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Simultaneous multi-parametric acquisition and reconstruction techniques

(SMART) are gaining attention for their potential to overcome some of

cardiovascular magnetic resonance imaging’s (CMR) clinical limitations.

The major advantages of SMART lie within their ability to simultaneously

capture multiple “features” such as cardiac motion, respiratory motion, T1/T2

relaxation. This review aims to summarize the overarching theory of SMART,

describing key concepts that many of these techniques share to produce co-

registered, high quality CMR images in less time and with less requirements

for specialized personnel. Further, this review provides an overview of the

recent developments in the field of SMART by describing how they work, the

parameters they can acquire, their status of clinical testing and validation,

and by providing examples for how their use can improve the current

state of clinical CMR workflows. Many of the SMART are in early phases of

development and testing, thus larger scale, controlled trials are needed to

evaluate their use in clinical setting and with different cardiac pathologies.

KEYWORDS

cardiac MRI (CMR), undersampled acquisition, fast cardiac imaging, multiparametric
cardiovascular magnetic resonance imaging, sub-Nyquist sampling

Introduction

Cardiovascular magnetic resonance imaging (CMR) is a versatile imaging modality
that allows a quantitative assessment of cardiac function, morphology, blood flow, and
tissue composition (1). A major advantage of CMR is its ability to directly characterize
myocardial tissue without the need for invasive procedures or ionizing radiation (1, 2).
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While contrast agents are still frequently used, more and
more techniques are now available that use native contrast
mechanisms. The contrast in MR images arises primarily from
variability in the proton density as well as longitudinal (T1)
and transverse (T2) magnetic relaxation times of the tissue,
which can be used to determine tissue composition based
on quantitative T1 and T2 values (2). Since T1 and T2
values differ between different tissues and change with tissue
pathologies such as inflammation or infiltration, T1 and T2
quantification strongly aids in differentiating between various
cardiomyopathies including Fabry’s disease (3), amyloidosis (4),
myocarditis (5), hypertrophic cardiomyopathy (6), takotsubo
(7), or acute versus chronic ischemic cardiomyopathy (2, 8).

Although extremely informative, CMR is limited by
its technical complexity and long acquisition times (9).
Cardiac and respiratory motion make CMR particularly
challenging. Images need to be acquired during a period
where the patient is motionless, so the exam length
heavily depends on the patients’ heart rhythm and on
compliance with breathing instructions (10). Alongside
patient compliance, scanning parameters must be carefully
chosen with respect to pulse sequence type, spatial orientation
of the imaging volume, and cardiac triggering options
(10). These complexities demand specialized training of the
medical staff and impair the clinical utility and accessibility of
CMR, despite its widely accepted role in diagnosing cardiac
disease (9).

To address these limitations, several working groups
have focused on the development of fast and user-friendly
acquisition methods (11–34). One proposed approach is the
use of “one-click” scans, where multiple cardiac parameters
(such as T1 relaxation, T2 relaxation, or cardiac motion)
are collected simultaneously with less prospective planning
(22, 23, 35, 36). These techniques have been collectively
called Simultaneous Multiparametric Acquisition and
Reconstruction Techniques (SMART) (37). SMART involves
the collective acquisition of quantitative CMR contrast
parameters (e.g., T1 and T2) which would normally be acquired
separately in a clinical CMR setting. These new methods
may increase sampling efficiency during free-breathing, ECG-
free acquisitions and focus on retrospectively recovering
data to reconstruct several cardiac contrasts at once. This
may include producing simultaneous T1 and T2 maps, cine
series or more (12, 14, 16, 18, 19, 23, 38–40). The result
is a faster CMR acquisition with less need for specialized
training, breathing instructions, or ECG setup. The goal of
this review is to: (1) summarize the theory behind SMART,
explaining how they enable the acquisition and reconstruction
of high-quality images with less scan time compared to
traditional methods; and (2) provide examples for how
these rapid sequences could be applied in clinical settings,
demonstrating how their application can improve the efficiency
of clinical CMR scanning.

Basics of multi-parametric sparse
sampling methods

Multi-parametric methods exploit the inherent redundancy
of images to reduce the required sampling rate. Since
redundant data can be compactly represented in some
transform domains, this notion is closely related to the
concept of “compressibility.” The redundancy that is present in
conventional CMR acquisitions allows for reducing sampling
rate requirements in SMART, resulting in decreased scan
time. CMR’s long acquisition times are primarily caused by
the need for several types of images−such as bright or dark
blood morphological images, cine images, parametric maps, late
gadolinium enhancement (LGE) images, perfusion images, or
more−which require different parameter settings, views, and
various contrast types (41). This limitation is worsened by the
need for repeat measurements over various cardiac cycles to
meet data sampling requirements and by the relatively short
periods during which cardiac motion is minimal (10). There
is significant redundancy with respect to anatomical regions
being repetitively scanned for various contrasts (Figure 1A).
The goal of SMART is to optimize the efficiency of CMR
scans by acquiring multiple CMR data (cardiac motion, T1
relaxation, T2 relaxation etc.) in a single acquisition that can be
reconstructed into informative images using assumptions based
on prior knowledge of the MR signal properties (Figure 1B)
(42).

Sampling less MR data per reconstructed image typically
results in reduced image quality (IQ), but this can be
mitigated with alternative sampling trajectories (Figure 2) (42).
Traditionally, MR data are acquired as signals on a Cartesian
k-space grid and then reconstructed to an image using a Fast
Fourier transformation (Figure 2) (10). When undersampled,
this method leads to fold-over artifacts that may be detrimental
to visual interpretation or quantitative analysis (Figure 2). Many
newer techniques utilize alternative sampling trajectories which
frequently sample through the center of k-space, such as radial,
rosette or spiral trajectories. These trajectories are desirable
because they allow detection and extraction of respiratory and
cardiac motion, thus enabling newer techniques to be free-
breathing or self-gated (35). This reduces scanning complexity
for the technologist, as no ECG electrodes or respiratory
navigators are required. Furthermore, it removes the need for
monitoring breathing compliance, and eliminates the potential
for cardiac mis-triggers or incomplete breath-holds. It also
benefits pediatric patients or those who have difficulty holding
their breath, and patients with abnormal cardiac rhythms.

