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Abstract
Background: Modern-day proteins were selected during long evolutionary history as descendants
of ancient life forms. In silico reconstruction of such ancestral protein sequences facilitates our
understanding of evolutionary processes, protein classification and biological function. Additionally,
reconstructed ancestral protein sequences could serve to fill in sequence space thus aiding remote
homology inference.

Results: We developed ANCESCON, a package for distance-based phylogenetic inference and
reconstruction of ancestral protein sequences that takes into account the observed variation of
evolutionary rates between positions that more precisely describes the evolution of protein
families. To improve the accuracy of evolutionary distance estimation and ancestral sequence
reconstruction, two approaches are proposed to estimate position-specific evolutionary rates.
Comparisons show that at large evolutionary distances our method gives more accurate ancestral
sequence reconstruction than PAML, PHYLIP and PAUP*. We apply the reconstructed ancestral
sequences to homology inference and functional site prediction. We show that the usage of
hypothetical ancestors together with the present day sequences improves profile-based sequence
similarity searches; and that ancestral sequence reconstruction methods can be used to predict
positions with functional specificity.

Conclusions: As a computational tool to reconstruct ancestral protein sequences from a given
multiple sequence alignment, ANCESCON shows high accuracy in tests and helps detection of
remote homologs and prediction of functional sites. ANCESCON is freely available for non-
commercial use. Pre-compiled versions for several platforms can be downloaded from ftp://
iole.swmed.edu/pub/ANCESCON/.

Background
Present-day protein sequences can be used to reconstruct
ancestral sequences based on a model of sequence evolu-
tion. Such knowledge about ancestral sequences is helpful
for understanding the evolutionary processes as well as
the functional aspects of a protein family. Existing meth-

ods of ancestral sequence reconstruction can be divided
into two main categories: Maximum Parsimony (MP)
methods [1,2] and Maximum Likelihood (ML) methods
[3-5]. MP methods do not take into account biased substi-
tution patterns between amino acids or different tree
branch lengths, and cannot distinguish those equally
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parsimonious reconstructions [3]. ML methods do not
have these limitations and generally give more reliable
results than the MP methods [6]. Yang et al. [3] first devel-
oped a ML method for ancestral sequence reconstruction.
Yang [7] also made a distinction between "joint" recon-
struction and "marginal" reconstruction. Joint reconstruc-
tion methods intend to find the most likely set of amino
acids for all internal nodes at a site, which yields the max-
imum joint likelihood of the tree [5]. Marginal recon-
struction compares the probabilities of different amino
acids at an internal node at a site and selects the amino
acid that yields the maximum likelihood for the tree at
that site. Marginal reconstruction can also compute prob-
abilities of all other amino acids for that node [4]. Koshi
and Goldstein [4] developed a fast dynamic programming
algorithm for marginal reconstruction in the framework
of Bayesian statistics, while Pupko et al. [5] proposed a
fast algorithm for joint reconstruction. The computational
complexities for both algorithms scale linearly with the
number of sequences. Both marginal and joint reconstruc-
tion algorithms are implemented in our program.

All reconstruction methods require a phylogenetic tree
inferred from a given alignment. The quality of the tree is
crucial for the reliability of reconstruction. A number of
methods exist for phylogenetic inference, such as maxi-
mum likelihood [8], distance-based [9] and parsimony
[1]. Distance-based methods have the advantage of being
simple and are able to handle a large set of sequences.
They require evolutionary distances estimated for all the
sequence pairs. The most common method to infer phyl-
ogeny from distances is based on the neighbor-joining
algorithm [9]. Bruno et al. [10] introduced a distance-
based phylogeny reconstruction method called "Weigh-
bor", i.e. "weighted neighbor joining", which takes into
account the fact that errors in distance estimates are larger
for longer distances. Giving similar results, Weighbor is
much faster than ML phylogeny reconstruction. It is also
better than other methods such as BIONJ [11] and parsi-
mony [1], in aspects of "long branches attract" and "long
branch distracts" problems [10]. Weighbor is used in our
program for phylogenetic inference.

Overwhelming evidence exists for substitution rate varia-
tion across sites [12-15]. For a protein family, rate hetero-
geneity reflects the selective pressure imposed by folding,
stability and function. Gamma distribution is widely used
to model the rate variation among sites [13,16,17]
because of its simplicity. Nielsen [18] suggested a method
for site-by-site estimation of rate factors by a Maximum
Likelihood approach. Rate variation among sites has not
been taken into account in the early work of ML recon-
struction of ancestral sequences [4,5]. Recently, Pupko et
al. [19] introduced rate variation into joint reconstruction
by a branch-and-bound algorithm, assuming a gamma

distribution of rates among sites. In our package, two
methods are proposed to estimate a rate factor for each
site. The first one is based on our observation that the sub-
stitution rate at a site is correlated with the conservation
of the site. The more conserved the site is in a multiple
sequence alignment, the smaller its substitution rate is.
This empirical method, the result of which we call Align-
ment-Based rate factors or αAB, relies only on a multiple
sequence alignment and a general model of amino acid
exchange. The other one is a maximum likelihood
method (αML), which requires a tree. In our implementa-
tion, we incorporate αAB or αML in the joint and marginal
reconstruction algorithms [4,5]. αAB is also used in the
Maximum Likelihood estimation of evolutionary dis-
tances [20] for tree inference.

We implement a method of evolutionary simulation that
introduces site-specific rate variations in a natural way by
imposing structural and functional constraints [21]. We
show by simulations that the reconstruction methods can
give reasonable results and that the problem of evolution-
ary distance underestimation [22] is alleviated by consid-
ering rate variation across sites.

Background (or equilibrium) amino acid frequencies (π)
are usually estimated from the target set of sequences or
from large databases of protein families. Background
amino acid frequencies estimated from a small dataset
tend to have bias, while amino acid frequencies from large
databases may not be suitable for the specific protein fam-
ily under analysis. Here, we propose a ML method to opti-
mize the amino acid frequency vector π. The optimized π
vector can give significant improvement over the likeli-
hood of a alignment.

Information obtained from ancestral sequence recon-
struction is used for two applications: homology detec-
tion and prediction of functional sites. For homology
detection, ancestral sequences represent an enlargement
of the sequence space around native sequences. We dem-
onstrate that adding reconstructed ancestral sequences to
a native alignment improves the detection of homologs in
database searches.

A number of methods have been developed to predict
functional sites from amino acid sequences [23,24]. One
simple way to infer functional sites is by positional con-
servation of a multiple sequence alignment [25]. Lichtarge
et al. [26] proposed a method called evolutionary trace to
predict functional sites by analyzing the conservation of
sequence subgroups. Functional divergence during the
evolutionary process can be reflected in the variation of
amino acid usage across different functional subgroups.
We propose a new approach that uses information from
ancestral sequence reconstruction to identify sites that are
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well conserved within individual sub-trees but exhibit var-
iability among different sub-trees. By several examples, we
show that these sites frequently contribute to the func-
tional specificity of a protein family.

Results and discussion
We developed a package (ANCESCON) to reconstruct
ancestral protein sequences considering rate variation
among sites. Rate factors can be estimated either by an
empirical method or by a maximum likelihood method.
Consideration of rate variation among sites not only
improves evolutionary distance estimation, but also gives
more accurate ancestral sequence reconstruction. Ances-
tral sequences are used to improve profile-based sequence
similarity searches. We also propose a new approach to
predict positions with functional specificity based on the
reconstruction of ancestral sequences.

Observed α, Alignment Based Rate Factor α (αAB) and 
Rate Factor α estimated by Maximum Likelihood (αML)
Evolutionary simulations based on a Z-score model intro-
duce rate variation across sites in a natural way by incor-
porating structural and functional constraints specific for
a protein family [21]. The simulation procedure is a
Monte Carlo simulation of the amino acid substitution
process. The fixation of substitutions is dictated by a sim-
ple scoring function, which is derived from the template
structure and an alignment of its homologs. The number
of substitutions occurring at each site can be recorded dur-
ing the simulation process and the observed α at a site
equals the number of recorded substitutions at that site
divided by the average substitution number for all sites.
To reduce sampling variance, an average observed α vec-
tor is calculated from 100 simulations.

For the alignment consisting of all the leaf node sequences
generated by the simulation process, an αAB vector was cal-
culated according to equation (11) (for details see Meth-
ods). An average αAB vector was derived from 100
simulations. Correlation coefficient between the average
αAB vector and the average observed α vector was high
(data not shown). However, we found that for large
observed α values, the corresponding αAB values were
smaller. A constant β was introduced to correct this under-
estimation in equation (11).

Here, αi is Alignment-Based rate factor at site i. K is the
number of sites in a given alignment. Ci is the value
assigned to site i (for details see Methods).

We optimized the β value by fitting the average αAB vector
and average observed α vector to y = x line. Alignments for
three different protein families (trypsin, carboxypeptidase
and pdz domain) gave a good empirical estimation for β
of about 1.3. The relation between this corrected average
αAB vector and average observed α vector is shown in Fig-
ure 1a for a typical example, the pdz domain (correlation
coefficient 0.973).

