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a b s t r a c t 

The development of an adaptive trait simulator package for inferring trait evolution along a phylogenetic tree 

is shown. Stochastic processes of the continuous type are broadly applied to modeling trait evolution when the 

evolutionary relationship among species and traits of study interest are present. By including several popular 

stochastic processes, evolutionary information embedded in a dataset can be revealed. The highlights of the 

method include: 

1. The implementation of the popular Cox-Ingersol-Ross process for modeling rate evolution within the package 

to prevent rates from becoming negative and thus is potentially a useful extension to study adaptive trait 

evolution in randomly evolved environment. 

2. The established trait simulator approach along with approximate Bayesian computation procedure provides a 

feasible statistical inference without model likelihood. 

3. The procedure proposed for trait simulator along phylogenetic tree can be applied to all established models 

of trait evolution in literature, thus providing users an alternative option to analyze their data. 
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Specifications table 

Subject Area: Mathematics, Agricultural and Biological Sciences 

More specific subject area: Stochastic process, Evolutionary biology, Phylogenetic comparative methods 

Method name: Adaptive trait simulator under Ornstein Uhlenbeck process type parametric diffusion model 

Name and reference of 

original method: 

Hansen et al. [9] , Jhwueng and Maroulas [10 , 11] , Jhwueng [12] , Jhwueng (In preparation) 

Resource availability: R package: ouxy at https://CRAN.R-project.org/package=ouxy 

Method detail 

Requirements 

Computer system with software environment R for statistical computing and graphics. 

Operating system: Mac OS X 10.0 or higher, Windows XP or higher, Linux distribution: Debian. 

Additional system requirements: none 

Software location: R package 

- Name: ouxy 

- Persistent identifier: https://CRAN.R-project.org/package=ouxy 

- License: GLP-2 

- Publisher: Dwueng-Chwuan Jhwueng 

- Date published: 2020-05-28 

Introduction 

The paper focuses on the implementation of methods for adaptive trait evolution in Jhwueng and

Maroulas [10] , Jhwueng and Maroulas [11] and Jhwueng [12] , building from Hansen et al. [9] . Adaptive

traits play an important role in survival and reproduction of the organism during the evolutionary

process. Any biological trait that helps the organism to survive in its specific environment is an

adaptive trait. For example, a snow monkey with thicker (positive) fur would survive better than

another monkey with thinner (negative) fur in a very cold environment while the coconut crab

evolved lungs to live and breed on land. This motivated the invention of this package that enables

feasible inference of trait under the models developed for answering questions from adaptive trait 

evolution in randomly evolving environment. 

Prior work in modeling adaptive trait evolution has been focused on using Gaussian processes

such as Brownian motion or Ornstein-Uhlenbeck process where the joint distribution of trait variables

in the model follows multivariate normal distribution with analytical mean and variance-covariance 

structure. This work endeavors to proceed statistical inference on models built by non-Gaussian type 

process for adaptive trait evolution. Due to the complexity of non-Gaussian processes, the built-in 

models are often with intractable model likelihood. Inferences under normal approximation to the 

non-Gaussian type adaptive trait model maybe feasible and efficient for analysis but inferences are 

remains best and most adequate under the given model. 

Procedure 

ouxy, the adaptive trait simulator package created for our purposes, implements models of adaptive

trait evolution with an approximate Bayesian computation (ABC) procedure. It was implemented as a 

library in R [17] . The manual of ouxy can be accessed at R cran with link https://cran.r-project.org/

web/packages/ouxy/ouxy.pdf . 

While the main function for ouxy is to perform trait simulation along the rooted ultrametric

phylogenetic tree under the model of adaptive trait evolution (the OUBMBM model, the OUOUBM 

model, the OUBMCIR model and the OUOUCIR model, see Additional information - Theory section), it

allows for several statistical inferences such as parameter estimation and model selection. The ouxy 

package contains functions that are separated into three main sections (1) set up the reasonable value

https://CRAN.R-project.org/package=ouxy
https://CRAN.R-project.org/package=ouxy
https://cran.r-project.org/web/packages/ouxy/ouxy.pdf
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or parameter estimation and compute summary statistics from raw input ; (2) set up appropriate

ange of prior parameters, perform traits simulation under each model and compute their summary

tatistics, and (3) conduct statistical inference for parameter estimation and model selection. 

Summarized below is the step-by-step process of performing analysis. 