So-called sparse reconstruction techniques can produce
higher IQ with reduced scan time and comprehensive, co-
registered images when they capture more information at once
(42). Thus, three-dimensional (3D) acquisitions or those that
simultaneously capture many features, such as varying MR
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FIGURE 1

(A) Traditional CMR scanning workflow which requires separate image acquisitions to acquire images of different contrasts. Images are planned
sequentially which requires time and specialized training to understand cardiac anatomy. ECG-triggers and breath-holding are needed to obtain
images when motion is minimal. K-space is normally fully sampled and a fast-Fourier transform is used to obtain images with high image
quality. (B) A potential new CMR workflow that is suggested by SMART-CMR. The novelty behind these SMART is to simplify CMR scanning by
taking advantage of the redundancies which exist between images of different contrasts. Some SMART allow for imaging acquisitions without
ECG-gating or breath-holding with whole-heart coverage. The acquisition planning is simplified, often simply requiring the placement of a
volumetric box over the heart. For these methods to reduce scan time, pseudo-random under-sampling is often used in combination with
alternative reconstruction approaches such as compressed-sensing (CS), low-rank tensor (LRT) methods, or high-dimensionality undersampled
Patch based Reconstruction (HD-PROST).

contrasts, blood flow, and cardiac motion are characteristic of
SMART. They effectively exploit the redundancy that exists in
traditional CMR exams to achieve an efficient and nearly “all-in-
one” image acquisition (42). This is also beneficial from a clinical
standpoint as it allows the entire structure and function of the
heart to be assessed with perfectly co-registered images across
different MR contrast types.

Three methods, which are at the forefront of SMART,
speed up MR acquisitions by undersampling (Table 1). These
methods allow for recovery of CMR image integrity from data
that were undersampled during their acquisition. The three
key approaches are: Parallel Imaging (PI), Compressed Sensing
(CS), and Low Rank Tensor (LRT) methods. These methods are
commonly implemented alone or in combination.

Parallel imaging

Parallel imaging (PI) is widely used in clinical practice. PI
allows for reduced data sampling by exploiting data redundancy

available from phased array surface coils (Figure 3) (43).
Phased array surface coils consist of several independent
receiver coils arranged close to the region of interest
(Figure 3). Each independent receiver coil is more sensitive
to an anatomical area of the region of interest which is in
closest proximity. Coil sensitivity maps are estimated and
used to separate real signals from undersampling artifacts
as the undersampled acquisition would typically lead to
incoherent images if reconstructed using traditional methods
(43).

Although PI improves the usability of CMR, scan time
remains a significant limitation (9). While PI has allowed
CMR scan time to be decreased 2- to 3-fold while maintaining
diagnostic IQ (Table 1 and Figure 3) with shorter breath-hold
times (44), it is limited by the fixed geometry of the phased
array coil elements and the loss of SNR at greater accelerations,
where less data are acquired (43). Greater field strengths and
dimensionality increase the baseline signal, allowing for more
coherent images despite acceleration (43). Thus, the benefits
of PI are appreciated in CMR using higher magnetic field
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FIGURE 2

An example of how image quality may be affected from the way
data is sampled in k-space. Traditional cartesian k-space
sampling with fully sampled data results in high image quality.
However, traditional k-space sampling with uniformly
undersampled data results in coherent fold-over artifacts.
Variable density pseudo-random undersampling allows artifacts
to be incoherent in image space, approaching noise-like
artifacts in some cases. This may allow the resulting image to
retain diagnostic integrity despite heavy under-sampling.
Oftentimes, variable density pseudo-random undersampling is
achieved with alternative trajectories such as rosette, radial or
spiral. The key benefits of these trajectories include the center of
k-space being over-sampled which allows features like motion
to be extracted and the incorporation of golden-angle sampling
which strengthens the incoherence of artifacts in image space.

strengths and in exams that require a 3D or multi-dimensional
component such as 2- or 3D cine imaging or angiography.

Compressed sensing

Compressed sensing (CS) is a reconstruction technique
that exploits the sparsity of an image to recover it from far
fewer samples than required by the Nyquist–Shannon sampling
theorem. To successfully reconstruct an image, CS requires
the image to be sparse in some domain (e.g., wavelet, finite
difference, etc.) and the undersampling artifacts to be incoherent
in the sparse domain (Figure 4) (45). CS has enabled many
applications, including removing the need for patient breath-
holding in 2D (46) or 3D cine imaging (47), accelerating
parametric mapping acquisitions (48), acquiring 3D LGE images

(49, 50), acquiring 3D MR angiography images (51–55), or
acquiring higher dimensional CMR images such as 5D cardiac
images (x, y, z spatial dimensions + respiratory motion + cardiac
motion) (30, 56–60). CS has also recently been cleared by the
United States Food and Drug Administration (FDA), allowing it
to be used and tested in larger clinical settings (61–63).

For CS to successfully reconstruct an undersampled image,
data must be sampled pseudo-randomly, and the reconstruction
process must iteratively threshold the sparse domain and
enforce data consistency with the acquired data in k-space
(the sampling domain) to separate signals from noise and
undersampling artifacts (Figure 4) (45). A sparse domain is a
domain where the image can be compressed, meaning that few
signals are representative of the whole image (Figure 4). The
undersampling artifacts must be “incoherent” in this domain,
meaning that undersampling in k-space will not affect the
detection of “real signals” in the sparse domain (45). Once an
appropriate sparse domain is selected, data is sampled pseudo-
randomly in k-space, with the sampling rate defined by a set
acceleration factor (Figure 4). After sampling, the goal of the
CS reconstruction algorithm is to recover the “true signal” and
remove the aliased signal which appears as noise (Figure 4)
(45). This is done using an iterative, non-linear reconstruction
framework (45) (Figure 4).

Certain parameters can be altered within the CS framework
to enhance the resulting IQ. Like PI, CS is more reliable when
the baseline signal is higher, e.g., with higher field strengths or
higher dimensional imaging (3D or more) (45). The choice of
the “sparse domain” and sampling trajectory also impacts the
robustness of the technique (45). An important parameter in
the CS reconstruction called regularization strength increases
image sparsity in the sparse domain and thus attenuates more
noise but also results in spatial blurring, making detection of
edges such as the myocardial blood pool border more difficult
(45). Clinical studies to date have shown that CS can reduce
scan times by up to 90% (Table 1) and increase patient comfort,
without a significant loss of diagnostic IQ or information. Before
widespread clinical adoption however, standardization of CS
techniques is required (Figure 4).

Low rank tensor methods

Low rank tensor (LRT) methods are yet another way to
exploit CMR redundancy and save scan time. This method
frames CMR as a tensor (Figure 5A) and reduces the
redundancies which exist within this tensor representation (64).
For example, CMR data is a tensor when visualized as still frame
images grouped by T1 relaxation, T2 relaxation, and cardiac
phase (Figure 5A). When visualized in this way, anatomical,
contrast, and signal overlap can be observed between frames
(Figure 5A). LRT methods use correlations between frames
to recover CMR images from undersampled data (65). In this
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sense, many MR features, such as respiratory or cardiac motion,
can be viewed as higher dimensions within the LRT framework.
This method has been applied to accelerate cardiac cine imaging
(64, 66–71), visualization of contrast inflow (perfusion) (72),
5D flow (73), LGE (74), MR angiography (75), and parametric
mapping (19, 25, 76). Like CS, LRT methods can be applied to
remove the need for patient breath-holding or cardiac gating,
making this another potentially useful method for difficult
patient populations.

