was
difficult to exclude the influence of other interfering factors on
the relationship between ferroptosis and inflammation. Direct evi-
dence was also needed to prove whether inhibition of ferroptosis
via targeting ACSL4 was beneficial to alleviate inflammation.

Anti-HMGB1
DAMPs are major mediators of the inflammatory response and

may also act as inducers of ferroptosis, so antagonizing DAMPs
may simultaneously anti-inflammatory and inhibit ferroptosis. As
mentioned above, HMGB1 was considered as a critical regulator
of ferroptosis, and also acted as an inflammatory mediator. There-
fore, it is worth considering whether HMGB1 can be used as an
effective target for ferroptosis.

Recently, some studies have reported the possible protective
effect of inhibiting HMGB1. For example, Wu et al. used siRNA to
interfere with HMGB1 expression to alleviate high glucose-
induced ferroptosis in mesangial cells [73]. Dexrazoxane is an iron
chelator approved for the prevention of doxorubicin-induced car-
diotoxicity in oncology patients [97]. A recent study revealed that
dexrazoxane antagonized doxorubicin-induced ferroptosis in car-
diomyocytes by regulating HMGB1 [98]. In a neonatal rat model
of hypoxic-ischemic brain injury, the HMGB1 inhibitor glycyrrhizin
attenuated neuronal ferroptosis by up-regulating the GPX4 signal-
ing pathway, and this effect could be reversed by the ferroptosis



Fig. 4. Chemical structure of Fer-1, Lip-1 and their analogues for inhibiting ferroptosis. (A) Chemical structure of Fer-1. (B-H) Chemical structure of Fer-1 analogues. The
aromatic primary amines and N-cyclohexyl portion were the key functional groups of Fer-1 antioxidant activity. Moreover, the N-cyclohexyl portion aslo acted as a lipophilic
anchor within the cellular biofilm. The SRS 16–86 had better plasma stability and stronger inhibition of ferroptosis compared to Fer-1. The amide group and sulfonamide
subunit provide Lip-1 with good stability and drug absorption distribution. Both Fer-1 and Lip-1 are monoarylamines. In contrast, diarylamines such as phenoxazines and
phenothiazines have stronger pharmacodynamic activity. The underlying chemical mechanisms need to be further explored.
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inducer RAS-selective lethal 3 (RSL3) [99]. In addition, some stud-
ies have shown the benefits of anti-HMGB1 antibody in the treat-
ment of inflammatory diseases and metabolic diseases [100,101].
However, there are no anti-HMGB1 antibody therapeutic applica-
tions in CS-AKI, and its efficacy and safety need to be considered
in depth in future work.
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Regulator of lipid peroxidation pathway
One distinguishing feature of ferroptosis is excessive iron-

dependent lipid peroxidation, and inhibition of lipid peroxidation
can antagonize ferroptosis [102]. Fer-1 and Liproxstatin-1 (Lip-1),
two aromatic amines identified from a high-throughput screening
library, have been shown to be efficient radical trapping antioxi-
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dants in lipid bilayers, suggesting that they inhibit ferroptosis in
AKI by suppressing lipid peroxidation [103,104]. Structural modifi-
cation of Fer-1 revealed that elimination of the N-cyclohexyl por-
tion (CA-1) or replacement of aromatic primary amines with
nitro (SRS 8–24) was able to disrupt the antioxidant capacity of
Fer-1 and its ability to prevent erastin (10 M)-induced HT-1080 cell
death, suggesting that these two groups are critical for the antiox-
idant capacity of Fer-1 (Fig. 4A–C). Moreover, the N-cyclohexyl
portion located in the central aromatic nucleus acted as a lipophilic
anchor within the cellular biofilm [20]. However, it has also been
shown that the aniline monosubstituted analogue of Fer-1 on the
parent nucleus had comparable or better potency than Fer-1
[105,106] (Fig. 4D–E). Linkermann et al. identified a third genera-
tion Fer-1 analog, SRS-16–86, which had better plasma stability
and stronger inhibition of ferroptosis in renal tubular cells com-
pared to Fer-1 [107] (Fig. 4F–H). Lip-1 contained both amide and
sulfonamide subunits, therefore it had good stability and drug
absorption distribution (Fig. 4I). Lip-1 inhibited ferroptosis at low
nanomolar doses but did not interfere with other typical cell death
patterns [106]. Both Fer-1 and Lip-1 were monoarylamines and
were less effective than diarylamines because the aromatic ring
of monoarylamines was replaced by an electron-donating group
(amine in Fer-1, amidine in Lip-1), which weakened the NAH bond
of the amino group, thus phenoxazines and phenothiazines were
more effective in comparison [108] (Fig. 4J–M). These studies pro-
vided a reference for further optimization of Fer-1 and Lip-1 struc-
tures to develop safer and more efficient drugs by targeting
ferroptosis.