. Prepare your own trait data and a rooted ultrametric phylogenetic tree (an ape tree object). 

. Install the ouxy package in your R environment. 

. Set up the tolerance rate and number of replicates for ABC procedure. 

. Perform the analysis using the main function ouxy. 

. Save the output (posterior parameter estimates and model selection) as desired. 

The ABC algorithm presented below adopts the Algorithm 1 in Jhwueng [12] . 

Algorithm : ouxy ABC rejection algorithm for inferring model of adaptive trait evolution 

input : A rooted phylogenetic tree T , trait dataset D = (Y, X ) where Y is the response trait and X = [ X 1 , X 2 , ..., X p ] is 

the set of covariate traits, root states (ρY , ρX ) , prior distribution π(·) , hyper parameters for prior �0 and tolerate δ

output : Posterior samples 

1: Compute the summary statistics S(D ) for data D 

2: for j = 1 , 2 , · · · , J do 

3. draw sample � j from prior π( �0 ) 

4. generate trait sample D j = (Y j , X j ) from � j under a given model M

5. Calculate summary statistics S(D j ) for simulated data D j 
6. end for 

7. Apply ABC rejection method using summary statistics S(D ) and S(D j ) , j = 1 , 2 , · · · , J with a tolerate rate δ

8. Return Accepted posterior samples �a where a = 1 , 2 , · · · [ Jδ] is the nearest integer to Jδ

Note that the distance function in ABC algorithm serves a very important role in accepting the

roposed values. Bokma et al. [4] used the Euclidean distance between observed and expected

ariances as the distance function. 

Slater et al. [19] used a partial least squares (PLS) regression transformation of the summary

tatistics to generate a new, lower dimensional set of summaries prior to computing the distance.

he distance function used in Bartoszek et al. ABC algorithm treated the phylogeny and trait data

eparately. ouxy uses 12 summary statistics (the raw mean, raw variance, raw median, raw skewness,

aw kurtosis, the contrast mean, contrast variance, contrast median, contrast skewness, contrast

urtosis [7] , Bloomberg’s K [3] and Pagel’s λ [15] ) and applies the abc rejection method [6] where

he Euclidean distance between the summary statistics of raw data and the summary statistics of

imulated data is computed, then a specified tolerance rate is used to get the required proportion of

oints accepted nearest the target values. 

Three empirical datasets of bats [1] , corals [18] and lizards [14] are included in ouxy. The bat

ataset is used as an example. 

# First install package ’ouxy’ 
# install.packages("ouxy") 
library(ouxy) 
library(phytools) 
# use coral data 
data(bat) 
# call for tree 
tree < -bat$tree 
# call for traits two covariates: Head height(mm), Head length(mm), 
# response variable: Body mass(g). 
traitset < -bat$traitset 
rownames(traitset) < -tree$tip.label 
The tree and trait values shown in Fig. 1 can be visualized using the following command 

# plot tree and traits 
dotTree(tree,traitset,standardize = FALSE,length = 6) 
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Fig. 1. The phylogeny of bats included in ouxy. The trait is shown using blue circles using different sizes. Traits from the left 

to the right are the response: body mass (g), and two covariates: head height (mm) and head length (mm). Species names are 

shown in the middle of the plot. 

 

 

 

 

 

 

 

 

 

 

 

 

All functions developed in package ouxy help performing regular statistical inference and hence 

are connected to its main function to its functionality and utility. The four built-in models (OUBMBM,

OUOUBM, OUBMCIR, OUOUCIR) within this package include procedure that utilize three stochastic 

processes of continuous type (as the name of the model: BM stands for Brownian motion, OU

for Ornstein-Uhlenbeck process and CIR for Cox-Ingersoll-Ross process) and are directly applied to 

perform comprehensive analysis. The required input are the tree: an ape tree object [16] and trait data

set: a data frame where the species name matches the tree tip labels of study interest. For standard

procedure of executing statistical inference, the package starts by searching maximum likelihood 

estimates using OU process (by R function OUprior), then a reasonable range for the prior parameters

were generated (by R function HyperParam). Next, the trait simulator R functions (oubmbmTrait for 

the OUBMBM model, ououbmTrait for the OUOUBM model, oubmcirTrait for the OUBMCIR model and 

ououcirTrait for the OUOUCIR model) generate trait dataset under each model. Then a set of summary

statistics are computed (by R function sum.stat). 