We also estimated an αML vector for each alignment gen-
erated from the simulation (for details see Methods). The
average αML vector shows good correlation with the aver-
age observed α vector (Figure 1b) (correlation coefficient
0.945). αAB or αML can be incorporated in likelihood cal-
culation in marginal or joint reconstruction. Table 1
shows that improvement of logarithm likelihood of the
alignment is significant when αAB or αML is used.

Rate variation across sites can be modeled by assuming
that the rate factors follow a certain type of statistical dis-
tribution. Gamma distribution [13,27] and its discrete
approximations [28] are frequently used for DNA or pro-
tein sequences. Rate variation for a protein family reflects
different selective pressure at different sites to maintain
structure and function. Fewer substitutions are expected
to occur in more conserved sites. This hypothesis has
prompted us to estimate rate factors (αAB) based on
sequence conservation in an empirical way. The αAB is
compared and calibrated using the observed α as stand-
ards. Our method of estimating αML is similar to the one
proposed by Nielson [18]. One problem with site-by-site
rate factor estimation is the small sample size at each site,
especially with a small alignment. We have used αAB to
eliminate outliers with very large αML estimates (for details
see Methods).

Site-specific rate factors improve distance estimation
Evolutionary distances tend to be underestimated when
rate homogeneity among sites is assumed [22]. This was
tested using the simulation with structural and functional
constraints. For the arbitrarily selected tree shown in Fig-
ure 2, we obtained leaf node sequences in the simulation
and estimated an evolutionary distance for each sequence
pair by Maximum Likelihood, either incorporating αAB or
setting α equal to 1.0 (equation (16)). Evolutionary dis-
tances were severely underestimated (average underesti-
mation: 0.894) without considering rate variation among
sites (Figure 3a). Introducing αAB in the maximum likeli-
hood method gave more accurate distance estimation
(Figure 3b), although the distances were still underesti-
mated, especially for small distances (average underesti-
mation: 0.286). We believe that more accurate distances
will give more accurate phylogeny reconstruction using
"Weighbor" [10]. Since a tree is required to estimate αML,
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a) Correlation between average αAB and average observed α. b) Correlation between average αML and average observed αFigure 1
a) Correlation between average αAB and average observed α. b) Correlation between average αML and average 
observed α. αAB is Alignment-Based rate factor solely depending on the given alignment. αML is rate factor estimated by maxi-
mum likelihood method, which requires an alignment and evolutionary tree inferred from the alignment. The protein family 
used here is the PDZ domain.
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Table 1: Difference of logarithm likelihood and CPU time when using different α vectors

α = 1.0 αAB αML

∆l P* ∆l P*

Logarithm 
Likelihood

-5324.56 -5087.72 236.84 <0.0001 -4987.27 337.29 <0.0001

CPU Time 
(s)+

213 213 359

The alignment tested here is a subset of SH2 family. It includes 44 sequences and each sequence contains 83 amino acids (including gaps).
* The likelihood ratio test (LRT) [58] is used to test whether αAB and αML are significantly different from α = 1.0. The difference in number of free 
parameters between αAB, αML and α = 1.0 model is 82.
+ CPU times were computed on a Dell PowerEdge 8450 server (CPU 700MHz, RAM 8G).

The tree used to test ancestral sequence reconstructionFigure 2
The tree used to test ancestral sequence reconstruction. This is an arbitrarily selected evolutionary tree. Evolutionary 
distances are shown to scale.
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Comparison of pairwise distances between the rebuilt tree and original tree. a) distance estimation assuming no rate variation among sites; b) distance estimation with αABFigure 3
Comparison of pairwise distances between the rebuilt tree and original tree. a) distance estimation assuming 
no rate variation among sites; b) distance estimation with αAB. The rebuilt tree is inferred from the alignment that is 
generated by evolutionary simulation performed on the original tree. The original tree is arbitrarily selected.
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αML is not incorporated in estimating evolutionary
distance.

Optimization of equilibrium frequencies
A continuous minimization method by simulated anneal-
ing was used to optimize the equilibrium frequency vector
π, with the objective function being the logarithm likeli-
hood of the alignment. Our π vector optimization pro-
gram was tested on four alignments, which were taken
from the SH2 and SH3 superfamilies in Pfam database
(version 7.3) [29]. Two alignments from the SH2 super-
family have 44 and 87 sequences respectively and both
alignment lengths are 83 amino acids (including gaps).
The other two alignments from SH3 superfamily have 39
and 94 sequences respectively and both alignment lengths
are 57 amino acids (including gaps). For each alignment,
we ran optimization 3 times starting from different ran-
dom initial points. The optimized π vectors did not con-
verge to exactly the same point, but they had a high
correlation with each other (always > 0.95) and the differ-
ence of logarithm likelihood function values was small
(less than 0.1%). The logarithm likelihood of the align-
ment, using optimized π vector, increased slightly, but sig-
nificantly (Table 2), compared with the logarithm
likelihood using the π vector calculated from the
alignment.

Optimization of the π vector is time consuming. The run-
ning time for reconstruction with or without optimizing π
vector is 14,902 seconds and 213 seconds for SH2 align-
ment (44 sequences), respectively, on a Dell PowerEdge
8450 server (CPU 700MHz, RAM 8G) (Table 2). In our
program, the default π vector is calculated from the align-
ment while the user has the option to optimize the π vec-
tor for ancestral sequence reconstruction.

Testing reconstruction
Two different methods for simulations of the evolution-
ary process were used, as described in Methods, to test the
reliability of the reconstruction results. In the first simula-
tion method, starting from a randomly generated root
sequence, we simulated the evolutionary process to
obtain leaf node sequences based on a tree and a rate
matrix. This process was repeated 100 times for a given
root sequence R to produce 100 alignments consisting of
all leaf node sequences. For each of the 100 alignments,
we used the marginal reconstruction method to obtain an
amino acid probability vector for each site at the root. To
reduce sampling variance, the amino acid probability vec-
tor was averaged over the 100 simulation trials. At each
site, the amino acid with the highest average probability
was chosen as our result of the "reconstructed amino acid"
at that site. All "reconstructed amino acids" formed the
reconstructed sequences R'. There is no difference
between R and R', that is, the accuracy of reconstruction is
100% for the tree shown in Figure 2. For each individual
simulation and its reconstruction, we checked the amino
acid with the highest probability in the reconstructed
probability vector of the root. If it is indeed the "recon-
structed amino acid", the prediction for that simulation is
correct according to the average reconstructed results. The
fraction of individual predictions that are correct
according to the average reconstructed results is almost
always higher than the average probability of the "recon-
structed amino acid", suggesting that the average
probability of the "reconstructed amino acid" gives a
lower estimation of the reconstruction reliability (Figure
4a).

For the second simulation method, we introduced rate
heterogeneity across sites with structural and functional
constraints [21]. For the same tree, the accuracy of recon-
struction was about 90%. Sites with larger substitution
rates are expected to have less reliable reconstructions. Fig-
ure 4b shows the relationship between the average αAB
and the fraction of individual predictions that are correct
according to the "reconstructed amino acid". Sites with
incorrect "reconstructed amino acids" all have large αAB
values. These values reflect the difficulty of reconstructing
sites with large numbers of substitutions. The probabili-
ties of the "reconstructed amino acids" are all small for
sites with incorrect reconstructions (less than 0.15),
suggesting that the information content of the reconstruc-
tion is low.

The second simulation method was also used to test ANC-
ESCON along with the reconstruction programs from
PAML [30], PHYLIP [31] and PAUP* [32]. All tree topol-
ogies used in reconstruction tests were inferred from real
alignments. All original root sequences were taken from
PDB database [33]. We had three different types of

Table 2: Difference of logarithm likelihood and CPU time with 
and without optimization of π vector

αAB & 
Calculated π

αAB & 
Optimized π

∆l P*

Logarithm 
Likelihood

-5087.72 -5055.97 31.75 <0.0001

CPU Time (s)+ 213 14902

The alignment tested here is the same alignment used in Table 1. 
Calculated π means frequency vector calculated from the alignment.
* The likelihood ratio test (LRT) [58] is used to test whether 
optimized π is significantly different from calculated π. The difference 
in number of free parameters between these two models is 19.
+CPU times were computed on a Dell PowerEdge 8450 server (CPU 
700MHz, RAM 8G).
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a) Correlation between the average probability of "the reconstructed amino acid" and the fraction of correct predictions. b) Correlation between the fraction of correct predictions and average αAB at each siteFigure 4
a) Correlation between the average probability of "the reconstructed amino acid" and the fraction of correct 
predictions. b) Correlation between the fraction of correct predictions and average αAB at each site. The protein 
family used here is the PDZ domain. Red filled points are sites with incorrect reconstruction.
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alignment testing sets. The first testing set used the same
tree topology but different root sequences to generate 100
alignments (for details see Methods). The second testing
set used the same root sequence but different tree topolo-
gies. The third testing set randomly selected a root
sequence and a tree topology to generate 100 alignments.
After 100 alignments were generated, we reconstructed
the root sequence for each alignment and found the con-
sensus root sequence for the 100 reconstructed root
sequences. Finally, the consensus root sequence was com-
pared with the original root sequence to calculate the
reconstruction accuracy, i.e. the fraction of correctly
reconstructed sites for the root sequence. In addition, for
the third test, the paired t-test was used to calculate the
one-tail probability between ANCESCON and other three
methods. In order to make different tree topologies com-
parable, those trees were scaled to make the average dis-
tance from root to all leaf nodes (da) the same for all trees
and equal to the tree of pii1 (a signal transduction pro-
tein) (da = 4.23). If da was too small (e.g. 0.5), the
reconstruction accuracy was always close to 1 for all recon-
struction methods used. The value da = 4.23 was large
enough to generate diverse sequences to differentiate 4
different ancestral sequence reconstruction methods.

