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SUMMARY
Genetic variants affecting gene expression levels in humans have been mapped in the Genotype-Tissue
Expression (GTEx) project. Trans-acting variants impacting many genes simultaneously through a shared
transcription factor (TF) are of particular interest. Here, we developed a generalized linear model (GLM) to es-
timate protein-level TF activity levels in an individual-specific manner from GTEx RNA sequencing (RNA-seq)
profiles. It uses observed differential gene expression after TF perturbation as a predictor and, by analyzing
differential expression within pairs of neighboring genes, controls for the confounding effect of variation in
chromatin state along the genome. We inferred genotype-specific activities for 55 TFs across 49 tissues.
Subsequently performing genome-wide association analysis on this virtual trait revealed TF activity quanti-
tative trait loci (aQTLs) that, as a set, are enriched for functional features. Altogether, the set of tools we intro-
duce here highlights the potential of genetic association studies for cellular endophenotypes based on a
network-based multi-omics approach. The transparent peer review record is available.
INTRODUCTION

In recent years, there has been a large effort to understand the

phenotypic impact of genetic variation through genome-wide

association studies (GWASs).1,2 The majority of variants de-

tected by GWAS are non-coding, which makes it difficult to un-

cover the underlyingmolecular mechanisms.3,4 Genetic variation

often modulates cellular phenotypes via changes in gene

expression.5–7 Genetic variants that influence the expression

level of a gene are known as expression quantitative trait loci

(eQTLs).8 They can impact gene expression via either cis-acting

(proximal) or trans-acting (distal) mechanisms.9–13

To date, most studies have focused on identifying cis-acting

regulatory variants using eQTL analysis. Mapping of trans-acting

genetic variants to specific downstream genes is limited by sta-

tistical power because genome-wide tests come with a burden

of multiple testing, and trans-eQTLs tend to have a smaller effect

size.10,14 Trans-acting variants, in principle, can affect a large set

of genes by altering the activity of gene regulatory pathways.15,16

Indeed,mapping the genetic determinants of (inferred) transcrip-

tion factor (TF) activity as so-called activity QTLs (aQTLs) was

previously shown to be a viable strategy for mapping trans-

acting loci in model organisms.17 In the regulatory network of

the cell, the aQTL can be connected to the TF through a variety

of mechanistic paths. For instance, a causal gene near the aQTL

could encode a co-factor of the trait TF, a kinase that controls the

post-translational modification status of the TF, or even an
Cel
This is an open access article under the CC BY-N
enzymewhosemodulation leads to a change in ametabolic state

that gets sensed by a signaling pathway upstream of the TF.

The recent emergence of large collections of parallel genotype

and RNA sequencing (RNA-seq) expression data10 has put hu-

man aQTL analysis using a similar discovery approach within

reach, and some initial studies have been performed.18–20 Iden-

tifying aQTLs could be important for understanding how genetic

variants affect cellular regulatory state as an intermediate pheno-

type. The protein-level regulatory activity of a TF quantifies to

what extent the TF can impact the expression of target genes

in a given cell. Most of the current experimental methods for pro-

tein quantification onlymeasure the total protein abundance for a

TF.21 However, the activity of a TF protein is greatly influenced by

its post-translational modification status and consequent sub-

cellular distribution. Linear regression models have long been

used to estimate protein-level TF activity from genome-wide

mRNA expression levels in a sample-specific manner.22–24 In

such analysis, mRNA expression levels serve as the response

variable, and the regulatory influence of a given TF on each

gene is used as the predictor; the regression coefficient, there-

fore, reflects the (inferred) activity of the TF under a certain con-

dition. A common way to define a TF’s regulatory influence is

through the prediction of binding strength from a promoter

sequence using TF-binding motifs,25–28 or a gene set approach

based on so-called TF regulons.29 Other computational methods

have also been proposed to infer TF activity from the mRNA

expression levels of TF target genes.25,26,28,30–39
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One of our goals in this study was to update the linear regres-

sion framework to allow for optimal analysis of human RNA-seq

data such as that generated by the Genotype-Tissue Expression

(GTEx) project. First, it is more challenging to predict cis-regula-

tory logic from non-coding sequences in humans than in model

organisms. We used the observed response of each gene after

perturbation of a TF in a cell line as the predictor variable, as it

captures the effect of TF regulation on gene expression more

accurately than binding affinity predicted from a sequence or

boolean TF regulon (the set of target genes) membership. A sec-

ond issue is that, especially in human cells, local chromatin

context shows great variation along the genome and has a large

influence on gene expression levels.40 While some algori-

thms28,34 include multi-omics data as input to remove the con-

founding effect of chromatin context, such matched datasets

are not readily available when analyzing genetic variation in

gene expression. The solution we settled on is to analyze gene

expression data at the level of pairs of neighboring genes, which

aremore likely to be embedded in the same local chromatin type.