Finally, posterior samples and model selection under ABC procedure are reported (by R function 

ouxy). Some procedures such as calculating the summary statistics (by R function sum.stat) or 

drawing samples for a prior (by one of the R functions oubmbmprior, ououbmprior, oubmcirprior, 

ououcirprior), can perform independently given the required argument. Hence they can be accessed 

in the package without calling any other functions. 

Among the functions developed in package ouxy, functions oubmbmTrait, ououbmTrait, 

oubmcirTrait, and ououcirTrait simulate traits along the tree, a key element of the procedure.

Conventional methods assume a known statistical distribution for trait variables. Then traits are 

simulated under the specified distribution. However, the four models (OUBMBM, OUOUBM, OUBMCIR 

and OUOUCIR) lack an explicit model likelihood, thus the idea is to enable model inference based on

approximate Bayesian computation (ABC) technique. 

The boxplots for 100 simulated traits using a 3 species phylogenetic tree under each model is

shown in Fig. 2 . 

A particular note is that the representation of trait variable y t requires solving a system of

stochastic integrals that includes the integration of Brownian motion with respect to a Brownian

(the OUBMBM model and the OUOUBM model) or the integration of CIR process with respect to
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Fig. 2. Boxplots for tips simulated under the models of adaptive trait evolution using trait simulator in ouxy. The R script to 

generate the plots for this simulation can be accessed at online supplement compTraitsim.R 
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 Brownian motion (the OUBMCIR model and the OUOUCIR model). Currently the trait variable

 t is expressed at its most explicit form for each model and is implemented into R functions

ubmbmmodel, ououbmmodel, oubmcirmodel and ououcirmodel, repectively. 

Once traits are generated under model of interest, samples are drawn from the prior distribution

nd an ABC procedure is performed for inference. Posterior samples are chosen based on the rejection

ethod using function ouxy where R package abc [6] function abc is used for performing the ABC

rocedure. Different models are assumed a priori equally likely with same number of simulations. 

Bayes factor is defined as a ratio of the posterior model probability of two different models M i

nd M j (i.e. B F i j = Pr ( M i | D ) / Pr ( M j | D ) is used for comparing the fit of models. This is done by using

unction postpr in R package abc [6] where the posterior model probabilities are estimated using the

ejection method. Then the Bayes factor for model M i over model M j is computed by the ratio of

requencies of samples from each of these models that are below the threshold. 

The following R script performs the analysis. 

#perform the analysis using ouxy 
#convert trait into ratio scale using a log transform to meet 

iological assumptions 
traitset < -log(traitset) 
output < -ouxy(tree = tree,traitset = traitset,tol = 0.01,sims = 50000) #It 

akes a while 
#save your file 
save.image("bat_analysis.rda") 
#save.image("lizard_analysis.rda") 
The RData file bat_analysis.rda for the bat data analysis can be directly loaded at http://www.

onyjhwueng.info/ououcir/bat _ analysis.rda 

load(url("http://www.tonyjhwueng.info/ououcir/bat_analysis.rda")) 
For the posterior model probabilities of models and model selection by Bayes factors, execute the

ollowing code 

http://www.tonyjhwueng.info/ououcir/bat_analysis.rda
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output$s.mnlog #based tol ∗sims = 500 posterior samples among four 
models 

round(output$s.mnlog$rejection$BayesF,4) 
Posterior model probabilities 

OUBMBM OUBMCIR OUOUBM OUOUCIR 

0.5195 0.4295 0.0095 0.0415 

The Bayes factors: 

The Bayes factor BF ij for the model i in the row over the model j in the column is shown in the

following table. 

BF i j OUBMBM OUBMCIR OUOUBM OUOUCIR 

OUBMBM 1.0 0 0 0 1.2095 54.6842 12.5181 

OUBMCIR 0.8268 1.0 0 0 0 45.2105 10.3494 

OUOUBM 0.0183 0.0221 1.0 0 0 0 0.2289 

OUOUCIR 0.0799 0.0966 4.3684 1.0 0 0 0 

For instance, the Bayes factor of the OUBMBM model vs. the OUOUCIR model is shown in the

first row and the fourth column in the table with value 12.5181 which is computed by the ratio of

the posterior model probability of the OUBMBM model over the posterior model probability of the

OUOUCIR model (0.5195 ÷0.0415 ≈ 12.5181). 