For ANCESCON we had 3 different parameter settings,
which included site-specific rate factors estimated by max-
imum likelihood method (αML), Alignment-Based rate
factors (αAB) and no rate factors (equal rates among sites).
Different parameters were also used for the reconstruction
programs from PAML and PHYLIP to find their best
reconstructions. For PAML, reconstruction was tested with
parameter α (rate factor) estimated from alignment and
without α. For PHYLIP, 4 different parameter settings
were tried, which were combinations of with/without α
estimated from alignment by PAML and with/without
branch length dwelling in input tree topology. For
PAUP*, default settings were used.

Table 3 shows a comparison of the reconstruction accu-
racy for these 4 methods. The reconstruction accuracy of
ANCESCON with αML is higher than the other three meth-
ods in almost every test. Also the reconstruction accuracy
of ANCESCON with αAB and without α is comparable
with PAML and PHYLIP methods and is much better than
PAUP*. For the first testing set, the best average accuracy
for ANCESCON is about 0.5, while the best average recon-
struction accuracies for PAML, PHYLIP and PAUP* are
0.45, 0.39 and 0.32 respectively. Testing set 2 and 3
produce similar results. Using the paired t-test in the third
testing set, we show that ANCESCON method with αML
gives significantly better reconstruction than the other 3
methods. Because the site-specific αML is very close to the
true mutation rate at a site (Figure 1b), using the site-spe-
cific αML can improve our ability to reconstruct the amino

acids for ancestral sequences correctly. These reconstruc-
tion tests suggest that ANSCESCON may be a better tool
to reconstruct ancestral sequences compared to PAML,
PHYLIP and PAUP* if the given alignment contains more
diverse sequences.

Ancestral sequences used in homology detection
Thirty-eight OB (Oligonucleotide/oligosaccharide bind-
ing)-fold [34] proteins and ten other alignments (adeny-
lyl kinase, gef, globin, pdz, ph, ptb, ras, sh2, sh3 and
subtilase) from the Pfam database (version 7.3) [29] were
chosen to perform homology detection tests.

Given an alignment with N sequences, we had four differ-
ent methods, "BEST", "SECOND BEST", "SHUFFLE" and
"RANDOM", to generate another N-1 sequences (for
details see Methods). For each combined alignment (2N-
1 sequences), PSI-BLAST [35] searches were performed
starting from each sequence and seeded with the com-
bined alignment (-B option in the program BLASTPGP, e-
value cutoff 0.01), and all found hits were pooled
together.

The benchmark experiment was PSI-BLAST seeded with
the native alignment (N sequences). For each type of the
four combined alignments, we checked hits not found by
the native alignments. New hits were verified to be true
positives or false positives by running PSI-BLAST or
HMMER [36], followed by manual inspections.

Using the 48 native alignments, a total of 13973 hits were
found by the benchmark. Compared to the benchmark,
the "BEST" method detected 120 new homologs and the
other three methods found 69, 74 and 9 new homologs,
respectively (Figure 5). Among those new homologs,
"BEST", "SECOND BEST", "SHUFFLE" and "RANDOM"
methods had 3, 2, 6 and 3 false positives, respectively
(Figure 5). Also, "BEST", "SECOND BEST", "SHUFFLE"
and "RANDOM" methods missed 61, 1070, 60 and 7811
homologs as compared to the benchmark.

Adding non-native sequences to the native alignment
results in a change of sequence profile for PSI-BLAST
searches. Random sequences can dilute the position-spe-
cific amino acid exchange characteristics of native align-
ments. This effect should not improve the profile. Indeed,
few new homologs are found by the "RANDOM" method.
However, sequences generated by shuffling each position
of the native alignment have the same conservation prop-
erties as the native alignment, and the "SHUFFLE"
method detects a total of 74 new homologs. Two effects
may account for this finding. First, addition of shuffled
sequences to the native alignment can slightly change the
estimates of pseudocount frequencies of amino acids and
thus the position specific scoring matrix [35]. Second, the
Page 9 of 23
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new version of PSI-BLAST program uses composition-
based statistics with e-value estimation related to the com-
position of the query sequence [37]. Each shuffled
sequence has its own amino acid composition that is
different from the native sequences. This difference can
affect the e-values of hits. The "BEST" method detects the

most number of new homologs, suggesting that the recon-
structed ancestral sequences resemble the native
sequences. Ancestral sequences may therefore be more
similar to some remote homologs than to the native
sequences. The "SECOND BEST" method detects less new
homologs than the "BEST" method but more than the

Table 3: Ancestral sequence reconstruction accuracy by different programs

Root 
Seq.

Tree Leaf Node 
Num.

Methods

ANCESCON PAML PHYLIP $ PAUP*

αML αAB -α +α -α +L +α -L +α +L -α -L -α

1em2 pii1 25 0.45 0.32 0.35 0.41 0.37 0.29 0.27 0.21 0.29 0.26
1g9o pii1 25 0.56 0.46 0.47 0.53 0.53 0.51 0.54 0.40 0.51 0.47
1rgg pii1 25 0.60 0.42 0.47 0.60 0.62 0.47 0.58 0.32 0.56 0.47
1sgt pii1 25 0.38 0.34 0.33 0.33 0.32 0.32 0.33 0.27 0.33 0.32
1zm2 pii1 25 0.33 0.29 0.3 0.28 0.25 0.21 0.25 0.21 0.27 0.16
2a8v pii1 25 0.62 0.45 0.42 0.56 0.55 0.44 0.46 0.28 0.50 0.36
2ctb pii1 25 0.53 0.40 0.39 0.41 0.38 0.24 0.24 0.21 0.29 0.22

Average accuracy 0.496 0.383 0.390 0.446 0.431 0.354 0.381 0.271 0.393 0.323
2ctb gef 27 0.54 0.37 0.38 0.35 0.35 0.29 0.17 0.24 0.22 0.22
2ctb LacI 54 0.66 0.64 0.57 0.44 0.37 0.49 0.35 0.42 0.33 0.34
2ctb pdz 39 0.54 0.41 0.42 0.44 0.39 0.22 0.34 0.18 0.32 0.22
2ctb ph 30 0.79 0.74 0.75 0.53 0.55 0.45 0.25 0.43 0.37 0.32
2ctb pii1 25 0.53 0.40 0.39 0.41 0.38 0.24 0.24 0.21 0.29 0.22
2ctb ptb 29 0.58 0.39 0.43 0.39 0.38 0.29 0.23 0.26 0.24 0.23
2ctb sh2 34 0.61 0.42 0.40 0.43 0.40 0.30 0.22 0.20 0.27 0.22
2ctb sh3 43 0.83 0.82 0.80 0.62 0.55 0.69 0.45 0.66 0.46 0.54
2ctb GST 140 0.76 0.73 0.73 @ @ # # 0.47 0.38 0.33

Average accuracy& 0.635 0.524 0.518 0.451 0.421 0.371 0.281 0.325 0.313 0.289
1em2 pdz 39 0.45 0.35 0.36 0.44 0.44 0.29 0.43 0.23 0.4 0.24
1g9o pii1 25 0.56 0.46 0.47 0.53 0.53 0.51 0.54 0.40 0.51 0.47
1rgg sh2 34 0.64 0.48 0.46 0.61 0.61 0.56 0.59 0.34 0.6 0.41
1sgt gef 27 0.49 0.39 0.40 0.48 0.44 0.42 0.44 0.36 0.45 0.41
1zm2 ptb 29 0.66 0.47 0.48 0.57 0.57 0.53 0.51 0.32 0.52 0.41
2a8v ph 30 0.81 0.78 0.81 0.71 0.74 0.60 0.61 0.50 0.65 0.50
2ctb LacI 54 0.66 0.64 0.57 0.44 0.37 0.49 0.35 0.42 0.33 0.34

Average accuracy 0.610 0.510 0.507 0.540 0.529 0.486 0.496 0.367 0.494 0.397
Probability∆ 0.0026 0.0023 0.0248 0.0328 0.0007 0.0168 0.0001 0.0143 0.0005