More generally, our gene-pair approach allows us to control for

confounders that affect inter-individual variation in gene expres-

sion in complex tissue data. To make optimal use of the discrete

RNA-seq counts as a dependent variable, and to properly ac-

count for the over-dispersion that the distribution of these counts

is known to exhibit,41 we fit a generalized linear model (GLM)

based on the beta-binomial distribution with an independent

over-dispersion parameter for each gene pair.

By combining all these ingredients, our approach provides

insight into how TFs regulate differential gene expression across

tissues and individuals. To understand how genetic variation af-

fects gene expression via trans-acting mechanisms by impact-

ing related TF activities, we then performed genome-wide asso-

ciation analysis with the inferred TF activity as a quantitative trait

to identify genetic variants (aQTLs) that are significantly associ-

ated with TF activity levels in each tissue.

RESULTS

Inferring individual-specific TF activity
Figure 1A shows an overview of our approach to mapping trans-

acting loci. One of the inputs is gene expression data in the form

of raw RNA-seq counts for each sample as profiled in the GTEx

project v.8 release.10 Thesedata play the role of a dependent var-

iable (response) in the GLM that we fit to infer sample-specific,

protein-level TF activities. The other input is a genome-wide

signature, consisting of the log fold change in expression for all

genes after theCRISPRi knockdown of a particular TF (Figure 1B)

derived from RNA-seq data from the ENCODE portal,42 which

serves as the independent variable (predictor) in the model. Of
Figure 1. Inferring individual-specific TF activity levels

(A) Overview of the aQTL mapping pipeline.

(B) Details of our TF activity inference method. Briefly, we performed differentia

CRISPRi and used the shrinkage-based log2 fold change to define a genome-w

(C) TF perturbation response signature is used as the TF regulatory strength.

(D) Diagram of the pair-level model.

(E) Schematic diagram showing how the predictor was permuted across gene

construct a null distribution for the inferred TF activities.
the 74 TFs for which such experiments were performed, 55

passed our quality control criterion (see STAR Methods).

In existing regression models used for inferring TF activity from

expression data,23,26–28,34 each observation is an absolute or differ-

ential expression value for an individual gene. The regression coef-

ficient of the model in this setup would quantify to what extent the

sensitivity of genes to CRISPRi perturbation of the TF is predictive

of differential mRNAexpression in an unrelated sample. To account

for the confounding effect of variation in local chromatin context

along the genome without the need to explicitly add covariates

related to chromatin context to our model, we developed a ‘‘pair-

level’’model inwhicheachobservation is apair of expressionvalues

for twoneighboringgenes (Figure1C;STARMethods). The rationale

is that since chromatin is organized into domains along the

genome,43 neighboringgenesaremore likely toshareasimilar chro-

matin environment. Ourmodel is only trying to explain how sample-

specific variation in the expression ratio between the two genes in

the pair can be explained in terms of differences in responsiveness

toTFknockdownbetween the twogenes in thepair.Thismodeldefi-

nition implicitly accounts for, and therefore is insensitive to, any in-

crease or decrease in expression resulting from local chromatin

context that would be shared among the two genes in the pair,

including technical and biological nuisance variation that is inherent

to tissue RNA-seq data. Pairs of neighboring protein-coding genes

were selected for inclusion in the model based on the distance be-

tween their respective transcription start sites (Figure S1A). We

imposed both a minimum distance (10 kb) to avoid sharing of pro-

moter or proximal enhancer regions and a maximum distance

(200 kb) to increase the odds of similarity in local chromatin context.

To properly account for the biological and technological compo-

nentsof thevariation inRNA-seqcount,weuseaGLMbasedon the

beta-binomial distribution and likelihoodmaximization across hun-

dreds of samples for a given tissue to estimate the dispersion

parameter for each observation directly from the data. Simulta-

neous estimation of the regression coefficient associated with the

TFperturbationsignatureyieldsanestimateof (differential) TFactiv-

ity for each sample (see Figure 1D and STAR Methods for details).