Iron chelators could rescue experimental AKI and inhibit ferrop-
tosis [109,110]. Different kinds of iron chelators vary in structure
and function, but they usually contain oxygen, nitrogen, or sulfur
donor atoms that form coordination bonds with iron [111]. Iron
chelators are required to compete effectively with biological
ligands that normally bind iron, therefore, the chelators’ affinity
for iron will greatly affect their activity as therapeutic agents. Iron
chelators can inhibit the redox properties of free iron and prevent
its participation in Fenton reaction. The role of iron chelators in
hindering the Fenton reaction can inhibit the production of hydro-
xyl radicals that cause oxidative damage and ferroptosis [112].
Currently, there are only three iron-chelating agents approved for
clinical use: deferoxamine, deferiprone and deferasirox. Deferox-
amine is a 6-ligand iron-chelating agent that binds to Fe3+ in a 1:1
ratio and is used in the treatment of hemochromatosis, tha-
lassemia, sickle cell anemia [113]. However, the use of Deferiprone
is limited by poor intestinal absorption and rapid renal excretion
[114]. Deferiprone is a hydrophilic drug with a long half-life of
about 3–4 h. Deferiprone is available as an oral formulation in
doses of 75–100 mg/kg/ day in three doses [115]. Ddeferasirox
has a half-life of 8–16 h and is prescribed in doses of 10–40 mg /
kg/ day, administered 1–2 times daily [115]. However, iron-
chelating agents have only been shown to be effective in experi-
mental AKI. The therapeutic effect of iron-chelating agents on CS-
AKI remains to be explored. Potential side effects of iron-
chelating agents should be fully considered before use.

In addition, some natural small molecular compounds (NSMCs)
also have significant inhibitory effects on ferropsis. For example,
nuciferine could inhibit folic acid-induced acute kidney injury in
mice by limiting iron accumulation and preventing lipid peroxida-
tion [116]. Pachymic acid inhibited mice renal ferroptosis by acti-
vating Nrf2 to upregulate the expression of GPX4, SLC7A11 and
HO-1 [117]. Ginsenoside Rg1 inhibited RTEC ferroptosis by reduc-
ing iron accumulation and lipid peroxidation reaction through fer-
ropsis suppressor protein 1 (FSP1) [118]. Irisin could alleviate
ferropsis and kidney damage in septic-AKI mice via SIRT1/Nrf2
pathway [119]. Polydatin attenuated erastin-induced ferroptosis
by reducing excessive iron accumulation and rescuing GSH deple-
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tion, the results also showed that the effect of a 40 lM dose of
polydatin was more pronounced than that of classical Fer-1
(1 lM) and deferoxamine (100 lM) [120]. Despite the lack of ref-
erence for the treatment of CS-AKI, the above multiple types of AKI
treatment give us the idea that supplementing the patient’s diet
with these NSMCs might be beneficial to the remission of the
disease.
Discussion

The pathogenesis of CS-AKI is very complex and has not been
fully elucidated yet. It was widely accepted that the massive
release of DAMP during rhabdomyolysis leads to renal tubular
occlusion and renal ischemia, causing acute tubular injury and
death [121]. Previous studies have suggested that there are various
forms of cell death during CS-AKI, including apoptosis and pyrop-
tosis [4]. In contrast, we found that Mb, HMGB1, dsDNA and METs
may be potential triggers of ferroptosis. Hence, ferroptosis may
play an important role as a new bridge connecting CS and AKI.