All root sequences are taken from PDB database and the names listed in the table are PDB IDs.
Tree topologies for gef (guanine nucleotide exchange factor), LacI (PurR/LacI family of bacterial transcription factors), pdz, ph, pii1 (a signal 
transduction protein), ptb, sh2, sh3 and GST (glutathione S-transferase) are inferred from multiple sequence alignments chosen from Pfam database 
(version 7.3).
All tree topologies are generated from real alignments and the distances are rescaled in order to make the trees comparable.
The value in this table represents the accuracy of reconstruction, i.e. the fraction of correctly reconstructed sites for the root sequence. The best 
reconstruction accuracy in each test is shown in bold.
αML means that the site-specific rate factors were estimated by maximum likelihood method.
αAB means that the site-specific rate factors were estimated by our empirical equation based on the given alignment (for details see Methods).
-α means that the rate factors were not considered in reconstruction.
+α means that the rate factors were considered in reconstruction.
+L means that branch lengths of the input tree were used in reconstruction, while -L means that branch lengths were estimated by the 
reconstruction program itself.
@: tree topology for GST had 140 leaf nodes that were too many for PAML to run through.
$: rate factors estimated by PAML were used by PHYLIP in ancestral sequence reconstruction.
#: tree topology for GST had 140 leaf nodes, which were too many for PAML to estimate rate factors for GST.
&:GST is excluded in calculation of the average.
∆: paired t-test method [40] was used to estimate the one-tail probability between ANCESCON and the other three reconstruction methods.
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Comparison of "BEST", "SECOND BEST", "SHUFFLE" and "RANDOM" methods in the number of new homologs detected when compared with the benchmark experimentFigure 5
Comparison of "BEST", "SECOND BEST", "SHUFFLE" and "RANDOM" methods in the number of new 
homologs detected when compared with the benchmark experiment. The methods are defined in "Methods" sec-
tion. The blue portion of the bar shows the number of true positives. The red portion of the bar shows the number of the false 
positives.

Table 4: Homology detection results of OB-fold structures using reconstructed ancestral sequences

SCOP Superfamily/family PDB structure New homologs NCBI annotation

Nucleic acid-binding proteins/ Anticodon-binding 
domain

1b7yB, 39–151 N/A -

1b8aA, 1–102 N/A -
1bbuA, 64–151 13431467 DNA polymerase II small subunit

15598836 DNA polymerase III, alpha chain
1c0aA, 1–106 11261591 DNA polymerase III, alpha chain

11499379 conserved hypothetical protein
1169392 DNA polymerase III alpha subunit
118794 DNA polymerase III alpha subunit

13620707 putative DNA polymerase III, alpha chain
14194684 DNA polymerase III alpha subunit
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14194702 DNA polymerase III alpha subunit
14195653 DNA polymerase III alpha subunit
14195659 DNA polymerase III alpha subunit
15594924 DNA polymerase III, subunit alpha
15598836 DNA polymerase III, alpha chain
15601899 DnaE
15642243 DNA polymerase III, alpha subunit
15669005 M. jannaschii predicted coding region MJ0818
15679404 DNA polymerase delta small subunit
3914611 ATP-dependent DNA helicase recG

1cuk, 1–64 N/A -
1e1oA, 64–148 11261591 DNA polymerase III, alpha chain XF0204

14194684 DNA polymerase III alpha subunit
1fguA, 181–298 15219507 hypothetical protein

15230563 putative protein
15790309 Vng1255c from Halobacterium sp.
6166145 DNA polymerase III alpha subunit
8778702 T1N15.20

1fl0A 10957481 hypothetical protein
1g51A, 1–104 14520587 hypothetical protein

14591565 hypothetical protein
15595886 hypothetical protein
3914638 ATP-dependent DNA helicase recG

1otcB, 36–126 N/A -
1quqA, 62–152 15387767 probable replication protein a 28 Kd subunit
1qvcA, 1–114 N/A -

Nucleic acid-binding proteins/Cold shock DNA-
binding domain like

1a62, 48–125 N/A -

1ah9 N/A -
1bkb, 75–139 15790688 translation initiation factor eIF-5A; Eif5a
1c9oA 6014735 Cold shock protein CspSt
1csp N/A -
1d7qA N/A -
1mjc N/A -
1rl2 N/A -
1sro 15671445 N utilization substance protein A

15794781 N utilisation substance protein A
15803711 transcription pausing; L factor

2eifA, 73–132 N/A -
Nucleic acid-binding proteins/DNA ligase, mRNA 
capping enzyme, domain2

1a0i, 241–349 N/A -

1dgsA, 315–400 N/A -
1ckmA, 238–302 N/A -
1fviA, 190–293 N/A -

Nucleic acid-binding proteins/Phage ssDNA-binding 
proteins

1gpc N/A -

1gvp N/A -
1pfs N/A -

Nucleic acid-binding proteins/RNA polymerase 
subunit RBP8

1a1d N/A -

Staphylococcal nuclease/Staphylococcal nuclease 1eyd 13422779 aldose 1-epimerase *
Bacterial enterotoxins/Bacterial AB5 toxins, B units 1c4qA N/A -

1prtF N/A -
Bacterial enterotoxins/Superantigen toxins 1an8, 19–94 N/A -
TIMP-like/Tissue inhibitor of metalloproteases 1ueaB, 14–106 N/A -

Table 4: Homology detection results of OB-fold structures using reconstructed ancestral sequences (Continued)
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"RANDOM" method, suggesting that the second most
probable amino acids in reconstruction can still reflect
some properties of native sequences. Table 4 shows
homology detection results of OB-fold structures using
reconstructed ancestral sequences.

Prediction of functional sites
Ten well-studied protein families (adenylyl kinase, gef,
globin, pdz, ph, ptb, ras, sh2, sh3 and subtilase) from the
Pfam database (version 7.3) [29] were selected to test the
prediction of functional sites. To define functional sites,
we considered residues falling within 5Å of any ligand to
be functionally important (i.e. AP5 for adenylyl kinase).
As a simple quantification of prediction accuracy, we
counted the number of predictions that lie within 5Å from
the ligands and consider these sites to be true positives.

Our method intends to identify those sites with high sim-
ilarity within individual sub-trees and high variation

among sub-trees. These sites are likely to contribute to
functional specificity. Based on a tree partition and the
reconstructions at the cutting nodes (details see Methods),
we have developed a measure called specificity score
(equation (27)). We expect that both highly variable sites
and highly conserved sites tend to score low in our
method. Ten top-ranking sites were selected as our pre-
dicted functional sites for each family. For comparison,
we also implemented a simple conservation (SC) method
[25], the evolutionary trace (ET) method [26] and the
conservation difference (CD) method [21] on the 10 pro-
tein families. The results are shown in Table 5. Here, the
results from these three methods tend to include invariant
or highly conserved sites while the result from our
method scores those sites low. Still, the number of true
positives of our method is comparable to other methods
for several families. For some protein families, such as gef,
pdz and subtilase, our method predicts no fewer func-
tional residues than the other three methods.

Inorganic pyrophosphatase/ Inorganic 
pyrophosphatase

2prd N/A -

MOP-like/BiMOP, duplicated molybdate-binding 
domain

1b9mA, 127–262 10639288 probable ATP-binding protein

10955070 AgtA
1175513 Putative ferric transport ATP-binding protein afuC
15598450 probable ATP-binding component of ABC transporter
3978166 ATPase FbpC
4895001 glucose ABC transporter ATPase *

Histidine kinase CheA, C-terminal domain/ Histidine 
kinase CheA, C-terminal domain

1b3qA, 540–671 N/A -

* Putative false positives as assessed by manual inspection.

Table 4: Homology detection results of OB-fold structures using reconstructed ancestral sequences (Continued)

Table 5: Comparison of the true hits among the top 10 predicted sites for ANCESCON, evolutionary trace (ET), simple conservation 
(SC), and conservation difference (CD) methods

Protein 
Family

PDB ID# Ligand/ 
substrate

Number of 
sites

* ** *** ANCESC
ON

ET SC CD

adkinase 1aky AP5 188 42 20 18 3 9.5 9.1 8
gef 1bkd H-Ras 245 47 4 0 3 3 3 2

globin 1a6g HEM 147 21 1 1 2 5.5 6 6
pdz 1be9 + 81 15 2 1 6 4 4 2
ph 1mai I3P 109 11 2 0 2 2 3 2
ptb 1shc PTR 157 27 2 1 6 5 5 9
ras 821p GTN 185 29 10 9 2 5.6 8.7 5
sh2 1a09 ACE 83 17 2 1 3 5 4 4
sh3 1nlo ACE 57 9 1 1 2 5 4 0

subtilase 1av7 SBL 278 22 8 4 5 4.6 3.8 4

#:Representative protein structure
*: Number of sites within 5Å to ligand or substrates
**: Number of invariant sites, which may contain gaps
***: Number of invariant sites within 5 Å to ligand or substrates
+: C-terminal peptide of protein CRIPT
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Figure 6 shows the mapping of our predictions on the
structure for the PDZ domain family. In green color is the
ligand and in red color are the functional residues pre-
dicted by our method. Six of the predicted residues are
within 5Å to the peptide ligand. Nine of the predicted res-
idues are around the ligand binding area. Only one is dis-
tant from the ligand (Figure 6).