Posterior mean for model parameters under each model can be directly accessed by executing the

following command 

Posterior mean of parameters 

To generate the table for the posterior mean of parameters, please execute 

round(output$table.out,4) 
For model parameters 

Model αy αx ατ θx θτ σx τ

OUBMBM 4.5825 0.7148 6.3979 

OUOUBM 1.7844 4.2611 0.7161 0.9532 9.6721 

OUBMCIR 4.8636 4.5297 4.5289 0.7224 

OUOUCIR 1.6889 4.1514 3.7677 0.7409 4.8963 0.9144 

For regression parameters 

Model b 0 b 1 b 2 

OUBMBM -3.9929 2.4837 0.2182 

OUOUBM -4.0451 2.4376 0.0162 

OUBMCIR -4.0590 2.5046 0.1479 

OUOUCIR -3.9936 2.4804 0.1401 

GLS -4.0268 2.5483 0.1958 

It is known that statistical inference accounts for the uncertainty. Similar to the simple OU model

[2] , ABC estimation for the models in Jhwueng [12] results in wide histograms of the estimator (see

Fig. 3 ). 

Additional information 

Theory 

ouxy makes use the expression for trait variable y t that solves the corresponding system of

stochastic differential equation for model of adaptive trait evolution. Given a rooted phylogenetic tree 
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Fig. 3. Histogram of posterior parameter estimate for the OUOUCIR model in ouxy. The vertical line in bold in each panel 

represents the true value and the vertical dashed line is the posterior median. The R script to generate the plots for this 

simulation can be accessed at online supplemental posthistououcir.r 
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ith known topology and branch lengths, ouxy makes possible to simulate trait at each node of tree

nder postorder tree traversal algorithm . 

The model starts with an assumption that the trait variable y t solves the following stochastic

ifferential equation (SDE) 

d y t = αy 
t 

(
θ y 

t − y t 
)
dt + τ y 

t d W 

y 
t , t > 0 , (1)

here the deterministic term αy 
t ( θ

y 
t − y t ) refers to a coefficient that measures the quantity of change

n an infinitesimal time dt and αy 
t is the force that pulls y t back to the optima θ y 

t ; τ
y 
t is the diffusion

oefficient that amplifies/reduces the trait change according to the random changing environment

easured by dW 

y 
t where W 

y 
t is a Wiener process having continuous paths and independent Gaussian

ncrements (i.e. d W 

y 
t ∼ N( 0 , d t ) ). 

With αy 
t = αy a constant, direct integration on both side of the Eq. (1) yields to the solution of y t

n Eq. (2) 

y t = y 0 + e −αy t 

t ∫ 
0 

αy e 
αy s θ y 

s ds + e −αy t 

t ∫ 
0 

τ y 
s e 

αy s dW 

y 
s (2)

The optimum θ y 
s is assumed in a linear relationship with the covariates x k,s , k = 1 , 2 , · · · , p with

he representation in Eq. (3) 

θ y 
s = b 0 + 

p ∑ 

k =1 

b k x k,s + 

p ∑ 

i =1 

p ∑ 

j � = i 
b i j x i,s x j,s (3)

here the stochastic variable x k,s , k = 1 , 2 , · · · , p is assumed following either a BM (i.e d x k,s = σx dW 

x k 
s )

r an OU process (i.e. d x k,s = αx ( θx − x k,s ) ds + σx dW 

x k 
s ) [8] . The rate of evolution τ y 

s is either assumed

ollowing a Brownian Motion (i.e. d τ y 
s = τd W 

τ
s ) or a CIR process [5] that solves the SDE in Eq. (4) 

d τ y 
s = ατ

(
θτ − τ y 

s 

)
ds + στ

√ 

τ y 
s d W 

τ
s , (4)

here θτ > 0 is the optimum of τ y 
s , ατ > 0 is a constant that pulls τ y 

s back to θτ , σ τ > 0 is the rate

f change for τ y 
s , and W 

τ
s is a Wiener process. 
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Details of the derivation for the solution y t for each model under various assumptions of the

corresponding diffusion processes, its optimum parameter θ y 
s and rate parameter τ y 

s can be accessed 

in Jhwueng [12] . 

Problems encountered 

Proper approximation to the posterior 

Attractive as this model is, it is important to understand the limits of this approach. Below are a

few difficulties encountered when developing this package. 

