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Abstract: Intrinsically disordered proteins (IDPs) are highly prevalent and play important roles in
biology and human diseases. It is now also recognized that many IDPs remain dynamic even in
specific complexes and functional assemblies. Computer simulations are essential for deriving a
molecular description of the disordered protein ensembles and dynamic interactions for a mechanistic
understanding of IDPs in biology, diseases, and therapeutics. Here, we provide an in-depth review of
recent advances in the multi-scale simulation of disordered protein states, with a particular emphasis
on the development and application of advanced sampling techniques for studying IDPs. These
techniques are critical for adequate sampling of the manifold functionally relevant conformational
spaces of IDPs. Together with dramatically improved protein force fields, these advanced simulation
approaches have achieved substantial success and demonstrated significant promise towards the
quantitative and predictive modeling of IDPs and their dynamic interactions. We will also discuss
important challenges remaining in the atomistic simulation of larger systems and how various coarse-
grained approaches may help to bridge the remaining gaps in the accessible time- and length-scales
of IDP simulations.

Keywords: conformational ensemble; enhanced sampling; generalized Born; Gō-model; implicit
solvent; liquid-liquid phase transition; replica exchange; protein force fields

1. Introduction

Intrinsically disordered proteins (IDPs) or regions (IDRs), compared to well-structured
proteins, do not have stable tertiary structures under physiological conditions. Never-
theless, IDPs or IDRs can be found in nearly a third of proteins encoded in the human
proteome [1], and they play key roles in a variety of biological processes that underlie vital
cellular functions ranging from signaling and regulation to transport [2,3]. The inherent
thermodynamic instability of an IDP’s conformation allows it to respond sensitively to
numerous stimuli, including binding, changes in cellular environments (e.g., pH), and
post-translational modifications [4–8]. Such conformational plasticity arguably enables
IDPs to interact with multiple signaling pathways and serve as scaffolds to form multi-
protein complexes [9]. Importantly, IDPs and IDRs house around 25% of disease-associated
missense mutations [10]. They have been considered promising therapeutic targets for
treating various diseases (such as chronic diseases) [11–13]. While many IDPs have been
shown to undergo binding-induced folding transitions upon specific binding [3], many
examples are also emerging to demonstrate that IDPs can remain unstructured even in
specific complexes and functional assemblies [14–20]. Such a dynamic mode of specific
protein interactions seems much more prevalent than previously thought [21–23].

It is very challenging to provide reliable descriptions of the conformational ensembles
of IDPs and IDRs. A disordered state does not lend itself to traditional structural deter-

Biomolecules 2021, 11, 1416. https://doi.org/10.3390/biom11101416 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-6405-8362
https://orcid.org/0000-0002-5281-1150
https://doi.org/10.3390/biom11101416
https://doi.org/10.3390/biom11101416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11101416
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom11101416?type=check_update&version=2


Biomolecules 2021, 11, 1416 2 of 21

mination methods that are geared toward describing a coherent set of similar structures.
Biophysical techniques, such as NMR, SAXS, and FRET, can provide complementary in-
formation on various local and long-range structural organizations [7]. However, these
ensemble-averaged measurements alone are not sufficient to unambiguously define the
heterogeneous ensemble, due to the severely underdetermined nature of the structure cal-
culation problem [8,24,25]. As a result, studies of IDPs have relied heavily in the traditional
structure-function paradigm, by solving the folded structure of the bound state, analyzing
coupled binding and folding mechanisms, or identifying putative pre-existing functional
structures in the unbound state [3]. However, the disordered ensemble itself is arguably
the central conduit of cellular signaling. The functional mechanism of an IDP is encoded
in how the disordered ensemble as a whole responds to various stimuli, be it cooperative
binding-induced folding or the redistribution of conformational sub-states in dynamic
interactions. Multiple cellular signals can be naturally integrated through cooperative
responses of the whole dynamic ensemble [26–28]. Therefore, there is a critical need for
reliable characterization of disordered protein conformation ensembles, in both bound
and unbound states, in order to establish the molecular basis of IDPs and IDRs in various
physiological and pathophysiological processes.