Another example is the family of adenylyl kinases. Our
method identified 3 residues within 5 Å to the ligand
while the other 3 methods identified more such residues,
most of which are in highly conserved positions such as
the catalytic residues. Highly conserved residues,
however, are not selected by our method since our meas-

ure is designed to emphasize on sites contributing to
specificity. Figure 7 shows the N-terminal part of the
alignment of adenylyl kinases, with our predictions high-
lighted in red and orange colors. The evolutionary tree for
the alignment is shown in Figure 8. The first cutting layer
(for details see Methods) results in two well-separated
sub-trees. Functional annotations suggest that they con-
tain enzymes with different substrate preferences: adeny-
lyl kinases and uridylate kinases, respectively. Three
residues (27, 54 and 89) from our predictions (red
colored in Figure 9) contribute to substrate-binding spe-
cificity, as have been noted before in the structural studies
of the UMP kinases [38]. Figure 9 highlights our predicted
functional residues on the adenylyl kinase protein

Mapping top 10 predictions by ANCESCON to PDZ domain (PDB ID: 1be9) [50]Figure 6
Mapping top 10 predictions by ANCESCON to PDZ domain (PDB ID: 1be9) [50]. The color code scheme: ligand is 
shown in green and the predicted functional residues are shown in red.
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structure. Most of our predictions fall within the specifi-
city pocket.

Conclusions
We developed a package (ANCESCON) to reconstruct
ancestral protein sequences that takes into account the
variation of substitution rates among sites. Two methods
were proposed to estimate site-specific evolutionary rates
(α), namely Alignment-Based rate factor (αAB) and rate
factor α estimated by maximum likelihood (αML).
Consideration of rate variation among sites can alleviate
the underestimation of evolutionary distances. Accuracy
of ancestral sequence reconstruction by our method is
higher than that of PAML, PHYLIP and PAUP* when the

given alignment contains more diverse sequences. We
show that reconstructed ancestral sequences help to
improve detection of distant homologs and prediction of
functional sites with specificity.

Methods
Transition probability and likelihood calculations
For all models discussed in this paper, we assume all sites
in an alignment evolve independently and according to a
homogeneous, stationary and time reversible Markov
process. The probability of an amino acid i to be replaced
by amino acid j after a time interval t is Pij(t). The transi-
tion probability matrix of 20 amino acids is written as
P(t), which can be calculated as

A partial alignment of the N-terminal part of adenylyl kinasesFigure 7
A partial alignment of the N-terminal part of adenylyl kinases. Sites colored in red are our predictions that are within 
5Å from the ligand. Sites colored in orange are our predictions more than 5Å apart from the ligand.

        1        10        20        30        40        50        60        70        80        90        100       110 
    O59845_30_197 VLGGPGAGKGTQCARLVEDFSFSHLSAGDLLRAEQREGSEYGQLIQTCIKEGSIVPMEVTVKLLENAMTAWTDGQGRFLIDGFPRKMDQAEKFEH----DVGKATAVLFFSTTQE

UMPK_YEAST_21_179 VLGGPGAGKGTQCEKLVKDYSFVHLSAGDLLRAEQRAGSQYGELIKNCIKEGQIVPQEITLALLRNAISDNKANKHKFLIDGFPRKMDQAISFER----DIVESKFILFFDCPED

 UMPK_SCHPO_7_166 VLGGPGAGKGTQCDRLAEKFKFVHISAGDCLREEQRPGSKYGNLIKEYIKDGKIVPMEITISLLETKMKECDKGIDKFLIDGFPREMDQCEGFEK----SVCPAKFALYFRCGQE

     O17622_7_164 VLGPPGSGKGTICTQIHENLGYVHLSAGDLLRAERRAGSEYGALIEGHIKNGSIVPVEITCALLENAMIAS-KDANGFLIDGFPRNEDNWSGWNK---QMGGKVNFVLFLSCPVD

    Q9DCS7_39_202 VLGGPGAGKGTQCARIVEKYGYTHLSAGELLRDERKNDSQYGELIEKYIKEGKIVPVEITISLLKREMDQTNAQKNKFLIDGFPRNQDNLQGWNKTM-DGKADVSFVLFFDCNNE

    Q9VBI2_68_227 VLGGPGAGKGTQCSRIVDRFQFTHLSAGDLLREERREGSEFGNLIEDYIRNGKIVPVEVTCSLLENAMK--ASGKSRFLIDGFPRNQDNLDGWNRQM-SEKVDFQFVLFFDCGED

    O96498_11_171 CLGPPGSGKGTQCAKIVDEFSFIHLSAGDCLREAMSRKDETSELIDSYIREGLIVPVEITVGLLKKKMQEYGWNDKYFLIDGFPRNQNNLDGWYKIIPDTDVNVIGCLFLNCDDN

 KCY_DICDI_11_168 VLGGPGSGKGTQCANIVRDFGWVHLSAGDLLRQEQQSGSKDGEMIATMIKNGEIVPSIVTVKLLKNAIDAN--QGKNFLVDGFPRNEENNNSWEENM-KDFVDTKFVLFFDCPEE

UMPK_ARATH_19_172 VLGGPGSGKGTQCAYIVEHYGYTHLSAGDLLRAEIKSGSENGTMIQNMIKEGKIVPSEVTIKLLQKAIQEN--GNDKFLIDGFPRNEENRAAFEK---VTEIEPKFVLFFDCPEE

    Q9M1C5_32_185 VLGGPGSGKGTQCANVVKHFSYTHFSAGDLLRAEIKSGSEFGAMIQSMIAEGRIVPSEITVKLLCKAME--ESGNDKFLIDGFPRNEENRNVFEN---VARIEPAFVLFFDCPEE

             1aky LIGPPGAGKGTQAPNLQERFHAAHLATGDMLRSQIAKGTQLGLEAKKIMDQGGLVSDDIMVNMIKDELTNNPACKNGFILDGFPRTIPQAE KLDQMLKEQGTPLEKAIELKVDD 

    Q9U915_23_209 LLGPPGSGKGTQAPLLKEKFCVCHLSTGDMLRAEISSGSKLGAELKKVMDAGKLVSDDLVVDMIDSNLDKP-ECKNGFLLDGFPRTVVQAEKLDTLLDKRKTNLDAVIEFAIDDS

KAD2_BOVIN_21_207 LLGPPGAGKGTQAPKLAKNFCVCHLATGDMLRAMVASGSELGKKLKATMDAGKLVSDEMVLELIEKNLETP-PCKNGFLLDGFPRTVRQAEMLDDLMEKRKEKLDSVIEFSIPDS

KADX_CAEEL_31_217 FIGPPGSGKGTQAPAFAQKYFSCHLATGDLLRAEVASGSEFGKELKATMDAGKLVSDEVVCKLIEQKLEKP-ECKYGFILDGFPRTSGQAEKLDEILERRKTPLDTVVEFNIADD

    O93986_14_201 VMGPPGSGKGTQAPKVKDTYCICHLATGDMLRAAVKAGTPIGMEAKKIMDAGGLVSDEIVVNLIKENLDTK-ACKNGFILDGFPRTVAQAQKLDEMLEQRNQKLDTAIELTVDDS

  KAD_NEUCR_3_190 LMGPPGAGKGTQAPKIKEKFNCCHLATGDMLRAQVAKGTALGKQAKKIMNEGGLVSDDIVIGMIKDELENNKECQGGFILDGFPRTVPQAEGLDAMLRERNLPLQHAVELKIDDS

KAD1_YEAST_11_198 LIGPPGAGKGTQAPNLQERFHAAHLATGDMLRSQIAKGTQLGLEAKKIMDQGGLVSDDIMVNMIKDELTNNPACKNGFILDGFPRTIPQAEKLDQMLKEQGTPLEKAIELKVDDE

 KAD1_SCHPO_8_195 LVGPPGAGKGTQAPNIQKKYGIAHLATGDMLRSQVARQTELGKEAKKIMDQGGLVSDDIVTGMIKDEILNNPECKNGFILDGFPRTVVQAEKLTALLDELKLDLNTVLELQVDDE

KADA_ORYSA_33_219 LVGPPGCGKGTQSPLIKDEFCLCHLATGDMLRAAVAAKTPLGIKAKEAMDKGELVSDDLVVGIIDEAMKKT-SCQKGFILDGFPRTVVQAQKLDEMLAKQGTKIDKVLNFAIDDA

  KAD_HAEIN_5_187 LLGAPGAGKGTQAQFIMNKFGIPQISTGDMFRAAIKAGTELGKQAKALMDEGKLVPDELTVALVKDRIAQA-DCTNGFLLDGFPRTIPQADALKD----SGVKIDFVLEFDVPDE

  KAD_VIBCH_5_187 LLGAPGAGKGTQAQFIMEKFGIPQISTGDMLRAAIKAGTELGKQAKAVIDAGQLVSDDIILGLIKERIAQA-DCEKGFLLDGFPRTIPQADGLKE----MGINVDYVIEFDVADD

  KAD_SALTY_5_187 LLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKERIAQE-DCRNGFLLDGFPRTIPQADAMKE----AGIVVDYVLEFDVPDE

  KAD_NEIMA_5_187 LLGAPGAGKGTQAQFITAAFGIPQISTGDMLRAAIKAGTPLGLEAKKIIDEGGLVRDDIIIGMVKERIAQD-DCKNGFLFDGFPRTLAQAEAMVE----AGVDLDAVVEIDVPDS