To assess the robustness of our approach, we compared the

consistency in inferred TF activity between fits based on odd

and evenpairs of genes, respectively (FigureS1B). For a represen-

tativeset of tenTFsand ten tissues, thePearsoncorrelation across

samples between TF activities based on odd pairs and even pairs

was greater than 0.9 (Figures S1C and S1D). Consistent with our

expectation, when we performed fits in which the pairs are non-

nearest neighbors at a larger distance fromeachother on average,

the inferred TF activities were less similar to those based on near-

est-neighbor pairs andmore similar to those inferred using individ-

ual-gene observations (see STAR Methods for definition of the

gene-level model; Figure S2).
l analysis of RNA-seq assays in which a single TF was knocked down using

ide TF perturbation response signature.

pairs, for each sample independently. The same model fit was then used to

Cell Genomics 3, 100382, September 13, 2023 3
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Figure 2. Permutation analysis

(A) An example of distributions of activity based on actual data and permuted data, respectively.

(B) Distribution of the variance ratios computed for 10 representative TFs in 10 representative tissues. The variance ratio is defined as the difference between the

variance of the activity inferred from the actual data and that inferred from the permuted data as a fraction of the former.
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We also explored the relationship between inferred TF activity

and the mRNA expression level of the gene encoding the TF.

Computing the correlation between these quantities across indi-

viduals for all TF/tissue combinations, we found that the degree

of correlation varies a lot among TFs (Figure S3A), which should

not be surprising since mRNA is only one of the many determi-

nants of the regulatory activity of the TF protein in the nucleus.

However, the correlation is generally consistent across tissues

for a given TF, and closely related tissues tend to have similar

patterns across TFs. There is also a clear enrichment for statis-

tically significant correlation (Figure S3B). We also compared

(see STAR Methods for details) with an existing TF activity infer-

ence method44 that has been previously used for aQTL discov-

ery.20 There is a strong trend for the TF activities as inferred by

the two approaches to be correlated across all samples for a

given TF/tissue combination, although the degree of correlation

varies (Figure S4). The significant negative correlations that

some of our inferred TF activities have may indicate that, some-

times, the activity can reflect a broader variation in pathway ac-

tivity with involvement from multiple TFs with shared regulons

but opposite directions of effect.

To assess towhat extent the variation in inferred TF activities re-

flects true differences between samples as opposed to statistical

fluctuations or biological noise unrelated to the TF in question,

we randomly permuted the TF perturbation response signature

used as the predictor and then refit the model (Figure 1E; STAR

Methods). Comparing the null distribution of TF activities resulting

from many independent such permutations with the distribution

acrosssamples for theunpermutedfits,we found that the variance

of the latter tended to bemuch larger (a representative example is

shown in Figure 2A). The variance ratio between (1) the difference

between thevarianceof inferredactivitiesand thatofpermutedac-

tivities and (2) the variance of inferred activities is greater than 0.9

formostTF/tissuecombinations (Figure2B).Thissuggests thatour

modeling approach is sensitive to true variation in TF activity

across samples, which can arise frommany sources, including in-

ter-individual variation due to donor characteristics.
4 Cell Genomics 3, 100382, September 13, 2023
Age-dependent inter-individual variation in HMGB2
activity
Our model was designed to analyze variation in TF activity across

individuals for a given TF and tissue. To validate its biological use-

fulness in a robust manner, we tested whether the TF activity esti-

mated from the GTEx data showed any biologically meaningful

relationship with age. Themost statistically significant association

from this analysis was that the activity of high-mobility group box

protein2 (HMGB2) inskeletalmusclesignificantlydeclineswithag-

ing (Spearman correlation r =�0.337, p = 3.73 10�20) (Figure 3A).

Consistently, it has been previously reported that aging is associ-

atedwith a loss of HMGB2, which contributes to the development

of osteoarthritis (OA),45 one of the most commonmusculoskeletal

disorders, which is strongly linked to aging.46 Other tissues also

showed age-dependent HMGB2 activity, including two adipose

tissues (Figure 3B). Indeed, HMGB2 is known to play an important

role in adipogenesis.47 Several other TFs also showeda significant

dependence on age in these tissues (Figure S5A). In a more

comprehensive analysis across all combinations of TF and tissue,

we extended this age correlation analysis to (1) the TF activity as

inferred using the approach of Hoskins et al.20 and (2) the mRNA

expression level of the TF gene (Figure S5). We found that our

gene-pair model (Figure S5A) yields a more coherent pattern of

correlation with age across tissues than these alternatives, both

in terms of a clustered heatmap representation (Figures S5B and

S5C) and the eigenvalue spectrum of a singular value decomposi-

tion of the age correlation matrix (Figure S5D).