Given the fundamental challenges of characterizing disordered protein states based
on ensemble-averaged measurements alone, molecular modeling and simulations have a
crucial and unique role to play in mechanistic studies of IDPs and IDRs [29–33]. This is
reflected in continuously increasing numbers of research articles that contain keywords “in-
trinsically disordered” and “molecular dynamics” published in the last 10 years (Figure 1).
A particularly attractive approach is to first generate the disordered ensemble using trans-
ferable, physics-based force fields without any experimental restraints and then use the later
for independent validation [7]. Such de novo simulations of disordered protein ensembles
require both high force field accuracy and adequate sampling of relevant conformational
space, pushing the limit of these two central ingredients of molecular dynamics (MD)
and Monte Carlo (MC) simulations. The challenges of simulating disordered proteins
have driven significant interest in developing better protein force fields and advanced
sampling methods (Figure 1). In particular, important advances have been made in the
state-of-the-art atomistic force fields for describing the conformational equilibria of ordered
and disordered proteins [13]. Enhanced sampling techniques have played crucial roles in
both the development and application of atomistic force fields, by allowing one to cross
energy barriers faster and accelerate the conformational sampling of IDPs [34–41]. Nonethe-
less, atomistic simulations still have limited capability in describing large systems such as
biological condensates [42]. For this, multi-scale approaches are necessary to bridge the
gaps in experimental and computational time- and length-scales, including implicit solvent
models, which remove the solvent degrees of freedom [8], and various coarse-grained
models, which significantly reduce both proteins and solvent degrees of freedom [43].

In this review, we will start by highlighting the challenges of sampling IDP confor-
mational ensembles and providing a summary on the state-of-the-art force fields available
to describe the IDP conformations. It is noted that several excellent review papers have
been published recently that cover general theoretical and computational approaches for
studying IDPs, in particular regarding protein–protein interactions and biological conden-
sates [29,44–46]. This review will therefore focus on the recent development of advanced
sampling methods for simulating disordered conformational ensembles and dynamic inter-
actions of IDPs. We will also discuss some of the key advances in the multi-scale modeling
of IDPs that greatly extend the accessible length- and time-scales of molecular simulations.
Finally, we discuss future directions in developing a robust computational framework for
simulating IDP conformational equilibria and interactions.
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Figure 1. Number of articles identified with three different search keywords published from 2011 to
2021 based on a Web of Science core collection source (as of 15 August 2021).

2. Challenges of Simulating IDP Conformational Equilibria

Compared to the globular proteins that have one or a few well-defined global energy
minima, the energy landscape of an IDP is flatter and generally includes many local
energy minima separated by modest energy barriers [47]. IDPs and IDRs typically have
fewer hydrophobic residues, but a larger number of polar or charged as well as disorder-
promoting residues (such as glycine and proline) [44]. These sequence features hamper the
formation of hydrophobic cores that drive protein folding and thus prevent the formation
of stable tertiary structures. Instead, IDPs and IDRs favor forming an ensemble of unfolded
or partially folded states. This presents a major challenge for simulation and depends
critically on the ability of the force fields to accurately describe the energetics of relevant
conformational states, especially for capturing both folded and unfolded states of an IDP.
For example, one recent study tested atomistic simulations of IDPs for eight force fields
and found marked differences in the describing the conformational ensembles of IDPs,
in particular the secondary structure content [48]. Similar observations have also been
made in other benchmark studies, consistently showing that protein force fields previously
optimized for folded proteins are not suitable for simulating disordered protein states,
largely due to over-stabilization of protein-protein interactions [49]. These benchmark
studies also suggested that the key towards better protein force field was to rebalance
protein–protein, protein–water, and water–water interactions.

Besides accurate force fields, reliable simulation of IDPs also hinges on sufficient
sampling of many relevant conformation states within a reasonable simulation time. Stan-
dard MD simulations are generally insufficient to generate representative conformational
ensembles, even using the most accurate protein force fields coupled with advance of GPU
computing or specialized hardware such as the ANTON supercomputer [50]. For example,
a recent reanalysis of a 30-µs ANTON trajectory of a 40-residue Aβ40 peptide in explicit
solvent revealed very limited convergence even at the secondary structure level [13]. This
can be attributed to the diverse and large accessible conformational space of an IDP and
the potentially high free energy barriers separating various sub-states that require exponen-
tially longer time to cross. Note that typical simulation times on conventional hardware
(such as GPUs) are at least one-order of magnitude shorter. There is thus great danger in
relying on standard MD to calculate disordered protein conformational ensembles at the
atomistic level. There is a critical need to develop and leverage so-called enhanced sam-
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pling techniques, which aim to generate statistically meaningful conformational ensembles
with dramatically less computation.