     Q9HXV4_5_187 LLGAPGAGKGTQARFITEKFGIPQISTGDMLRAAVKAGSPLGQQVKGVMDSGGLVSDDIIIALIKERITEA-DCAKGFLFDGFPRTIPQAEALKD----AGVTIDHVVEIAVDDE

  KAD_BORPE_5_187 LLGPPGAGKGTQAAFLTQHYGIPQISTGDMLRAAVKAGTPLGLEAKKVMDAGGLVSDDLIIGLVRDRLTQP-DCANGYLFDGFPRTIPQADALKS----AGIALDYVVEIEVPES

    Q9Y0A8_11_197 LIGAPGSGKGTQCEFIKKEYGLAHLSTGDMLREAIKNGTKIGLEAKSIIESGNFVGDEIVLGLVKEKFDLG-VCVNGFVLDGFPRTIPQAEGLAKILSEIGDSLTSVIYFEIDDS

  KAD_BUCAI_5_190 LLGAPGTGKGTQGKFITEKYKIPQISTGDMLRESVVLKNKIGMIIKNIIEEGKLVSDEIVCHLIKNRIKKH-DCINGFILDGFPRTIQQALYLSK----KNIKIDYVLEFIIPHE

  KAD_PARDE_6_191 LLGPPGAGKGTQARRLIDERGLVQLSTGDMLREARSSGTEMGKRVAEVMDRGELVTDEIVIGLIREKLGQG---GKGFIFDGFPRTLAQADALQALMAEMDQRIDAVIEMRVDDA

     Q9A8T2_5_164 LFGPPAAGKGTQAKRLVTERGMVQLSTGDMLRAAIASGSELGQRVKGVLDRGELVTDEIVIALIEDRLPEA-EAAGGAIFDGFPRTVAQAEALDKMLAARGQKIDVVLRLKVDEP

     Q98N36_5_170 LLGPPGAGKGTQAQRLVEKHGIPQLSTGDMLRAAVQAGSEVGKRAKAVMDAGELVSDAIVNAIVAERIDQA-DCAKGFILDGYPRTLVQADAVESMLSERGIGLDTVIELVVDDR

 KAD_PRUAR_52_205 VLGGPGSGKGTQCAKIVEAFGFTHVSAGDLLRREIASGSAYGSVILSTIREGKIVPSQVTVELIQKEME--SSDNYKFLIDGFPRSEENRKAFEQ---TIGAEPDVVLFFDCPEQ

    Q9SB35_48_201 VLGGPGSGKGTQCEKIVETFGLQHLSAGDLLRREIAMHTENGAMILNLIKDGKIVPSEVTVKLIQKELE--SSDNRKFLIDGFPRTEENRVAFERII---RADPDVVLFFDCPEE

  KAD_SYNY3_7_162 FLGAPGSGKGTQAVGLAETLGIPHISTGDMLRQAIADGTELGNQAKGYMDKGELVPDQLILGLIEERLGHK-DAKAGWILDGFPRNVNQAIFLDELLVNIGHRTHWVINLKVPDE

  KAD_ARCFU_5_191 FLGPPGAGKGTQAKRVSEKYGIPQISTGDMLREAVAKGTELGKKAKEYMDKGELVPDEVVIGIVKERLQQP-DCEKGFILDGFPRTLAQAEALDEMLKELNKKIDAVINVVVPEE

  KAD_THEMA_7_194 FLGPPGAGKGTYAKRLQEITGIPHISTGDIFRDIVKENDELGKKIKEIMERGELVPDELVNEVVKRRLSEK-DCERGFILDGYPRTVAQAEFLDGFLKTQNKELTAAVLFEVPEE

  KAD_MICLU_6_165 LMGPPGSGKGTQATRIADKLGIVPISTGDIFRHNVKSMTPLGVEAKRYIDNGDFVPDEVTNRMVADRIAQA-DAEHGFLLDGYPRTKGQVEALDAMLAEAGQSLSAVVELEVPDE

  KAD_SYNP6_6_161 FLGPPGAGKGTQAVVVAEQLQLAHISTGELLRAAVTAQTPLGIEAKGYMDRGELVPDSLVLGLVRDRLQQP-DTANGWILDGFPRNRSQAEALNLLLTEINQQVDRAVNLDVPDP

  KAD_LEPIN_6_165 FMGPPGAGKGTQAKILCERLSIPQISTGDILREAVKNQTAMGIEAKRYMDAGDLVPDSVVIGIIKDRIREA-DCKNGFLLDGFPRTVEQAEALDTLLKNEGKSIDKAINLQVPDA

    Q9P9D2_14_194 LFGPPGAGKGTQAQRMMDATGLPQVSTGDMLRAAVKAGTSVGIEAKSYMDKGALVPDSVIIDLIRDRLHDD-DAKNGVMFDGFPRTVPQAEALSE-----IVEVSAVLAIDVPDE

     Q9KWA2_5_165 LMGPPGSGKGTQAKRICEKLGIPHLSTGDILRAEVKAGTPLGLAVAATMAAGGLVSDDTVSAIVASRIAGP-EAQRGFVLDGFPRTISQAAALDQSL--GEHSLTAVIELVVPEE

    Q9PGM3_16_175 LLGPPGSGKGTQAAQMKETLQIPHISTGDLLRSEVVAGTPLGLQAKQVMAQGDLVSDAILIGMLESRLSHT-DVVKGFILDGYPRNLSQAAALDGLLAKLGHPLNAVVQLEVPTD

 KAD_DEIRA_11_175 FLGPPGAGKGTQAARLAQEHQLVQLSTGDILRDHVARGTALGQQAGPLMEAGQLVPDELLIALIRDRLA--DMEPVRVIFDGFPRTQAQAEALDLLLEELGAPVSAVPLLEVPDQ

  KAD_AQUAE_5_181 FLGPPGAGKGTQAKRLAKEKGFVHISTGDILREAVQKGTPLGKKAKEYMERGELVPDDLIIALIEEVFPKH----GNVIFDGFPRTVKQAEALDEMLEKKGLKVDHVLLFEVPDE

  KAD_MYCTU_5_160 LLGPPGAGKGTQAVKLAEKLGIPQISTGELFRRNIEEGTKLGVEAKRYLDAGDLVPSDLTNELVDDRLNNP-DAANGFILDGYPRSVEQAKALHEMLERRGTDIDAVLEFRVSEE

  KAD_STRCO_5_192 LVGPPGAGKGTQATRLAETLHIPHISTGDLFRANISQQTELGKLAKSYMNAGNLVPDEVTIAMAKDRMEQP-DAEGGFLLDGFPRNVSQAEALDELLETEGMKLDAVLDLEAPED

     Q97EJ9_5_191 LLGPPGAGKGTQAKLISSEFSIPHISTGDIFRANISGKTELGMKAKGYMDKGLLVPDELTIDIVKDRISKD-DCKSGFLLDGFPRTVNQAEALDKFLVGRKEKIDCALLIDVPRE

  KAD_BACHD_5_191 LMGLPGAGKGTQAEKIIEKYGIPHISTGDMFRAAMKNETELGLKAKSYMDAGELVPDEVTIGIVRDRLSQD-DCQNGFLLDGFPRTVAQAEALEDILASLDKKLDYVINIDVPEQ

  KAD_BACST_5_191 LMGLPGAGKGTQAEKIVAAYGIPHISTGDMFRAAMKEGTPLGLQAKQYMDRGDLVPDEVTIGIVRERLSKD-DCQNGFLLDGFPRTVAQAEALETMLADIGRKLDYVIHIDVRQD

  KAD_BACSU_5_191 LMGLPGAGKGTQGERIVEDYGIPHISTGDMFRAAMKEETPLGLEAKSYIDKGELVPDEVTIGIVKERLGKD-DCERGFLLDGFPRTVAQAEALEEILEEYGKPIDYVINIEVDKD

     Q99S40_5_191 LMGLPGAGKGTQASEIVKKFPIPHISTGDMFRKAIKEETELGKEAKSYMDRGELVPDEVTVGIVKERISED-DAKKGFLLDGFPRTIEQAEALNNIMSELDRNIDAVINIEVPEE

  KAD_LACLA_5_193 IMGLPGAGKGTQAEFIVKNYGVNHISTGDMFRAAMKNETEMGKLAKSFIDKGELVPDEVTNGIVKERLAQDDIKASGFLLDGYPRTIDQAHALDTMLEELGIKLDAVVNIVVNPD

  KAD_STRPY_5_187 IMGLPGAGKGTQAAKIVEEFGIAHISTGDMFRAAMANQTEMGRLAKSYIDKGELVPDEVTNGIVKERLAEDDIAEKGFLLDGYPRTIEQAHALDATLEELGLRLDGVINIKVDPS

  KAD_HALN1_8_190 LLGAPGAGKGTQSRRLVDEFGVEHVTTGDALRANKKDITHLDVEYDAYMDAGELVPDAVVNEIVKTALDDA----DGYVLDGYPRNESQTEYLD-----SITDLDVVLYLDVDED

  KAD_TREPA_5_186 FLGPPGAGKGTLAGEISGRCGVVHISTGGILRAAIQKQTALGKKVQKVVEVGGLVDDQTVTELVRERVSHE-DVVSGFILDGFPRTVTQARCLE-----DIVPIDYAVSIVVPDD
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P(t) = exp(Qt)  (2)

Here, Q is the rate matrix. The non-diagonal elements qij
are the instantaneous rates of change from amino acid i to
amino acid j and diagonal elements qii are such that each
matrix row sums up to 0. Q can be calculated by:

Q = S* diag(π)  (3)

S is the matrix of amino acid exchangeability parameters
[39]. πi is the equilibrium frequency for amino acid i.
Time reversibility implies that S is a symmetric matrix. In
our program, the S matrix is taken from Whelan and

Goldman [39] and the default π vector is estimated from
the given alignment.