Mapping genetic determinants of TF activity (aQTLs)
Our ability to estimate individual-specific TF activity, which can be

viewed as a quantitative trait with a potential genetic component,

provides an opportunity to use a standard GWAS approach to

mapping aQTLs, defined as genetic modulators of the degree to

which the TF as a protein-level trait contributes to the expression

level of its target genes in each individual in the GTEx cohort. To

mapaQTLs,weuseda linear regressionmodel inwhichmajor tech-

nical and biological covariates are included (see STAR Methods).
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Figure 3. Inter-individual variation in TF activity

(A) Age-related HMGB2 activity across skeletal muscle samples in GTEx (Spearman correlation test; r = �0.337, p = 3.72 3 10�20).

(B) The ten tissues showing the strongest age dependence of HMGB2 activity according to our method. All p values were based on Spearman correlation test.
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The most significant aQTL association in our analysis was seen

for rs146434626 andHMGN3activity in the frontal cortex (see Fig-

ureS6 for genome-wideprofile), at a level of significance (p=6.53

10�16) far exceeding thestandardcriterion forgenome-widesignif-

icance (p < 53 10�8). Figure 4A shows an overview of the aQTLs

our method identified across all TFs and tissues, in which all vari-

ants with a p value below the genome-wide significance threshold

(p < 5 3 10�8) have been marked. The standard significance

threshold does not take into account the large number of TF/tissue

combinations (total 55349=2,695) that arebeinganalyzed inpar-

allel. However, many TFs have highly correlated inferred activities

across individuals (Figure S7). Thus, the effective number of

independent traits tested is not merely the number of TF/tissue

combinations, and care must be taken to not correct too harshly

for multiple testing of traits and tissues in addition to genetic vari-

ants.We resorted toapermutationstrategy toempirically estimate

the false discovery rate (FDR) associated with a particular p value

cutoff (see STARMethods). At the standard cutoff for a single trait

(p<5310�8), theFDR is ratherhigh (�70%),but it starts todropas

more stringent p value thresholds are applied (Figure 4B). At the

muchmore stringent cutoff of p < 10�11, corresponding to an esti-

mated FDR of around 25%, we discover 111 aQTLs (Table S1).

While we did not observe any tissue sharing for these aQTLs, we

did observe a high correlation in the genetic effect on TF activity

between similar tissues across variants that pass a lenient signifi-

cance criterion (p< 10�6) in one of the tissues (FigureS8). Thus,we

would expect to observe more tissue sharing at larger population

sizes with increased statistical power.

Wealsoanalyzed the largersetofaQTLs identifiedatp<5310�8

in terms of evidence of functionality. To assess whether the identi-

fied aQTLs in aggregate have features indicative of gene regulation,

wefirst finemappedaQTLsdiscoveredbyusinga lessstringent cri-

terion (see STAR Methods). At various p value cutoffs, we then

computed enrichment ratios associated with different functional

categories, according to a genome-wide functional annotation

based on a widely used human cell line (see STAR Methods). At

morestringentpvaluecutoffs, the identifiedvariantsbecomesignif-
icantly enriched for open chromatin as well as for TF-binding sites

(Figure 4C). This suggests that, to a significant extent, the cascade

of effects that ultimately lead to modulation of the target genes of

the trait TF involve cis-regulatory changes at the aQTL locus, which

presumably affect the expression level of a nearby causal gene.

A direct protein-protein interaction between the protein en-

codedbyageneat the aQTL locus andbya transcriptional co-fac-

tor of the trait TF may point to a mechanism for modulating the

protein-level TF activity. An example of this is an aQTL on ch-

romosome 18 (rs10775496 as the lead variant, p = 7.6 3 10�10),

which our method identifies as a putative genetic determinant of

the regulatory activity of the transcription factor RELA in cerebellar

hemisphere tissue (Figures 5A and 5B). The nearest gene is

SMAD4, and one of the most plausible causal variants

(rs12456284; p = 7.8 3 10�10), which has also been reported as

an eQTL of SMAD4 in various tissues (see https://www.

gtexportal.org/), resides in its 30 UTR (Figure 5C). RELA, also

known as p65, encodes a main subunit of nuclear factor kB (NF-

kB), and it has been reported that RELA physically interacts with

SMAD4.48

As further validation of our aQTL mapping strategy, we asked

whether there isa trend for the trait TFprotein tohaveaknown func-

tional association with the protein product of the putative causal

gene. Therewas insufficient coverage tomeaningfully applyempir-

ical approaches to mapping the causal gene such as that of Fulco

etal.49Therefore, for eachfine-mappedaQTLthatpassedthestan-

dard significance threshold, we determined which protein-coding

genehada transcription start site closest to the locusandsearched

for known associations with the trait TF based on any type of

evidence included in the STRING database.50 We found that

such prior associations (Table S2) are more prevalent than ex-

pected by random chance (Fisher’s exact test, odds ratio = 1.83,

p = 2.5 3 10�6). When the evidence is limited to co-expression,

the association is less significant (odds ratio = 1.73; p = 0.002),

whereas for protein interactions supported by experimental data,

it is slightly more significant (odds ratio = 2.42; p = 5 3 10�7).