The key property that enables undersampling and scan time
reduction in LRT methods is low rankness (64). Low rankness
with respect to CMR means that along each dimension of the
tensor (spatial, respiratory, cardiac, T1 relaxation, T2 relaxation,
etc.), any datapoint can be obtained as a linear combination

of other datapoints (64). In other words, a cardiac image at a
specific cardiac phase with a specific contrast can be created
by other images in different phases with different contrast
weightings. The significance of this with respect to CMR
scanning is that only a subset of CMR data is needed to extract
higher-dimensional CMR data. However, to exploit these linear
combinations, basis functions, i.e., functions which capture the
signal behavior of each dimension (spatial, respiratory, cardiac,
T1 relaxation, T2 relaxation, etc.), must be estimated (64)
(Figure 5B). These can be estimated from the data itself or from
Bloch equation simulations using the scan parameters (35).

In LRT methods, two different perspectives can be used
separately or jointly to exploit CMR redundancy: global or
local (77). Using an example of 2D cine images, a global

TABLE 1 Comparison of acquisition and reconstruction properties of sparse sampling techniques discussed in this manuscript.

Parallel imaging Compressed
sensing

Low rank tensor
methods

HD-PROST

Trajectory Any Trajectories which allow
incoherent aliasing

(1) Trajectories which
allow incoherent aliasing
(2) Trajectories which
continuously sample
low-frequency
information (e.g., the
center of k-space)

Trajectories which allow
incoherent aliasing

Redundancy Coil domain Any sparsifying domain Tensor representation Tensor representation

Acceleration 2–3 fold 4–5 fold 4–5 fold 2.5–6.5 fold

Requirements (1) Phased-array coils
(2) Sensitivity maps

(1) Pseudo-random data
sampling
(2) Pre-selected “sparse”
domain
(3) Pre-selected number
of tuneable parameters

(1) Multi-dimensional
CMR acquisition
(2) Pseudo-random data
sampling
(3) Formation of tensor

(1) Multi-contrast CMR
acquisition
(2) Pseudo-random data
sampling
(3) Formation of tensor

Assumptions (1) Coils are most
sensitive to the
imaging-area they are
closest to
(2) Coil sensitivities vary
throughout the image

(1) CMR data is
compressible
(2) Pseudo-random data
sampling allows
undersampling artifacts
to be separated from
“true signal”
(3) Undersampled CMR
data can be recovered in
a “sparse” domain

(1) CMR data has many
spatio-temporal-contrast
correlations
(2) Pseudo-random data
sampling allows
undersampling artifacts
to be separated from
“true signal”
(3) High-dimensional
CMR data can be
expressed as a LRT
(4) Undersampled CMR
data can be recovered
from a LRT model

(1) CMR data has many
spatio-temporal-contrast
correlations
(2) Pseudo-random data
sampling allows
undersampling artifacts
to be separated from
“true signal”
(3) A multi-contrast
image can be expressed
as a LRT
(4) Joint-contrast,
undersampled CMR data
can be recovered from a
LRT model

Adjustable
parameters

(1) Acceleration factor
(limited by number of
phased-array coils)
(2) SENSE vs. GRAPPA

(1) “Sparse” domain
(2) Tuneable parameters
in the reconstruction

(1) Tensor constraints
(global vs. local)
(2) Tuneable parameters
in the reconstruction

(1) Tuneable parameters
in the reconstruction

Clinical validation
studies

(44, 112–115) (30, 49–53, 57, 116–118) (73, 84, 104) (18, 19, 75, 87, 105)

Technical literature (119–123) (45–48, 54–56, 59, 60,
124, 125)

(23, 64, 66, 69–72, 74,
76–78, 83, 85, 103, 126,
127)

(25, 36, 86)
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FIGURE 3

A pictorial example of multi-coil Parallel Imaging techniques describing both image-based SENSE (sensitivity encoding) or k-space based
GRAPPA (generalized autocalibrating partial parallel acquisition)– two differing reconstruction techniques. (A) Pictorial representation of
phased-array coils used to acquire undersampled data, and a graphical representation of undersampled k-space. The non-random
undersampling method results in artifacts that are detrimental to visual inspection, therefore must be separated from real signals. (B1) Pictorial
representation of k-space based GRAPPA. In this technique, reconstruction takes place in the k-space. The acquired MR signals fill in k-space
for each coil, though many lines of k-space are missing due to undersampling. Missing points in k-space are then estimated iteratively using
known data from the center of k-space, and local known data for each region, known as kernels. Once missing lines of k-space are filled, a
Fourier transformation is performed, creating individual coil images from which the final reconstructed image will be created. (B2) Pictorial
representation of image-based SENSE, in which reconstruction takes place in image space. A Fourier Transformation is performed which
creates a coil sensitivity map for each coil element. These sensitivities are used to sort real signals from artifacts, creating an image for each coil,
from which the final reconstructed image will be created. (C) The individual coil images are combined to create a final, reconstructed image.

approach may look at each still frame as a whole and search for
correlations between each image (Figure 6A). This will often
result in residual artifacts or spatial blurring because of the
many different contrasts (from fat, muscle, blood pool, and air)
that are present in each frame (77). Global LRT treats different
tissue types jointly, so the accuracy of defining fine details in an
image is reduced (77). A local approach may break each still
frame into smaller “patches” and search for correlations that
exist between these patches across dimensions (Figure 6B) (77,
78). This method retains more of the image detail information
because the patches are more likely to contain a single tissue type
with a single contrast (77, 78).

A major advantage of LRT methods is that they are adaptive
and versatile (35). Unlike CS, LRT methods do not require
the selection of a pre-defined sparse domain; they can look
at all the existing CMR data to find redundancy (35). The
advantage of this is less dependence on a priori decision making
and potentially a larger reduction of scan time with a greater
retention of the MR signal. In imaging tasks where precision is

important, such as with parametric mapping, LRT methods may
be better suited than CS because less signal is lost during the
reconstruction process (35, 78). Like PI and CS, LRT methods
work best with higher dimensional CMR applications (3D or
more) since more redundancy exists at higher dimensions. For
this reason, LRT methods have been successfully applied to
create joint T1-T2 or T1-T2-cine images (19, 23, 39, 79–85),
exploiting the overlap between these contrasts. The adaptive and
versatile nature of LRT methods have made them a major focus
in the development of SMART (19, 23, 25, 36, 38, 39, 75, 79–86).