Q can be decomposed into eigenvalues (λi) and eigenvec-
tors (ui).

U = (u1, ..., u20)  (5)

Pij(t) can be calculated using the following equation,

The evolutionary tree for the adenylyl kinase family generated by "Weighbor"Figure 8
The evolutionary tree for the adenylyl kinase family generated by "Weighbor". The first cutting layer is shown. 
Evolutionary distances are shown to scale.
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The likelihood function [8] for an evolutionary tree T
shown in Figure 10 is:

Here,  is the equilibrium frequency of the amino acid

at the node A.  is the transition probability

from the amino acid at node A to the amino acid at node
B after an evolutionary distance dAB.

Considering that each site i has a rate factor αi [13,18], we
have:

t in equation (6) can be expressed as:

t = α·d  (9)

d is the evolutionary distance and α is rate factor. The fol-
lowing restriction on the vector α holds:

Here, K is the number of sites.

Mapping top 10 predictions by ANCESCON to adenylyl kinase domain (PDB ID: 1aky) [47]Figure 9
Mapping top 10 predictions by ANCESCON to adenytlyl kinase domain (PDB ID: 1aky) [47]. The color code 
scheme: ligand is shown in green and the predicted functional residues are shown in red.
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An evolutionary tree topologyFigure 10
An evolutionary tree topology. Nodes C, D, E and F rep-
resent given protein sequences, while nodes A and B repre-
sent ancestral protein sequences, i.e. unknown sequences. 
dYZ represents the evolutionary distance between nodes Y 
and Z.
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Alignment-Based Rate Factor α (αAB) and Rate factor α 
estimated by Maximum Likelihood (αML)
Our program supports two methods to estimate a rate fac-
tor for each site: Alignment-Based rate factor α (αAB) and
Maximum Likelihood-estimated rate factor α (αML).

The estimation of αAB is empirical and based on the obser-
vation that the substitution rate at a site is correlated with
the conservation of the site, which, in turn, is correlated
with the average transition probability among the amino
acids at that site. Conserved sites are dominated by highly
similar amino acids and thus have high average transition
probabilities among the amino acids. The algorithm to
calculate αAB is as follows:

1. Set t equal to 1.0 and use equation (6) to calculate a
transition probability matrix P for 20 amino acids.

Equation, , is used to compute a

symmetric matrix P'.

2. Calculate the average transition probability for each site

and take the reciprocal: , where  is

the number of non-gapped amino acid pairs in site i and
the denominator is the sum over the transition probabili-
ties between all amino acid pairs (j,k) at a site i.

3. For invariant sites, Ci is set to 0 to make it consistent
with the Maximum Likelihood estimation.

4. Equation (11) is used to calculate αAB, so that equation
(10) holds.

If an evolutionary tree is assumed for the alignment, we
can estimate the αML factors by maximizing the likelihood
(equation (8)) for each site:

If some sites are highly variable, the αML at those sites can
be very large, as has been previously noticed [18]. We
consider these rate factors to be outliers. For these sites, we
have observed that likelihood changes very little over a
wide range of the α values. An empirical method is used
to reduce the values of αML outliers, guided by the αAB val-
ues. a Z-score of the ratio of αML to αAB is calculated for
each site except invariant sites:

Here,  is the ratio of  to  for site i;  is the
number of sites excluding the invariant sites. If Zi is greater

than 3, it is reduced to 3 by decreasing the value of .
We repeat this procedure until no Zi for any site i is greater

than 3. After removing the outliers, we scale the  val-
ues so that equation (10) holds.

Amino acid frequency vector π optimization
Two methods are implemented to estimate the equilib-
rium frequency vector π, one derived directly from the
given alignment (Alignment-Based π or πAB) and the other
estimated by Maximum Likelihood (πML). The likelihood
for the entire alignment is a function of π with 19 varia-
bles. A continuous minimization method by simulated
annealing [40] is used to optimize π, with the objective
function being the logarithm likelihood of the alignment.
The simulated annealing is computationally intensive and
is the major reason for the long CPU time given in Table 2.

Distance matrix calculation and tree inference
A Maximum Likelihood approach is used to estimate the
evolutionary distances among sequences, either consider-
ing rate variation across sites or not. The logarithm likeli-
hood for replacing one protein sequence (A) with another
protein sequence (B) after an evolutionary distance d can
be written as:

Here,  is the equilibrium frequency for the amino acid

at site j in sequence A.  is the transition

probability from amino acid at site j in sequence A to
amino acid at site j in sequence B after an evolutionary
distance α j·d. αj is 1 if all sites are assumed to evolve at
the same rate; otherwise the αAB at site j is used for αj.

An estimate of the evolutionary distance between two
sequences is obtained by maximizing the likelihood func-
tion of equation (15):
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Equation (16) can be solved by the bisection root-finding
method [40].

After the distance matrix is calculated, the "Weighbor"
method, i.e. weighted neighbor joining, is used to infer an
evolutionary tree [10].

Ancestral sequence reconstruction
Two methods are implemented to reconstruct ancestral
sequences. One is a marginal reconstruction method [4],
and the other is a joint reconstruction method [5]. Below
are their brief descriptions.

The marginal reconstruction method [4]
We calculate P(Ar|{Al}T), which is the conditional proba-
bility of amino acid Ar at the root, given leaf node amino
acid set {Al} and a tree T. Since time reversibility is
assumed, any internal node can serve as a root. Using
Bayes' theorem, we have:

Here, P(Ar) is used here instead of P(Ar|T) because the fre-
quency of the root amino acid Ar, i.e. πr, does not depend
on tree T. P({Al}|ArT) is the conditional probability of the
known amino acids at the leaf nodes, given T and Ar.
P({Al}|T) does not depend on Ar, so it is calculated as a
normalization constant for P(Ar|{Al},T) terms over all 20
possible values of Ar to make the sum equal to 1.

For Figure 10, P({Al}|ArT) can be expanded as:

Here,  is the transition probability from

amino acid at node A to amino acid at node B after an evo-
lutionary distance dAB. Equation (18) can be calculated
using a recursive method suggested by Felsenstein [8].

If rate factors are used in the reconstruction of the root
sequence, we have:

Here, αi could be either αAB or αML at site i. P(AC,AD,AE,AF
| AA,T)i is the conditional probability P(AC,AD,AE,AF |
AA,T) at site i.

The joint reconstruction method [5]
The objective of a joint reconstruction method is to find
the combination of amino acids for an internal node set
{Ai} that maximize the conditional probability of this
amino acid combination, given the leaf node amino acid
set {Al} and a tree T, P({Ai}|{Al},T). Using the Bayes' the-
orem, we have:

Because P({Al}|T) is the same for all amino acid combina-
tion at internal node set {Ai} this problem becomes find-
ing the maximum of P({Al}|{Ai},T) *P({Ai}).

The details of a fast algorithm to solve equation (20) can
be found in Pupko et al. [5]. We also incorporated site-
specific rate factors in this algorithm, in a similar way as
equation (19)

Gaps
Due to difficulties with the probabilistic models of gaps, a
simplified empirical approach is used to alleviate the
problem. We assume that gaps are "supersede" letters.
Gaps are considered for each site independently. If a leaf
node has a gap instead of an amino acid at a site, this node
will be deleted from the tree for this site. After dealing
with leaves, we check all internal nodes for children. If an
internal node has no children or only one child due to the
leaf removal because of gaps, it will be removed from the
tree and a gap will be assumed as its reconstructed state.

Simulations of evolutionary process
Two methods of simulating amino acid substitution proc-
ess were used to test the reliability of reconstruction, rate
factors and evolutionary distance estimation. The first
simulation method was based on a homogeneous time
reversible Markov model. The parameters from Whelan
and Goldman [39] were chosen for our model, including
the equilibrium frequency vector π and the S matrix.
Given the length of a branch from a parent node to one of
its child nodes and the amino acid for the parent node, we
simulated the substitution process to generate an amino
acid for the child node based on the transition probabili-
ties that were calculated using equation (6). For the
arbitrarily selected tree shown in Figure 2, we first gener-
ated a random sequence of 100 amino acids as the root
sequence based on the amino acid frequencies from Whe-
lan and Goldman [39]. We then simulated the random
substitution process to obtain all leaf node sequences.
This simulation was repeated 100 times. The resulting 100
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alignments were used to test the reliability of the recon-
struction result. In this simulation, each site evolved inde-
pendently according to the same tree topology and branch
lengths, thus there was no rate heterogeneity across sites.