Some aQTLs co-localize with cis-eQTLs in the same tissue, which
Cell Genomics 3, 100382, September 13, 2023 5
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suggests that thecausal gene for the aQTLmaybe thesameas the

‘‘eGene’’ (thegenewhoseexpression level plays the roleof aquan-

titative trait in a given eQTL association) that was the trait for the

eQTL association. For example, an aQTL (rs11547207) of HDAC8

in the adrenal gland is co-localized with a cis-eQTL in the 50 UTR
of the CIB2 gene discovered in the GTEx project (see STAR

Methods and Figure S9). Although in most cases the underlying

mechanisms between mapped cis-target genes and the TFs are

not obvious, such analysis can provide a starting point for the

dissection of the mechanisms underlying trans-acting genetic

effects.

DISCUSSION

In this article, we started by developing a robust general method

for estimating protein-level TF activity levels from RNA-seq

count data in a sample-specific manner. Our modeling is innova-

tive in that we only focus on variation in the gene expression ratio

between neighboring genes. This elegantly circumvents the con-

founding effect of sample-to-sample variation in chromatin

structure on gene expression. We can attribute variation in

genome-wide expression among GTEx samples to a particular

TF by leveraging CRISPRi perturbation data obtained in K562

cells. Using such an empirical signature as a predictor in our

model has the advantage that context-dependent effects of

functional versus non-functional TF binding, as well as indirect

effects due to transcriptional cascades, are implicitly accounted

for. In the future, using TF response signatures derived from

large-scale multiplexed TF perturbation experiments coupled

with single-cell expression profiling in other cell types51,52 might

be used to refine our approach.

While in our pioneering aQTL study in yeast, we successfully

used DNA-binding-specific models to simply predict TF respon-

siveness from upstream promoter sequence as a sliding-window

sum of affinities,17 this sequence-based strategy remains much

more challenging in mammals, where cis-regulatory regions can

be much farther away from a gene’s transcription start site (TSS)

and where the combinatorial logic of TF binding is more

complex.

Trans-acting variants that influence distal gene expression

(i.e., trans-eQTLs) have been extensively studied and have

been shown to be highly tissue specific.9,13,15 These variants

can influence multiple genes by acting on regulatory circuits,

mapping them, and relating them explicitly to regulation by

TFs, which can help to clarify underlying mechanisms.13,15

With the TF activity inferred by our model and the parallel geno-

type data available, we were able to systematically identify ge-

netic effects on TF activity in human tissues, regardless of

whether the mRNA expression level of the gene encoding the

TF has a genetic component or not.

A recent study inferred adipose-specific TF activities using

a regulon-based approach and associated them with genetic
Figure 4. False discovery rate and functional enrichment for aQTLs di

(A) A heatmap showing the most significant p value for each combination of trait

(B) Plot showing the mean and SEM (standard error of the mean) of FDRs estima

(C) Functional annotation enrichment of fine-mapped variants at various p value

Significance levels: *p % 0.05, **p % 0.01, ***p % 0.001. NC, non-coding; NMD,
variants at cardiometabolic trait GWAS loci, suggesting that

aQTLs can help reveal molecular mechanisms mediating

GWAS signals.20 However, a systematic survey of aQTLs in

other human tissues has not yet been conducted. Moreover,

our gene-pair-based GLM approach to inferring TF activity

from transcriptome data is conceptually and technically

very different from the regulon-based approach of Hoskins

et al.20

Our model for inferring sample-specific TF activities hasmany

potential applications in addition to identifying aQTLs. For

instance, compared with healthy human tissues, differential

expression between cancer samples can be challenging to

interpret due to the presence of genomic instabilities. Our

gene-pair approach to inferred TF activity might be robust in

the face of such instabilities since a duplication in a region

that includes both genes in a pair should not affect the ratio be-

tween their expression values. Another application would be to

analyze individual-specific drug responsiveness by fitting the

model on GTEx samples using an empirical drug-response

signature as a predictor in the model. Genetic variants associ-

ated with differential drug responsiveness across individuals

could thus be identified using our approach. This would provide

insight into genetic effects on individual-specific responsive-

ness to drugs and could have potential in the context of preci-

sion medicine.