High dimensionality, undersampled
patch based reconstruction

High-dimensionality, undersampled patch-based
reconstruction (HD-PROST) is a specific type of local-LRT
regularization method which uses a patch-based perspective to
exploit CMR redundancy (36) (Figure 7). Similar to local LRT
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FIGURE 4

Depiction of the compressed sensing concept. Compressed sensing requires both a pseudo-random undersampling of k-space and for a
sparse representation of the image in some transform domain (e.g., wavelet, finite difference, etc.). The pseudo-random sampling of k-space
can be achieved with a variety of sampling trajectories such as radial, rosette, spiral, or cartesian. The under-sampled data undergoes a
non-linear, iterative reconstruction to recover image integrity from the aliased image. The pseudo-random sampling of k-space allows
undersampling artifacts to appear as noise and can be removed by thresholding in a sparse domain. The final image may have reduced image
quality but should still be diagnostic.

methods, this patch-based approach breaks an image frame
into “patches,” but unlike local LRT methods, it searches for
correlations both within a given patch and between patches
(36). This allows CMR redundancy to be exploited to an even
greater extent than the aforementioned methods, translating
to both a further reduction in scan time and production of
higher-quality images (65, 74, 75).

To date, only proof-of-concept studies exist to demonstrate
the clinical potential of applying HD-PROST using an
undersampled MR acquisition (Table 2) (19, 25, 36, 38,
39, 75, 79–82, 86, 87). Recently, an HD-PROST application
which recovers 3D cine, T1, and T2, was tested in phantoms
and 10 healthy volunteers and gave comparable results for
ejection fraction (EF) as well as highly precise T1 and T2
measurements when compared to standard methods (19).
In another study, a free-breathing 3D whole-heart sequence
capable of visualizing the coronary vasculature was used
(75). Both phantom and in vivo images had an excellent
agreement in visualizing the coronary vasculature and its distal
segments when compared with the fully sampled reference
image (75). These images had a good quality despite shorter
scan times (4 min and 35 s ± 44 s vs. 22 min and
30 s ± 4 min and 54 s for fully sampled image) (75). HD-
PROST has also been applied to reconstruct water- and fat-
suppressed LGE images (87). Although this study found HD-
PROST images to be of diagnostic quality in 18/20 datasets
with strong agreement in the location of enhancement when
compared to standard LGE images, residual cardiac motion
was still present (87). This may be due to over-regularization
causing mismatches in patch-similarity, producing noisy signal
variations that are like aliasing artifacts (36). Thus, further
clinical studies are needed to help standardize the tuning of

hyper-parameters for cardiac applications that intend to use
HD-PROST or any of the sparse-sampling methods previously
described.

Simultaneous multi-parametric
acquisition and reconstruction
techniques

Here, the SMART, which allow for simultaneously acquiring
and reconstructing co-registered CMR images of different
contrast weightings, with sparse sampling principles applied
alone or in combination, are described.

3D single-parameter mapping

Some multi-parametric methods have focused on obtaining
a single quantitative image contrast as part of a 3D or
multi-cardiac-phase acquisition to increase the efficiency of
parametric mapping CMR exams. Clinical CMR parametric
mapping is limited by incomplete spatial coverage of the heart
which decreases its sensitivity to detect regional myocardial
abnormalities (37). Given the good agreement of mapping
with LGE enhancement in visualizing focal lesions (88),
complete coverage would likely increase the sensitivity of
mapping and may even allow for avoiding contrast agent
administration altogether.

In recent years, several groups have presented methods to
obtain whole-heart T1 maps during a free-breathing acquisition.
Han et al.’s (29) method exploits redundancy in the temporal

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2022.953823
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-953823 October 1, 2022 Time: 17:5 # 8

Eyre et al. 10.3389/fcvm.2022.953823

FIGURE 5

Depiction of the low rank tensor (LRT) concept. (A) Example of CMR images represented as a tensor with cardiac phase, T1 relaxation, and T2
relaxation representing different dimensions of the tensor. Once CMR data is organized in this way, any coordinate along the tensor will obtain
an image with a various cardiac phase, T1 and T2 relaxation time. (B) Pictorial example of basis functions, which capture the signal behavior of
each dimension (cardiac, T1 relaxation or T2 relaxation). These basis functions allow CMR data to be undersampled and for missing data to be
recovered through various linear combinations of the sampled data.

domain (e.g., between image frames) to reduce scan time
and obtain 40 short-axis slices with a spatial resolution of
1.9 × 1.9 × 4.5 mm. Their method requires a fairly lengthy
imaging time of 14 min, but this time could be decreased by
decreasing the number of slices acquired or lowering the spatial
resolution (29). Nordio et al. (89) similarly developed a free-
breathing 3D T1 mapping method which obtains 11 short-axis
slices in 12 min. Their method incorporates an image-denoising
step before T1 map fitting which improved the precision of their
T1 maps when compared to Modified-Look-Locker-Inversion-
Recovery (MOLLI) (89). However, their method depends on a

1D respiratory navigator which was shown to achieve a scan
efficiency of only 36% when tested in 15 healthy subjects (89).
In 2020, Guo et al. (90) presented a free-breathing 3D T1
mapping method which obtains nine short-axis slices in only
2 min. This method achieved high precision of T1 mapping
values when compared to both Saturation recovery single-
shot acquisition (SASHA) and MOLLI methods (coefficient of
variations: 6.2 ±1.4%, 5.3 ± 1.1%, and 4.9 ± 0.8% for SASHA,
MOLLI and the proposed 3D method, respectively) (90) in a
highly accelerated scan time, demonstrating clinical feasibility
of the technique.
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FIGURE 6

(A) Pictorial example of global low rank tensor (LRT) methods. This global method looks for image redundancy between entire image frames.
This pictorial shows image frames identified across multiple image contrasts (e.g., T1, T2, etc.). Correlations are sought between the image
frames, represented by the cartesian plane. Low-rank approximation and denoising are then applied to produce a final, reconstructed image.
Spatial blurring or artifacts may be present in the resulting image due to the possibility of multiple tissue types being present in the image frame.
(B) Pictorial example of local low rank tensor methods. This method breaks an image frame into “patches” and looks for image redundancy
across image patches. The patches are unfolded in a matrix and a tensor is formed. Tensor decomposition through low-rank approximation
allows for the image to be denoised, producing a final, reconstructed image. This method retains more detail information than the global
method, as patches are more likely to contain a single tissue type, with a single contrast.

FIGURE 7

Flowchart describing the denoising HD-PROST optimization proposed by Bustin et al. (36). Multi-contrast images are denoised using 2D and 3D
block matching, respectively, grouping similar 2D and 3D patches in the multi-contrast images. In a simple 2D matrix, these patches are then
unfolded, and a third-order tensor is formed by stacking them in the contrast dimension. Through tensor decomposition, the high-order tensor
can then be compressed. This is done by truncating multilinear singular vectors corresponding to small multilinear singular values. This process
outputs denoised, multi-contrast images which are then used as prior knowledge in the joint MR reconstruction. Figure adapted from Bustin
et al. (36).
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TABLE 2 Comparison of SMART methods discussed in this manuscript.