The second simulation method, based on a Z-score
model, introduced rate variation across sites by using
structural and functional information for a specific pro-
tein family [21]. We selected three protein families for the
Z-score simulations under structural and functional con-
straints: pdz domain (Protein DataBank (PDB) ID: 1g9o)
[41], trypsin (PDB ID: 1sgt) [42] and carboxypeptidase A
(PDB ID: 2ctb) [43]. Given a rooted tree, the native
sequence with known structure was used as the root
sequence. Simulations were made along the tree to
generate sequences at any internal node or leaf node. If
the evolutionary distance from a parent node to a child
node was d, the child sequence was obtained after l*d
accepted substitutions starting from the parent sequence,
where l is protein sequence length. Simulations of the sub-
stitution process were repeated 100 times. For each site,
the number of accepted substitutions was recorded and
averaged over 100 simulations. Rate factors (observed α),
representing site mutability, were calculated from these
average substitution numbers, such that the average of
rate factors is 1 (equation (10)). 100 simulated align-
ments were used to test the rate factor estimators (αAB and
αML), distance calculation methods and ancestral
sequence reconstruction.

Homology detection
Testing dataset
38 OB (Oligonucleotide/oligosaccharide binding)-fold
[34] proteins with known structures were selected for
homology detection test. OB-fold has a 5-stranded β-bar-
rel structure. In the SCOP (Structure Classification of
Proteins) database (version 1.55) [44], there are 7 OB-
fold superfamilies. The superfamily of nucleic acid bind-
ing proteins is the most populated. Diversity of many OB-
fold homologs extends beyond detection by automatic
PSI-BLAST searches. Multiple sequence alignments of
native sequences were obtained from PSI-BLAST searches
starting from the 38 OB-fold sequences with known
structures. We also selected 10 alignments (adenylyl
kinase, gef, globin, pdz, ph, ptb, ras, sh2, sh3 and subti-
lase) from the Pfam database (version 7.3) [29] for
homology detection test.

Four different methods
For each alignment with N sequences, ancestral sequences
for the N-1 internal nodes were reconstructed. The idea is
to test whether adding more sequences to a native align-
ment can help homology detection. Four types of com-
bined alignments were generated, adding different sets of
N-1 sequences to the native alignment. In the first case,

the added sequence at each internal node consisted of
amino acids with the largest probability at each position.
In the second case, the added sequences were made up of
amino acids with the second largest probability. In the
third case, we shuffled the native alignment at each posi-
tion while keeping the gap pattern as in the native align-
ment. After shuffling, we added N-1 sequences resulted
from the shuffling to the native alignment. In the fourth
case, N-1 random sequences were generated with the over-
all amino acid frequencies of the native alignment. These
four methods are named "BEST", "SECOND BEST",
"SHUFFLE" and "RANDOM", respectively.

Prediction of functional sites
Our objective is to find sites that are well conserved within
each sub-tree, but show high variability between different
sub-trees. These sites are likely to contribute to functional
specificity [26,45,46].

Sequence datasets
Multiple sequence alignments of ten protein families were
chosen from the Pfam database (version 7.3) [29]. These
families are: adenylyl kinase (adkinase) (representing
structure PDB ID: 1aky; its ligand or substrate: AP5) [47],
guanine nucleotide exchange factor (gef) (1bkd; H-Ras)
[48], globin (1a6g; HEM) [49], pdz domain (1be9; C-ter-
minal peptide of protein CRIPT) [50], ph domain (1mai;
I3P) [51], ptb domain (1shc; PTR) [52], ras (821p; GTN)
[53], sh2 domain (1a09; ACE) [54], sh3 domain (1nlo;
ACE) [55] and subtilase (1av7; SBL) [56]. Most of these
alignments contain many sequences. We pruned and clus-
tered the sequences in each alignment according to the
length and diversity. Representative sequences were kept
and used for tree inference and ancestral sequence recon-
struction. This procedure was done in three steps: 1)
removing fragments, 2) single-linkage clustering and 3)
complete-linkage clustering, as described below.

1. For each family, there is a template sequence with
known structure. The sequences, which cover less than
75% of the non-gapped positions in the template
sequence with amino acids, were considered to be frag-
ments and discarded.

2. A sequence identity matrix was calculated for the
remaining sequences. A single linkage clustering was done
to form sequence groups at sequence identity threshold
0.8. For each group, we chose the longest sequence as a
representative, discarding other members. This step
reduced redundancy in the dataset.

3. An average sequence identity was calculated for the
remaining sequences. We used this average identity as a
threshold for complete linkage clustering to form new
sequence groups. Four groups with the largest sequence
Page 20 of 23
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numbers were chosen to form our new alignment. Any
group with the same number of sequences as the fourth
group was also included in the new alignment. The pur-
pose of this step is to keep the major sequence subgroups
of a family while leaving out highly divergent sequences
that might be deleterious for tree inference.

Rooting
The "Weighbor" method gives an unrooted tree. For our
purpose of predicting functional sites, we need to find a
point on the tree that serves as the root. We used a least-
squares modification of the midpoint rooting procedure
to define the root [57].

Tree partitioning
The tree was partitioned into sub-trees at several levels and
compared the amino acid usages within each sub-tree and
among the sub-trees. For this partitioning, we "cut" the
tree into a fixed number of equal-distanced layers, using
the midpoint as the root (Figure 11). Several criteria were
tried for selecting the distance between adjacent layers.
Empirically we found that a simple partition of the tree
into 5 layers usually gave the best results. If the average

distance from the root to all leaf nodes is dr, then the dis-
tance between adjacent layers is dr/5 (Figure 11). Each
place of a "cut" between the layers corresponds to a cer-
tain ancestral sequence. We term the location of a "cut" as
a "cutting" node. The marginal reconstruction method
was used to reconstruct amino acid probability vectors for
all the cutting nodes (Figure 11). The reconstructed
probability vector of a cutting node reflects the amino acid
usages of the sub-tree under it.

Calculating specificity score for each site
We use {LK} to represent the set of cutting nodes for layer
LK, K = 0,1,5. {L0} is the root and L1 is the closest layer to
the root, etc.

A dissimilarity score between any neighboring cutting
node pair is calculated. The definition of a neighboring
cutting node pair (i, j) (Figure 11) is:

1. i ∈ {LK}

2. j ∈ {LK+1}

3. Node i is an ancestor of node j (all points on the path
from j to root node are ancestors of node j), so that the
distance between i and j is exactly dr/5. Each cutting node
has only one ancestral cutting node neighbor.

The dissimilarity score for cutting node j and its ancestral
cutting node neighbor i, i.e. anc(j), at site m is defined as:

 and  are the reconstructed probabil-
ities of amino acid A at cutting node j and its ancestral cut-
ting node neighbor i(anc(j)), respectively.

Let , K = 1,...,5  (22)

Here,  is the average dissimilarity score for layer K .

NK is the number of cutting nodes in layer K.

The specificity score is defined as:

An example showing the different cutting layers in a rooted treeFigure 11
An example showing the different cutting layers in a 
rooted tree. dr is the average distance from the root to all 
leaf nodes. Nodes i and j are neighboring cutting nodes.
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 reflects the difference of amino acid compositions

among the major sub-trees defined by the first layer. 

to  reflect the average difference of amino acid com-

positions within each sub-tree. If the amino acids are
highly conserved within each sub-tree but show

variability among the sub-trees,  to  are small

and  is large, leading to a large value of Sm. We set Sm

to 0 for invariant sites. We sort the sites by their specificity
scores and choose the 10 top scoring sites as our predicted
functional sites. Those predicted functional sites that lie
within 5 Å from the ligand(s) are considered to be true
positives.

Comparison with other methods
We compared our method with three other methods for
prediction of functional sites. The first method (Simple
Conservation or SC) is based on sequence conservation.
Highly conserved sites are considered to be functional. For
each family, we sorted the sites by positional conservation
[25] and chose the 10 top-ranking sites as the predictions.
There might be ties for sites. For example, if there were 5
sites tied at the tenth conservation value and only one of
them was within 5Å from the ligand(s), then its
contribution to the total number of "correct predictions"
was 1/5. The second method is the evolutionary trace (ET)
method [26], which partitions a sequence identity den-
drogram into sub-trees at varying sequence identity
thresholds. Sites that are invariant within each individual
sub-tree are picked as functional sites. A higher identity
threshold gives rise to more sub-trees and, since conserved
sites are more frequent in the sub-trees with smaller sizes,
lead to more predicted sites. ET analysis was performed
from a low identity threshold to higher thresholds until
the number of predicted sites was 10 or just above 10 (in
the cases of ties). Ties were resolved similarly to the simple
conservation method. The third method (conservation
difference or CD) is based on the conservation differences
between a native alignment and an alignment derived
from the Z-score sequence design [21]. The basic idea was
to differentiate sites conserved due to structural stability
and sites conserved due to function. Since the pairwise
potential in the Z-score design tends to weaken the con-
servation caused by function, functionally conserved sites
tend to have a large conservation difference between the
native alignment and the alignment of designed
sequences. We chose 10 top ranking sites sorted by con-
servation difference as predictions by CD.
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