Limitations of the study
We note that the set of TFs used in the study was limited by the

availability of CRISPRi RNA-seq data. Moreover, any TF pertur-

bation signature is dependent on the cell line in which it was pro-

filed, so our approach implicitly assumes that the effect of TF ac-

tivity modulation is similar enough between that cell line and the

GTEx samples that we analyze using our GLM. Specifically, the

perturbation experiments were performed in K562 cells, whose

cell state is perhaps most closely related to that of whole blood

in GTEx. We are thus making an implicit assumption that we can

ignore this cell-type dependence of the independent variable in

our model, whichmay negatively impact statistical power to infer

changes in TF activity.

Our identification of aQTLs based on genome-wide associa-

tion analysis on TF activity traits inferred from GTEx data is

also limited by statistical power due to the relatively small sample

sizes compared with those in traditional GWAS studies. Further-

more, it can be confounded by inter-individual variation in cell-

type composition.

Key changes prompted by reviewer comments
As suggested byour reviewers,we further validated our TF activity

inference approach by comparing it with an established

approach,44 as well as by considering the correlation between in-

ferred TF activity and themRNA expression level of the TF-encod-

ing gene. These additional results are shown in Figures S3–S5.We
scovered at different p value cutoffs

TF and tissue. Only variants with p values below 5 3 10�8 are indicated.

ted based on 100 random permutations.

cutoffs. Odds ratios and p values were computed using Fisher’s exact test.

nonsense-mediated decay.

Cell Genomics 3, 100382, September 13, 2023 7
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Figure 5. aQTL mapping results for transcription factor RELA in brain cerebellar hemisphere tissue

(A) Overview of genome-wide association analysis, using RELA activity as inferred by our GLM method as a quantitative trait. The red line indicates the p = 5 3

10�8 significance level.

(B) Quantile plot corresponding to (A), showing enrichment of small p values.

(C) Detailed view of one of the aQTL loci on chromosome 18. The dark blue points represent fine-mapped loci. The black point shows a 30 UTR variant of SMAD4,

the transcript of which is on the forward strand and is highlighted by the red box.
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also added more detail in Tables S3 and S4 and made various

edits to the text to improve clarity.
STAR+METHODS
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B Empirical false discovery rates
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B Colocalization of aQTLs and cis-eQTLs
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Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Harmen J. Bussemaker
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Materials availability
This study did not generate new unique reagents.

Data and code availability
All original code has been deposited at GitHub (http://github.com/BussemakerLab/Li-aQTL/) and Zenodo (https://zenodo.org/

record/8118317) and is publicly available as of the date of publication. Summary statistics and fine-mapping results of all aQTL an-

alyses are available at http://bussemakerlab.org/papers/Li-aQTL/. This paper analyzes existing, publicly available data. These data-

sets and accession numbers are listed in the Key Resources Table and Table S3. Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Collection of RNA-seq data from the GTEx project
To obtain the data to be used as the dependent variable in ourmodel, we used gene counts fromRNA-seq data fromGTEx release v8,

which encompasses over 15,000 samples across 54 tissues and over 800 individuals. We used data from 49 tissues (Table S4) that

have adequate sample sizes. For each tissue, RNA-seq counts were down-sampled to the minimum number of reads across all
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pertinent samples to make the library size equal across individuals. That being said, down-sampling has little effect on the values of

the inferred activity in GTEx samples, compared to the original RNA-seq count data (Pearson correlation r > 0.95 across a represen-

tative set of TFs and tissues).

Construction of TF perturbation signatures
To construct the TF perturbation signatures used as the independent variable in our model, we obtained RNA-seq data reporting on

the effect of CRISPRi knockdown of each of 66 TFs in K562 cell lines from the ENCODE data portal.42 Starting from the alignment files

for control and treatment samples in BAM format, we used featureCounts v2.0.054 and the gene annotation of the genome assembly

GRCh38.p12 fromGENCODE release 2963 to generate count matrices for each sample. Then we used R (version 4.0.2) package DE-

Seq2 v1.28.155 to perform differential gene expression analysis for each CRISPRi RNA-seq experiment. After performing gene-level

and sample-level quality control, we retained signatures for 55 TFs (Table S3). The shrinkage log2 fold changes64 for each gene were

used to define the perturbation signature for a given TF.