Motion compensation
method

Parameters
acquired

Recon. schema Acquisition schema (trajectory,
prep. pulse type and readout)

Scan time Recon. rime

Akçakaya et al. (11) Breath held and ECG triggered T1, T2 Voxel-wise least squares curve fitting Cartesian trajectory with SR pulse and T2
prep pulse and a single-shot bSSFP
readout

13 heartbeats NA

Blume et al. (12) Navigator-gated and ECG
triggered

T1, T2 PI (1.6x acceleration) and least
squares curve fitting

Cartesian trajectory with IR pulse and T2
prep pulse and bSSFP readout

NA NA

Guo et al. (14) Navigator-gated and ECG
triggered

3D, T1, T2 Curve fitting by
Levenberg-Marquardt algorithms

Cartesian trajectory with SR pulse and T2
prep pulse and GRE readout

7.9 ± 1.4 min NA

Multi-mapping (15) Breath held and ECG triggered T1, T2 PI (2x acceleration) and Dictionary
generation and matching

Cartesian trajectory with IR pulse and T2
prep pulse and bSSFP readout

NA NA

SATURN (16) Navigator-gated and ECG
triggered

T1, T2, T2* PI (3 or 4x acceleration) and curve
fitting

Cartesian trajectory with SR pulse and T2
prep pulse and spoiled GRE readout

18.5 s/slice NA

3D-QALAS (17) Breath held and ECG triggered 3D, T1, T2 PI (2x acceleration) and curve fitting Cartesian trajectory with IR pulse and T2
prep pulse and GRE readout

15 heartbeats NA

Milotta et al. (18) Navigator-triggered
retrospectively and ECG triggered

3D, T1, T2, water, fat
fraction

PI (4x acceleration), HD-PROST,
motion correction, and dictionary
generation and matching

Cartesian trajectory with spiral-like profile
order, IR pulse, T2 prep pulse, Dixon GRE
acquisition

9 ± 1 min 48 s 27 min and 45 s

Qi et al. (19) Free breathing, non-ECG gated 3D, T1, T2, cine PI (2x acceleration),
cardiac/respiratory binning,
HD-PROST, dictionary generation
and matching

Radial (golden angle) trajectory with IR
pulse and T2 prep pulse and spoiled GRE
readout

11.2 min NA

CABIRIA (20) Breath held and ECG triggered T1, T2 PI (2x acceleration), and curve fitting Cartesian trajectory with IR pulse and
bSSFP readout

8 heartbeats/slice NA

Deep-BLESS (21) Breath held and ECG triggered T1, T2 DL algorithm, PI (2x acceleration), CS Radial trajectory (golden angle) with IR
pulse and T2 prep pulse and spoiled GRE
readout

11 heartbeats/slice <1 s

Finger- printing (22) Breath held and ECG triggered
(newer adaptations are
free-breathing and non-ECG
triggered) (38, 39, 101)

3D, T1, T2, T2*, ECV,
proton density, cine, fat
fraction, water, T1 rho
(22, 39, 81, 82, 95, 96)

Different frameworks have been
proposed: all use dictionary
generation and matching; some
additionally incorporate PI, CS, LRT,
HD-PROST
(38, 79–82)

Spiral trajectory with IR pulse and T2 prep
pulse (newer adaptations use radial or
rosette trajectories)

Various acquisition
times depending on
sequence (16
heartbeats/slice (22),
7 min (38),
29.4 s/slice (39)

NA

Multi-tasking (23) Free breathing and non-ECG
gated

3D, T1, T2, T2*, ECV, fat
fraction, cine

Cardiac/respiratory binning, PI, LRT Radial trajectory with a hybrid T2IR
preparatory pulse and GRE readout, and
self-navigation with adequate temporal
resolution to estimate motion
basis-functions
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Recently, Bustin et al. (25) proposed a free-breathing
technique, 3D Motion-Corrected Undersampled Signal
matched (MUST)-T2, to obtain high spatial resolution
(1.5 mm3) 3D T2 maps in 8 min. Their method, which is
similar to Ding et al.’s (26), uses a saturation pulse to reset
the magnetization after every heart beat to increase scan
efficiency and reduce the dependence on heart rate (25). When
tested in a cohort of 25 patients with myocarditis, the method
demonstrated a high sensitivity to detect edema (25). The
isotropic spatial resolution is advantageous because it allows
reformatting in any imaging view without a loss of resolution.
Van Heeswijk et al. (33) developed a similar 3D T2-mapping
approach with isotropic resolution (1.7 mm3) but their method
is slightly less efficient as a three-heartbeat waiting period is
needed between magnetization recovery (scan time ≈ 18 min)
(33). Milotta et al. (31) propose a similar technique which
can obtain whole-heart T2 maps, dark- and bright-blood
images in a free-breathing scan of 11 min with high spatial
resolution. The 3D coverage and high-spatial resolution of the
aforementioned methods may allow detection of the coronary
arteries in addition to myocardial tissue characterization and
morphological assessment, moving towards the direction of a
comprehensive CMR exam.

Joint T1–T2

In traditional T1 and T2 parametric mapping, a preparatory
pulse [inversion recovery (IR), saturation recovery (SR),
combination of IR and SR, or T2 preparatory (T2prep)] is used
before a readout with a pulse sequence to generate a single
contrast. These readouts occur at several different time points
after the preparatory pulse is applied, and later each voxel’s
signal intensity from the image series is fitted to a curve that
describes the relaxation rate of the voxel (2). The acquisition
is typically ECG-triggered with a breath-hold requirement for
each obtained 2D slice. This method is not only lengthy but
also depends on two major assumptions: (1) the voxels’ signal
intensity can be described only by the relaxation time being
measured (or that the influence of other factors are negligible),
and (2) the images in the series are co-registered (i.e., there
is no physical displacement between the voxels of images
acquired at different readout time points) (2). Since T1 and
T2 provide complementary information when characterizing
myocardial tissue (2), joint T1–T2 mapping may both overcome
lengthy acquisition times and increase the diagnostic utility of
parametric mapping by providing co-registered maps.