Currently, due to the computational requirement for proper approximation to the posterior 

probabilities of models, it is time consuming to finish the simulation when a sufficiently large of

sample is used. In particular, for the model that requires the numerical approximation of the integral

of Brownian motion with respect to another Brownian motion or to numerically evaluate the integral

of a CIR process random variable with respect to a Brownian motion, drawing sufficiently large trait

samples from larger tree (e.g. tree more than 100 taxa) often takes a long running time to finish the

analysis. 

Moreover, when modeling the rate parameter with CIR process (the OUBMCIR model and the 

OUOUCIR model), drawing a sample for y t requires computing a double stochastic integral in Eq. (5) 

στ

t ∫ 
0 

e −( αy + ατ ) s 

( 

s ∫ 
0 

e ατ u √ 

τu dW 

τ
u 

) 

dW 

y 
s ≈ στ

m 2 ∑ 

i =1 

( 

e 
−( αy + ατ ) i ∗ t 

m 2 

( 

m 1 ∑ 

j=1 

e 
ατ j∗ s i 

m 1 
√ 

τ j W 

τ
j 

) 

W 

τ
i 

) 

. (5) 

Conventional theory of numerical analysis suggests finer grids on the time domain should be used

to attain more accuracy when computing integrals. However, the stochastic integrals in the left hand

side of Eq. (5) has large variation and often produce widely spread trait values when more grids are

used. Hence larger uncertainty on the trait value is encountered when more grids are used where

more random samples are drawn on each grid. Currently, one grid ( m 1 = m 2 = 1 ) is used to draw a

sample from the integral in Eq. (5) implemented in the OUBMCIR and the OUOUCIR models. 

Since the models of adaptive trait evolution implement more than one process (OU, BM, CIR) to

track the dynamics of a trait along the tree, statistical inference may heavily depend on the simulated

data due to the complexity of models. It is also possible that traits simulated from the model lie in a

particular region of trait space, in this case one research direction to specify the region in trait space

may start by using the trait simulator developed here. 

Extension to non-linear optimal regression 

In evolutionary biology, regression analysis is broadly applied to model the relationship between 

dependent variables and their covariates. However, across the diversity of life these functional 

relationships will vary. A possible extension is to implement nonlinear optimal regresssion connecting 

the functional relationship between response θ y 
t and covariates x t [13] . 

For instance, given a Brownian motion (or an Ornstein Uhlenbeck process) covariate x t , the

exponential relationship θ y 
t = b 0 + b 1 exp ( b 2 x t ) converts θ y 

t to a geometric Brownian motion (or a

geometric Ornstein Uhlenbeck process) stochastic variable; while θ y 
t = b 0 + b 1 (x t − b 2 ) 

2 
transforms θ y 

t 

into a squared Brownian motion (or a Cox-Ingersoll-Ross process) stochastic variable. However, for 

an Ornstein Uhlenbeck process covariate. (i.e. x t = θx + exp ( −αx t )( x 0 − θx + σx 

∫ t 
0 exp ( αx s ) dW 

x 
s ) ), y t in

Eq. (2) is analytically intractable with unknown finite dimensional distribution. Moreover, in 

computing the covariance between two tips that involves the geometric Ornstein Uhlenbeck process, 

it remains computational challenge to get a reliable estimate for the term in Eq. (6) 

E 

[ 

t ∫ 
0 

( exp ( αy s + β3 x s ) ds ) 
2 

] 

= E 

⎡ 

⎣ 

t ∫ 
0 

( 

exp ( αy s + β3 

( 

θx + exp ( −αx s ) 

( 

x 0 − θx + σx 

s ∫ 
0 

exp ( αx u ) dW 

x 
u 

) ) 

ds 

) 2 
⎤ 

⎦ 

(6) 

Currently a better numerical scheme is required to approximate the quantity in Eq. (6) . 
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[  

[
[  

[
[  
Note that a popular package pcmabc [2] available on CRAN offers the same functionality as ouxy

xcept for a wider class of models, including a trait dependent speciation one. While pcmabc allows

rbitrary class of Markov process and requires users to specify the drift coefficient and diffusion

oefficient in the diffusion model, ouxy focus on expanding the Ornstein-Uhlenbeck based processes

ith non-Gaussian process (CIR) on the rate of evolution and functional optimal regression where

he optimal of the dependent variable depends on another stochastic covariates. pcmabc. ouxy offers

 convenient and an alternative option for users to choose suitable models best to describe their

mpirical data. 
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