Inference of TF activity based on gene-pair model
This model was the default used in our study. It is designed to account for variation in chromatin context along the genome in a novel

way. To estimate sample-specific (differential) TF activities, we used a generalized linear model based on the beta-binomial

distribution:

Yps � BetaBinomialðnps;pps; rpÞ
Here p = ðg1; g2Þ denotes a gene pair. Yps = ðYg1ðpÞs;Yg2ðpÞsÞ denotes the pair of RNA-seq counts Ygs for gene pair p in sample s, with

g1ðpÞ and g2ðpÞ defined as pair-to-gene mappings for the first and second gene in the pair, respectively. In the beta-binomial distri-

bution, nps = Yg1ðpÞs +Yg2ðpÞs plays the role of the sample size, and rp is the over-dispersion parameter. The binomial success rate pps

was modeled as a function of the TF perturbation signature X4g (defined as the log2-ratio of the response of gene g each to pertur-

bation of transcription factor 4) as follows:

pps = logistic ðap + b4sDX4pÞ
Here, the intercept ap models the mean expression ratio across samples between the two genes in each pair (which is not of interest

by itself). DX4p = X4g1ðpÞ � X4g2ðpÞ is the predictor based the TF perturbation signature for transcription factor 4, and b4s the corre-

sponding regression coefficient, which will be interpreted as an inferred, sample-specific, protein-level TF activity. A separate fit was

performed for each TF for which a signature was available. The parameters b4s, b4s and rp were estimated by likelihood maximiza-

tion, implemented in TensorFlow v2.9.156 and Python v3. For each tissue, a single joint fit to all individual samples for a given tissue

was performed, allowing the over-dispersion parameter for each gene pair to be estimated without making any further assumptions.

RNA-seq counts were down-sampled to make total counts the same as the smallest library size across all samples. Since the co-

efficients b4s are defined up to an overall additive constant, we centered them at zero. To obtain a null distribution for the inferred

TF activity b4s, the predictor X4p was permuted randomly and independently among all gene pairs for each sample. The pair-level

model was then fit to unpermuted expression counts Yps.

Selection of gene pairs
To set up the design matrix for our model, we selected pairs of neighboring genes based on their location on the chromosome in

GENCODE release 29. For each chromosome, we indexed all protein-coding genes according to their order along each chromo-

some, without regard for their transcription direction, and for each gene selected the next nearest gene as its paired gene. The re-

sulting pairs were then filtered based on the distance between their respective annotated transcription start sites, which we required

to be within the range of 10kb–200 kb (Figure S2A). For each tissue, we also left out pairs for which both genes had zero counts in all

individuals. To assess the robustness of our model, we used an alternative way to generate two separate design matrices based on

non-overlapping pairs of genes alone. Here, the first gene in a pair was required to have either an odd or an even index (‘‘odd pairs’’ or

‘‘even pairs’’). To analyze the ability of our nearest-neighbor design to account for variation in chromatin context along the genome,

we also used sets of 5th or 10th nearest-neighbor gene pairs to define the designmatrix. In these cases, the TSS distance for each pair

was typically greater than 200kb, and we did not impose a maximum distance cutoff. As a further control, we also selected pairs in

which each gene was randomly selected from different chromosomes.

Inference of TF activity based on individual-gene model
This simpler model, which is more similar to existing regression-based TF inference models, was used as a comparison that was as

similar as possible to the model defined above, except for the use of gene pairs. To model the count of individual genes across sam-

ples, we fit a generalized linear model with negative binomial distribution:

Ygs � NegativeBinomial
�
rg;pgs

�
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Here, Ygs denotes the RNA-seq count for gene g in sample s. The probability parameter pgs is given by

pgs =
lgs

rg+lgs

in terms of the gene-specific over-dispersion parameter rg and the expected value lgs of Ygs, which in turns is parameterized as

lgs = exp
�
ag + b4sX4g

�

Here, ag is a gene-specific intercept that absorbs the variation in mean expression across samples, and b4s is a sample-specific

regression coefficient associated with the same perturbation-signature based predictor X4g as above (but now used at the individ-

ual-gene level), which we again interpret as an inferred sample-specific TF activity. The parameters b4s, b4s and rg were estimated by

likelihood maximization as above. For computational efficiency, we optionally set ag to the actual mean

ag =
1

n

Xn

s = 1

Ygs

rather than treating it as a fit parameter.