To simultaneously generate T1 and T2 maps, a combination
of IR or SR and T2 prep pulses are typically used to generate T1
and T2 contrasts, respectively (Table 2) (35). Blume et al. (12)
presented one of the first joint T1–T2 techniques which could
acquire joint images using IR and T2prep pulses in an ECG-
triggered, navigator-gated, free-breathing acquisition. Although

their method was shown to measure precise T1 and T2 values
in 19 healthy subjects, their method is inefficient−requiring
almost 3 min to obtain a single 2D slice−as it requires
dummy heartbeats during signal recovery (12). Guo et al. (14)
and Hermann et al. (16) also presented navigator-gated, free-
breathing approaches to obtain joint maps. Guo et al.’s (14)
method was shown to be relatively fast, acquiring 3D joint T1–
T2 maps with an average scan time of 8 min with moderate
precision (coefficient of variations: 6.0 for T1 and 10.6 for
T2). Hermann et al. (16) generated T2∗ maps in addition to
T1 and T2, using an average acquisition time of 26.5 s/slice.
Although these methods were shown to rapidly acquire joint
maps, it should be noted that their techniques were tested mainly
in a healthy subject population where breathing is relatively
consistent. Navigator-based triggering depends on a steady
breathing pattern which may not be found in all patients and
could result in increased scan times in clinical settings.

In a different approach to navigator-triggering, Milotta
et al. (18) acquired 2D low-resolution image navigators
before running their 3D sequence to retrospectively isolate
respiratory motion. The 2D image navigators are acquired
rapidly and simplify the acquisition as they remove dependence
on obtaining optimal respiratory-triggering windows, but they
neglect to consider breathing motion in the anterior-posterior
direction which may impact the robustness of the mapping
technique (18). Their method additionally incorporates the HD-
PROST framework to increase scanning efficiency, obtaining
joint T1–T2 and water-fat maps over the whole heart with
isotropic resolution in just 9 min (18). Qi et al. (19) take
this one step further by removing the need for respiratory
navigators altogether through use of a radial sampling schema.
During reconstruction, the breathing motion is estimated using
the k-space center of all radial spokes (19). Their method
obtains 3D joint T1–T2-cine maps with isotropic resolution in
11.2 min (19).

Kvernby et al. (17) present another IR and T2prep
technique, 3D-QALAS, which can acquire a stack of 13
2D short axis co-registered T1–T2 maps at end-diastole in
an ECG-triggered acquisition of 15 heartbeats. This method
was shown to detect T1 and T2 changes in a longitudinal
study of patients who underwent valve replacement surgery
(91) and was highly reproducible in a cohort of 23 patients
with mixed pathologies, although it suffers from a lower
precision compared to MOLLI and T2-Gradient-Spin-Echo
(GraSE) techniques (92). CABIRIA, which similarly acquires
joint 2D T1/T2 mapping images in a breath-hold of eight
heartbeats, achieved high precision when tested in five healthy
subjects but suffered from low repeatability (20). Their
method continuously acquires data throughout eight cardiac
cycles after a user-selectable timepoint after the R-wave in
the ECG (20). This has the advantage of increasing the
efficiency of data collection, ultimately reducing acquisition
time. In contrast to the combination of IR and T2prep
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pulses, Akçakaya et al. (11) used a combination of SR and
T2prep pulses to generate 2D joint T1–T2 maps in a breath-
hold of 13 heartbeats. Their method yielded improved T1/T2
accuracy but with lower precision compared to the IR based
methods (11).

Other joint T1–T2 mapping approaches include
Henningsson’s (15). Multimapping, deep learning (DL)
Bloch equation simulations (DeepBLESS) (21, 93), and Chow
et al.’s (13) mSASHA. Multimapping is a joint T1/T2 method
which generates a dictionary for each subject and then matches
the acquired signal to this dictionary to generate T1–T2 maps
(15). They only partially resolve these dictionaries in order to
reduce the otherwise lengthy dictionary generation process
(15). DeepBLESS is based on the Bloch equation simulations
with the slice profile correction (BLESSPC) algorithm which
was previously developed for MOLLI T1 mapping (21, 93, 94).
mSASHA uses an ECG-trigger to acquire joint T1–T2 maps in
11 heartbeats. Their method demonstrated both high accuracy
and precision when tested in 10 healthy subjects.

All aforementioned methods address key challenges of
CMR, including the complexity of CMR scanning procedures
and long scan times, but are limited to small sample sizes in
mostly healthy subjects. Thus, despite the growing body of
evidence, further clinical validation, feasibility, accuracy, and
impact-on-outcome studies are required to verify the clinical
potential of these SMART.

Cardiac magnetic resonance
fingerprinting

Cardiac magnetic resonance fingerprinting (cMRF) is a
multi-parametric, rapid acquisition sequence for simultaneous
acquisition of multiple quantitative tissue parameters. The
traditional cMRF sequence quantifies T1, T2, and proton density
(M0) using an ECG-triggered sequence with a breath-hold of
16 heartbeats (Figure 8) (22). Several variants of the sequence
have been added over time, among them modifications for
detecting and quantifying T1p, T2∗, and fat signal fraction
(81, 82, 95, 96). Other developments include correcting for the
confounding factors caused by the radiofrequency field (B1)
(97), incorporating the ability for cMRF to acquire multiple
cardiac slices at once (80), incorporating a 3D free-breathing,
non-cardiac gated sequence with an acquisition time of 7 min
(38) and more recently, incorporating a 2D joint T1–T2-cine
sequence (Table 2) (39, 98).

Cardiac magnetic resonance fingerprinting attempts to
capture the continuous and transient state of the magnetization
history using various pulse sequence modules (e.g., IR, SR,
T2prep pulses, varying flip angles and varying TR) that are
sensitized to parameters of interest (e.g., T1 and T2) (22). The
acquired signals are matched to a dictionary of possible signal
evolutions to generate quantitative maps of interest (Figure 8)

FIGURE 8

Example of the Fingerprinting workflow, including the dictionary
matching process, and images obtained using the cardiac
Fingerprinting sequence. This sequence simultaneously
quantifies T1 and T2 in the myocardium. The figure shows
acquisition of only 4-heartbeats of the 16-heartbeat acquisition
method. In each heartbeat an inversion recovery (IR), T2
preparation (T2p), or no preparation pulse is used before the
data acquisition (ACQ). Image taken from Cruz et al. (99).

(22). cMRF dictionaries are generated using Bloch equations
− a mathematical formula that calculates magnetization as a
function of time with respect to T1 and T2 relaxation rates,
and any other properties that can be modeled by the MR
physics − to predict a range of possible spin behaviors and
signal evolutions (22). In cardiac-triggered cMRF, dictionaries
are made for each patient at the time of reconstruction,
based on patient-specific patterns. They account for hardware
parameters (B1 field inhomogeneity), acquisition parameters
(pulse sequence type, echo time, flip angle, repetition time,
readout type, etc.) and heart rate (22). This is critical as
clinical parametric mapping is inherently susceptible to external
factors (2). For a more thorough overview of the cMRF
technique and its applications, the reader is directed to (98–
100).