Computational studies of IDP interaction and assembly are even more demanding.
The conformational equilibrium of an IDP can respond sensitively to specific and nonspe-
cific binding, potentially shifting from a disordered to somewhat ordered state or fully
folded state. In principle, simulations could provide the much-needed spatial and time
resolutions to elucidate the kinetics and thermodynamics of coupled folding and binding
processes and characterize the mechanistic features. However, the challenge is that this
coupled process of folding and binding is a complex reaction involving the formation
of many noncovalent interactions, which requires extremely long simulations generally
beyond the current capabilities at the atomistic level. As such, coarse-grained models are
generally required for computational studies of IDP interaction and assembly.

3. The State-of-the-Art Protein Force Fields for Describing IDP Conformations

Empirical protein force fields are potential energy functions that typically include
physics-motivated bonded and non-bonded terms carefully parameterized based on a
wide range of theoretical and experimental data [51]. These force fields can in principle
be transferable between folded proteins and IDPs. To achieve this, it is also critical to
develop suitable water models and better describe the water–protein interactions [52,53].
Two recent review articles have already provided comprehensive descriptions on the
latest development of better protein force fields [51,54]. We therefore briefly summarize
the state-of-the-art of nonpolarizable and polarizable force fields for IDP dynamics and
interactions.

3.1. Nonpolarizable Protein Force Fields

Many previous nonpolarizable force fields have significant shortcomings for describ-
ing the unfolded or disordered proteins. For example, they typically provide a poor
description of the secondary structure content for IDPs and have a preference to give
too compact conformations with respect to the experimentally measured dimension of
IDPs [48,55]. These problems were likely attributed to the unbalanced parameterization of
dihedral torsion space and the description of protein–protein and protein–water interac-
tions [56]. As a result, most of the improved force fields managed to give more accurate
secondary structure propensities by adjusting dihedral parameters or adding grid-based en-
ergy correction map (CMAP) parameters [54]. The over-compactness of disordered proteins
can be alleviated by modifying protein–water van der Waals interactions or combining with
refined water models [52]. Representative state-of-the-art force fields includes the latest
CHARMM36m/TIP3P* [57], ff19SB/OPC [58], and a99SB-disp/TIP4P-D [50]. Many bench-
mark studies have consistently demonstrated that these refined force fields do provide
significant improvements in describing not only single folded and disordered proteins, but
also the multiprotein systems that are either soluble or aggregate in the solution [55,59–62].
At the same time, these studies also identified significant remaining limitations in the
description of the noncovalent interactions in the multiprotein systems [60]. Recogniz-
ing limitations in the ability of a99SB-disp/TIP4P-D force field to accurately describe the
protein–protein interactions, a new force field, DES-Amber, was recently developed to
provide more accurate simulations of protein–protein complexes while maintaining re-
liable descriptions of both ordered and disordered single-chain proteins [61]. However,
DES-Amber is still limited in reproducing the experimental protein–protein association
free energies of some protein complexes, in particular for the systems with highly polar
interfaces [61]. In the latter case, it was found that the charged sidechains were buried at the
protein–protein interface instead of being solvent-exposed. It was further suggested that
nonpolarizable force fields were fundamentally limited in achieving a balanced description
of charged groups that were solvent-exposed or buried at a protein–protein interface.
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3.2. Polarizable Protein Force Fields