However, there is a lack of direct clinical evidence to support
the occurrence of ferroptosis in CS-AKI. We have only found this
pathological change in some relevant animal models, and many
questions remain to be answered. For example, the mechanism
of DAMP-mediated ferroptosis occurs is unknown, and there are
no specific biomarkers to assess the disease severity and the effec-
tiveness of treatment. Several studies have suggested that ferrop-
tosis could be a therapeutic target, such as Amaral et al. found
that GPX4-deficient macrophages showed enhanced ferroptosis
in vitro after infection with mycobacterium tuberculosis, indicating
that the GPX4/GSH axis was a target for the treatment of tubercu-
losis [122]. Li et al. demonstrated that PI3K was an important reg-
ulator of ferroptosis resistance and that melatonin might be a new
drug for the treatment of this disease because it inhibited ferropto-
sis by activating the PI3K/AKT/mTOR signaling pathway [123].
These works provided a reference to further explore whether fer-
roptosis could be used as a target for CS-AKI.

Notably, we found that some pro-inflammatory factors (IL-1b
and IL-6) and inflammatory sensors (NLRP3 and NLRP1) were also
associated with ferroptosis, which were considered to be key
markers of pyroptosis [124], suggesting that ferroptosis may be
crosstalk with pyroptosis. However, the causal relationship was
not yet clear. At present, these evidences suggested that regulating
inflammation levels may also have therapeutic effects on ferropto-
sis, but we needed to consider how to properly regulate inflamma-
tion levels, as some data show that IL-6 has a significant
cytoprotective effect [125]. Therefore, it is important to maintain
stable levels of these pleiotropic factors in order to alleviate the
effects of ferroptosis.

How to treat CS-AKI effectively is a topic worthy of attention.
Fluid therapy is the first-line emergency treatment option for CS,
helping to protect the kidneys and heart from failure, but many
patients still die on the way to the hospital [126,127]. To avoid
AKI-related mortality in CS patients, pharmacological treatment
should be considered in addition to conventional fluid therapy.
According to the above analysis, ferroptosis inhibitors may be a
promising therapeutic agent because they can alleviate cell death,
as well as have potential anti-inflammatory effects. Nevertheless,
some ferroptosis inhibitors have achieved good results in mouse
models, their safety and effectiveness in humans have not been
fully described. In addition, how to improve pharmacological activ-
ity through structural modification is an urgent problem. Some
NSMCs have also shown great potential in the treatment of ferrop-
tosis, which are widely distributed in nature, with diverse pharma-
cological activities, and have the potential to develop new drugs
[128]. Moreover, some NSMCs often have unique parent nucleus
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structure, which has great reference value for the synthesis of
specific ferroptosis inhibitors.

In conclusion, ferroptosis may be an emerging therapeutic tar-
get for CS-AKI. The mechanisms causing ferroptosis are complex,
including but not limited to Mb metabolism, dysregulation of
inflammatory cytokines and inflammatory sensors, and DAMP
molecules accumulation. It is important to further increase our
understanding of these factors in CS-AKI. According to our analysis,
down-regulation of ACSL4, anti-HMGB1, and regulation of lipid
peroxidation pathway play beneficial roles, and more and more
new targets are being revealed. However, this still lacks validation
at the clinical level. In addition, the therapeutic approach of CS-AKI
needs improvement and innovation.
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