To save acquisition time, cMRF heavily undersamples data
using radial, rosette, or spiral sampling trajectories (22). Radial
or spiral trajectories are chosen so that the undersampling
artifacts are incoherent in the spatial domain. Although each
individual image is heavily undersampled, cMRF acquires
hundreds of these poor-quality images, so that tissue signal
patterns can still be identified and matched to the ‘fingerprint’
from the dictionary. More recently, cMRF has incorporated CS,
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LRT or HD-PROST methods into its framework (39, 79–82,
98). LRT methods have been applied to the original cardiac-
gated and breath-held cMRF technique to acquire multiple
2D T1–T2 slices simultaneously and to acquire joint T2–T2-
cine images (80, 98). HD-PROST has similarly been applied
to obtain joint T1–T2-cine images and 3D free-breathing
and non-cardiac-gated cMRF images (38, 39). Recent clinical
trials have demonstrated that cMRF gives highly reproducible
T1 and T2 measurements that correlate well with standard
mapping sequences (Table 2). The main advantage of combining
undersampling methods with existing SMART methods is to
recover images with higher IQ and greater image detail due to
their effective recovery of undersampled data (98–100).

Though many studies have demonstrated the clinical
potential of cMRF (99), there is still a need for larger, prospective
clinical trials to validate the technique for clinical application.
To date, the largest study consists of 58 healthy volunteers
scanned at a single site on a 1.5T scanner (101). The aim of
this study was to test the precision, repeatability, and IQ of
cMRF maps compared to standard mapping techniques. The
authors found that though cMRF measurements were slightly
less precise than conventional sequences, they were reliable
and cMRF images showed a more consistent IQ compared to
conventional sequences (101). Recently, cMRF was also tested
in a cohort of nine patients with amyloidosis and was found
to achieve high diagnostic accuracy of amyloidosis detection
(102). This study was the first to test the technique in a
controlled clinical trial but with a small sample size. Future
trials should include different patient populations to bring the
cMRF technique into clinical practice and to help focus the
optimization of cMRF developments.

The quantitative nature of cMRF lends itself well to
CMR protocols for myocardial tissue characterization.
Parametric mapping such as T1 and T2 are important
for differentiating between edema, scar, fatty tissue, and
other abnormalities such as the deposition of amyloid
fibrils (2). The simultaneous acquisition of multiple
contrasts and maps in cMRF reduces error caused by a
mismatch of anatomical positions or the cardiac phase across
different image types.

Cardiac magnetic resonance
multitasking

Magnetic resonance multitasking is a free breathing
multi-parametric sequence that can resolve cardiac motion,
respiratory motion and myocardial relaxation properties,
without the need for ECG triggering (Figure 9) (23). Its
reconstruction framework allows for the incorporation of PI,
CS, and LRT methods to decrease scan time (23). This allows

a patient to lay-down and breath normally while the standard
acquisition of cardiac cine, T1 and T2 mapping is acquired
as opposed to the traditional breath-held and ECG triggered
methods. Different variants of Multitasking sequences exist
with varying acquisition times, but on average, Multitasking
can acquire parameters in 1.5 min/slice or 15 min for a 3D
ventricular stack, using a satisfactory in-plane spatial resolution
of 1.4 × 1.4 × 8 mm (23, 103).

A previously published Multitasking acquisition scheme
can be described as follows (23): T1 and T2 contrast data
can be acquired simultaneously with radial sampling after five
hybrid T2/IR preparation pulses, with a subset of k-space being
sampled more frequently than the rest of k-space to obtain
substantial temporal information for the retrospective cardiac
and respiratory binning and to derive respiratory and cardiac
subspaces used in the LRT reconstruction (Figure 9A). Binning
refers to the retrospective data sorting into their motion states
(respiratory and cardiac phases). The rest of the k-space is
undersampled.

In the reconstruction process, Multitasking first sorts the
motion states and then fits the dynamic image frames to T1
and T2 contrast weightings (23). The T1 and T2 maps are
generated in a similar but slightly different fashion to cMRF.
Multitasking generates a dictionary of T1 and T2 recovery
curves using Bloch equations and then determines the T1 and
T2 basis functions from this dictionary to perform a voxel-wise
fitting of the acquired imaging signals (23). CS and LRT methods
are then used to recover IQ from the undersampled dataset
(23). Since images have been sampled across the entire T1/T2
recovery period, cine images can be created using many different
variations of T1 and T2 contrast weighting. One can obtain
dark-blood, bright-blood, T1-weighted, and T2-weighted cine
series (Figure 9A) (23). If the recovery times for pericardium,
fat, scar, edema, and myocardium are known, additional images
can be created that either suppress or highlight these tissues—all
from the same acquisition. This removes the need for specialized
training by allowing a comprehensive exam to be obtained
without ECG-gating and while the patient is breathing freely.

Several proof-of-concept studies have confirmed the
versatility of the Multitasking framework (Table 2).
Multitasking has been used to measure myocardial T1 and
extracellular volumes (ECV) (104), myocardial T1 and T2
(23, 85), myocardial T1, T2, T2∗, and fat-fraction (83) and
carotid plaques and aortic strain in patients with thoracic aortic
disease (84). These studies demonstrated that the Multitasking
framework can produce high quality images with reproducible
values that are in good agreement with reference values
(Table 2). However, clinical studies with larger sample sizes are
required to confirm these findings and validate this sequence for
clinical use. While Multitasking has a strong clinical potential
and can add additional contrasts such as T2∗, its development is
still ongoing, and more pre-clinical and clinical studies have yet
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FIGURE 9

Example of the Multitasking acquisition method. (A) To capture T1 and T2 contrasts simultaneously, a hybrid T1/T2prep pulse is used in a
continuous acquisition. Training/self-gating readouts are also acquired for retrospective cardiac and respiratory binning, and to estimate basis
functions. Multi-dimensional information, namely cardiac and respiratory motion, and relaxation rate are extracted from the acquired data and
sorted into a tensor. Each dimension in the tensor depicts cardiac motion, respiratory motion, T1 relaxation or T2 relaxation. One can choose
any point within the tensor to obtain an image at a specific respiratory position, cardiac position, and relaxation position. (B) Example of the
fitted Multitasking T1 and T2 maps. These maps are fitted after data are sorted into their tensor formation.

to show its ability to reliably quantify cardiac function, or T1
and T2 values in clinical settings.