Polarizable force fields explicitly consider the electronic polarization using various
empirical models to provide better description of charged and polar protein motifs in
heterogeneous biomolecular environments [63]. Exciting progress has been made in the
last few years and several polarizable force fields are now available for the stable sim-
ulation of proteins in both aqueous and membrane environments [64,65]. Simulations
using the latest polarizable force fields have also showed a high level of consistency with
experimental observations, particularly the ion solvation and binding thermodynamics,
permeation free energy of ions or small charged molecules into the cell membrane, and
protein–ligand binding [63]. For example, the Drude-2013 polarizable force field, compared
to CHARMM36 force field, is more accurate in describing the folding cooperativity of
(AAQAA)3 peptide, which can be attributed to enhanced backbone dipole moments in the
helix state [66]. Additional studies are still needed to show the necessity of considering
polarizable force fields in IDP simulations, where the significantly higher computational
cost adds to the challenge of generating converged ensembles [63]. Existing comparisons
suggest that polarizable force fields, including AMOEBA and Drude models, still frequently
have problems in reproducing the nature structures and folding of proteins [67–69]. For
example, stronger protein–water interactions in polarizable force fields can destabilize the
native protein structure, in opposition to the observations from nonpolarizable force fields
where protein–water interactions have traditionally been underestimated [42]. Nonetheless,
it can be anticipated that polarizable force fields will continue to be improved and become
increasingly important for simulating IDP structure and interactions.

4. Enhanced Sampling Methods for Sampling IDP Conformational Ensembles

Enhanced sampling techniques generally accelerate the crossing of energy barriers
to achieve better sampling efficiency, such as by introducing bias potentials, modifying
the potential energy itself, and changing the effective temperature. These techniques have
proven essential in atomistic simulations of IDPs [70,71], yielding levels of convergence
that could not be achieved even with drastically longer standard constant-temperature
MD simulations [13]. The central idea of biased MD simulations is similar to importance
sampling in MC simulations, where a biased potential is introduced to construct a flat
free energy landscape along single or multiple collective variables of interest, such that
many states can be readily sampled due to the removal of free energy barriers. The
replica-exchange (REX) class of sampling methods, particularly replica exchange molecular
dynamics (REMD), has been one of the most popular methods for simulating protein
conformations. Figure 2 shows the general scheme of REMD simulations, where the key
point is to first set up multiple replicas with different unitless unbiased or biased potentials,
given as the energy over kBT (T is the temperature), and then use the Metropolis rule to
allow MC to exchange the replicas and maintain the detailed balance. A key advantage
of using multiple replicas and maintaining detailed balance is avoiding the reweighting
problem generally required for biased simulations. Note that virtually all biased sampling
strategies can be readily incorporated within the REX framework to benefit from both
classes of enhanced sampling, including metadynamics (MTD) [72,73], accelerated MD
(aMD) [74], umbrella sampling (US) [75,76], and integrated tempering sampling [77]. In
practice, effective REMD protocols require a proper choice of (1) the optimal number of
replicas and proper distributions of conditions, to ensure a uniform exchange acceptance
rate and efficient random walk in the condition space, and (2) the choice of those unitless
(biased) potentials for effective conformational diffusion at each condition [78]. Here, we
divide various enhanced sampling strategies into two general groups depending on the
need for collective variables and discuss their recent applications to IDP conformational
sampling. These methods are summarized Table 1.
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Table 1. Summary of enhanced sampling methods for IDP simulations.

Types Sampling Methods Key Features References

CV-based

WT-MTD History-based adaptive bias potentials [72,73]

Bias-exchange MTD Multiple replicas with bias on different CVs [79]

Umbrella sampling Pre-determined bias potentials [80]

Machine learning On-the-fly discover optimal CVs [81,82]

Tempering-based

Simulated tempering Random walk in the temperature space [83]

Parallel tempering Multiple replicas to avoid the need for estimating the density
of states [36]

Integrated tempering Integral of Boltzmann distributions over a range of
temperatures as the bias [77]

Solute tempering Scaling the energies of only selected atoms or terms to achieve
effective tempering [37,84,85]

Accelerated MD GaMD Boost potentials to accelerate barrier crossing [86]

Combinations

MSES Temperature/Hamiltonian replica exchange simulation by
coupling CG and atomistic models [34]

REUS/REST Combined REUS and REST [87]

REUS/GaMD Combined REUS and GaMD [88]

Integrated aMD Integrated aMD and integrated tempering [69,89]