Validation of TF activity inference by comparing with the approach of Hoskins et al. (2021)
First, to define a regulon for a given TF in a given tissue, the tool ARACNe-AP57 was run on the GTEx gene expression data in

log2(TPM+0.0001) representation, using 100 bootstrapping steps. The tool VIPER44 was subsequently applied to z-transformed

mRNA expression values to compute sample-specific TF activity scores.

Mapping aQTLs using genome-wide association analysis of inferred TF activity
Treating the inferred activity level b4s for a given transcription factor 4 in sample s as a sample-specific quantitative trait, we

computed their association with genetic variants using a standard genome-wide association (GWA) analysis based on univariate

linear regression using the fastGWA tool from GCTA v1.93.1.58 We used genotyping data from the GTEx project and mapped on

all common genetic variants with an MAFR 0.05. To account for non-genetic sources of variation, we included as covariates unob-

served confounding variables also used in the standard eQTL analysis in the GTEx project,10 including five genotype-based principal

components that account for population structure; the genotyping platform; the biospecimen source site; the cohort to which the

sample belonged (organ donor or postmortem); sex; and age. The association study of TF activity traits was done for all TF and tissue

combinations.

Statistical fine-mapping
We uniformly processed the summary statistics of association tests for each TF activity in a given tissue for statistical fine-mapping.

We first used GCTA-COJO v1.93.158,65 to identify conditionally independent lead variants (pJ < 5 x 10�6) for each trait. We then

analyzed all variants within the ± 1Mb region of independent variants with FINEMAP v1.3.1, a Bayesian fine-mapping method.59

The covariance matrices required by FINEMAP were generated by PLINK v2.066 and LDstore v1.1.67 The variants with a high Bayes

factor (log10(BF)R 2) were then retained for a set of plausibly causal variants. The total number of variants retained after fine-mapping

equals 39,600.

Empirical false discovery rates
We adopted a permutation strategy to estimate the false discovery rate (FDRs) at a given p value cutoff. In each permutation, the

association between the genotype and the TF activity traits across individuals was randomized, while preserving both the correlation

structure among different TFs and that among genetic variants, as well as the covariates.We repeated theGWA analysis after each of

100 random permutations, for each tissue separately. For any given p value cutoff, this allowed us to estimate the mean expected

number of false discoveries across all combinations of genetics variants, TFs, and tissues. The FDR was then computed as the ratio

of this expectedmean and the actual number of discoveries at the same p value cutoff. The actual numbers of variants discovered are

as follows: 111 (p<=10�11), 152 (p<=5x10�11), 188 (p<=10�10), 474 (p<=5x10�10), 623 (p<=10�9), 2376 (p<=5x10�9), 3589 (p<=10�8),

7939 (p<=5x10�8), 10883 (p<=10�7), 26083 (p<=5x10�7), 42374 (p<=10�6).

Enrichment of aQTLs for specific genomic annotations
We first performed functional annotation of all fine-mapped genetic variants as described above using the ENSEMBL Variant Effect

Predictor (VEP) tool.60 To test for functional enrichment among the set of fine-mapped aQTLs discovered across TFs and tissues at a

given p value cutoff, we used Fisher’s exact test.

Enrichment of protein association annotations between the TF and the nearest genes to the aQTL
We downloaded functional protein associations from the STRING v11.5 database,50 whose evidence types encompass

‘‘conserved neighborhood’’, ‘‘co-occurrence’’, ‘‘fusion’’, ‘‘coexpression’’, ‘‘experiments’’, ‘‘curated databases’’, and ‘‘text mining’’.
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For each fine-mapped aQTL above the standard significance threshold (5x10�8), we posited that the protein-coding gene with a

transcription start site closest to the locus was the causal gene. We collected all unique TF/causal gene combinations, and then

used Fisher’s exact test to determine whether they were enriched for prior evidence of protein association, either in aggregate or in

each separate category. The total number of protein-coding genes in our analysis equals 19,291, so the number of random protein

pairs equals 186,061,695.

Colocalization of aQTLs and cis-eQTLs
We obtained the fine-mapped GTEx cis-eQTLs and summary statistics from the eQTL Catalogue.53 For each candidate variant in the

intersection of the set of fine-mapped aQTLs and the set of eQTLs mapped in the same tissue, we performed colocalization analysis

with the R package coloc61 using a 1Mb window around the corresponding variant, and computed a posterior probability of coloc-

alization (PP4). We then used the R package LocusCompareR62 to visualize aQTL-eQTL colocalization events.
Cell Genomics 3, 100382, September 13, 2023 e4
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