Deep learning applications to
simultaneous multi-parametric
acquisition and reconstruction
techniques

For SMART to be adopted into clinical practice, the issue of
lengthy reconstruction times must be addressed. Reconstruction
times of SMART have shown to vary from 3 min (105)
to several hours (55). However, a clinical workflow may
require even faster reconstruction speeds to troubleshoot any
potential issues with the acquisition that could arise while the
patient is still in the scanner. The speed of reconstruction for
each method depends on several factors such as acquisition
parameters [dimensionality of the acquisition (2D versus

3D), in-plane spatial resolution, undersampling factor, etc.],
reconstruction parameters (number of iterations and other
tuneable parameters), computer hardware parameters [random
access memory, processing unit (graphics processing unit
vs. central processing unit), etc.], and computing platform
(computed unified device architecture, python, MATLAB, etc.)
(55). Deep Learning (DL) may allow SMART to overcome
some of their limitations by efficiently computing complex
reconstruction tasks (Figure 10).

Deep learning has already been applied to cMRF for
optimizing the dictionary-generation, image gridding
and dictionary-signal-matching process used in cMRF’s
reconstruction of parametric maps (106, 107). Dictionary
generation is a time-consuming and computationally heavy
part of cMRF’s reconstruction (22). DL reconstructions have
been shown to speed up this process by more than sixfold
(106), simply outputting T1/T2 values after the MRF signal
time course and cardiac RR interval times are inputted to
the network (Figure 11) (107). DL has also been applied to
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FIGURE 10

(A) Interplay of SMART, artificial intelligence (AI), and clinical CMR: A graphical overview of the relationships between artificial intelligence (AI)
and its subsets, machine learning (ML) and deep learning (DL), as well as AI’s potential impact on clinical CMR through SMART techniques. AI
uses machines to perform tasks usually disposed to humans and covers all ML techniques. ML specifically investigates how computers learn
from data, and DL, the most popular ML technique, automatically learns important features of data. (B) Examples of deep learning applications
to SMART CMR workflows: DL has been applied at all stages of the CMR workflow, from image acquisition to analysis. Advantages to DL
applications include reductions in input needed from clinicians through automated methods, and significant reductions in time for acquisition,
reconstruction, and analysis. Challenges remain in applying DL to clinical settings, include computational limits, the lengthy training required for
DL networks, and the “black box” nature of DL.

automated planning and sequence design, useful for reducing
the complexity of scanning for technologists, though limited
literature exists of cardiac applications (108).

Widespread application of DL to SMART is still limited.
Their novelty and their current development status limit DL
to a use mostly in small, exploratory studies, rather than large
clinical validation trials. In addition to the signal-dictionary
matching in cMRF, DL has been applied to quickly reconstruct
T1 and T2 maps directly from cMRF images (107), reconstruct
feature maps from multitasking images while accelerating
reconstruction time by a factor of up to 3,000 (109), accelerate
the acquisition of whole-heart magnetization transfer images
fivefold (28), and has accurately estimated image IQ from other
sequences in line with expert human reader ratings (110).
Since DL has the potential to expedite the time-consuming
and computationally demanding reconstruction processes of

many SMART, its application will likely increase as SMART
become more mature.

The use of DL is not without limitations. While DL may
offer an increase in SMART reconstruction speeds, it requires
a training stage which may not be easy or fast to conduct.
Computational challenges such as the limits in processing
capabilities to reconstruct long image sequences (111), and
the need for labeled datasets in training (111) may complicate
or restrict its general utility. Small datasets used for training
DL networks may not accurately represent the diversity of the
true population, preventing adoption in clinical practice (111).
Furthermore, the “black box” nature of DL may limit a more
rapid widespread adoption (111). The performance of other
sparse sampling methods (PI, CS, LRT, HD-PROST) can be
characterized using mathematical tools to understand how and
when these methods fail, but this is more challenging with
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FIGURE 11

(A) Biological neural network: pictorial depiction of visual processing by interconnected neurons in the human brain. Figure design inspired by
Zhu et al. (128). (B) Artificial (computer) neural network: pictorial of an artificial (computer) neural network as used in DL methods. Neural
networks are composed of multiple hidden layers of interconnected nodes, which parallel the human brain’s interconnected neural signaling
pathways. Network inputs go through several layers of computations which not visible to the reader, and as such, these computations are
known as hidden layers. Within each layer, filters are applied to the input, producing spatially dependent features which are then input to the
next layer. The network aims to learn the optimal value of the filters, known as their weight, to generate features of maximum relevance to the
task. If there are many layers, or computations, in the model, it is known as a deep neural network. (C) Neural network in CMR: a basic graphical
representation of the deep neural network structure used to accelerate cardiac Fingerprinting (cMRF), as proposed by Hamilton and Seiberlich
(106). After the network has been trained on simulated cMRF data, undersampled cMRF images are input and the network produces
reconstructed T1/T2 maps. Specifically, for a given voxel, the measured cMRF signal time course and cardiac RR interval times from the ECG are
input. The network then produces the estimated T1 and T2 values per voxel. This technique greatly accelerates reconstruction time from
undersampled images, suggesting applications for rapid CMR reconstructions in clinical settings.

DL because the mathematical expressions inside the neural
networks are hidden. This may be especially problematic when
DL methods return reconstructions that look realistic but are
in-fact inaccurate descriptions of the real pathology or anatomy.
Ideally, clinicians should be able to understand DL’s predictions
before applying the results to clinical decision making (111).
Minimizing bias in network design and ensuring training can be
done with representative datasets and weighting will be critical
to ensure DL networks do not simply replace manual bias with
another form (109).

Despite its limitations, recent work supports the idea that
SMART techniques will move toward DL reconstructions. The
long manually intensive reconstructions currently experienced
with SMART techniques only pushes CMR’s time limitation

from the foreground to the background (42). CMR will be
unable to accommodate more patients without experiencing a
reconstruction backlog, but this can be solved with DL (111).

Conclusion and future outlook

The application of SMART to clinical settings has the
potential to change the current practice of CMR imaging. The
ability of these techniques to acquire and then reconstruct
different types of CMR images from a single image acquisition
sequence simplifies the workflow for both the technologist and
the patient. In the long term, this may allow CMR to be used in
centers or locations without technologists specialized in cardiac
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imaging. The benefit may also extend to patients living in remote
areas, avoiding long commutes to specialized CMR centers. The
significant shortening of scan times by using SMART compared
to conventional CMR sequences may allow higher patient
throughputs, reducing cost per scan and shortening CMR
waitlists (9). The other added benefit for clinicians is the co-
registration of SMART images, as various tissue characteristics
or regional function can be reliably combined and thereby
better inform therapeutic decisions. As part of a comprehensive
CMR exam which includes morphology, function, and tissue
characterization, SMART provides opportunity to obtain several
of these parameters simultaneously. Some additional technical
developments and eventually large, prospective, controlled
clinical trials will be required to bring these techniques into
clinical routine and identify areas where the techniques need
to be optimized for clinical application. However, SMART
addresses the issues of complicated imaging methods and long
scan times in one way or another.
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