PT-MTD Combined the WT-MTD with PT [79]

4.1. Collective Variables-Based Sampling Methods and Optimization

MTD and its variants have been considered one of the most important collective
variables (CV)-based sampling methods for protein simulations [90]. MTD uses a history-
dependent bias potential, which is generally a sum of Gaussians, to eventually construct
a flat free energy landscape along the predetermined CV(s). A well-tempered MTD (WT-
MTD) was later developed to increase the convergence, by gradually reducing the size of
Gaussians based on the total accumulated bias potential [72,73]. Furthermore, the parallel
tempering MTD (PT-MTD) and the combinations with other biased sampling methods
have been also developed to increase the sampling efficiency and convergence of free
energy calculations [91,92]. Representative examples include the PT-MTD that combines
WT-MTD with PT or bias-exchange MTD that uses a different CV in each replica, rather
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than exchanging the temperatures. For example, the PT-WTD and bias-exchange MTD
has been employed to obtain the conformational ensembles and coupled binding and
folding of disordered pKID and KID proteins, using the α-score of helical structures as
CVs [79]. It has also been shown that the REMD-based MTD, compared to conventional
MTD or T-REMD, can enhance the conformational sampling of N-Glycans using dihedral
angles as CVs to characterize the global motions [93]. The binding mechanism of two
disordered peptides, NRF2 and PTMA, was simulated by the WT-MTD, and the results
showed that the WT-MTD method could provide converged free energy profiles with 1.5 µs
of sampling time [94]. Together, these applications have shown that MTD-class of sampling
methods can be effectively applied to IDP simulations. Beside MTD, another important
class of CV-based sampling strategy is the US method [76]. US is not strictly an enhanced
sampling method like MTD. It typically uses multiple harmonic potentials to focus on
sampling various states along the collective variables of interest. US is often combined with
REMD in studies of IDPs, as illustrated in a recent 2D window-exchange US simulation of
the coupled folding and binding mechanism of HdeA homodimer [80]. The simulation
was able to capture rare unfolding transitions of the dimer at neutral pH and provided a
detailed description of the transition pathways.

A central limitation of CV-based sampling methods is that the efficiency strongly
depends on the quality of selected CV(s). For diffusion processes such as protein conforma-
tional fluctuation, it is often not clear which CVs can best capture large-scale transitions
or even if these transitions could be effectively described using one or a few CVs [95–97].
Another practical limitation is that the computational cost of MTD and US grows exponen-
tially as a function of the number of CVs, generally limiting the maximum to three. Parallel
bias metadynamics (PBMetD) approaches have been proposed to overcome this limitation,
by applying multiple low-dimension bias potentials in parallel [98,99]. Nonetheless, the
efficacy of PBMetD for sampling complex (disordered) protein conformational space is
yet to be demonstrated. Another recent work presented a temperature accelerated sliced
sampling method to explore the high dimensional free energy landscape by combining
Temperature-accelerated MD/driven-adiabatic free energy dynamics (TAMD/d-AFED),
MTD and US methods to sample many CVs simultaneously [100]. However, the approach
shares the limitation of PBMetD where the underlying bias potentials remain low dimen-
sional in nature. To address the problem of determining the best CVs for a particular
problem of interest, machine learning algorithms and deep learning network have been
recently proposed to analyze information from many candidate CVs and construct the free
energy landscape using low-dimensional representations [81,82]. On-the-fly discovery of
optimal CV was also demonstrated using the artificial neural networks that has a strong
capacity of learning and optimization for given linear or nonlinear CVs [101]. In another
recent study, an eight-dimensional optimal biased potential was constructed and applied
to the free energy calculations of polypeptides using two machine learning algorithms,
namely the nearest neighbor density estimator and artificial neural network [102]. Similar
deep neural networks have also shown to be capable of constructing nontrivial biased
potentials, for deep enhanced sampling of protein conformational space and overcoming
so-called hidden barriers [103,104]. These are exciting developments that may greatly
expand the applicability of MTD, US, and other CV-based sampling techniques to problems
of increasing complexity, including simulations of IDPs and their dynamic interactions,
especially when combined with REX.

4.2. Collective Variables-Free Sampling Methods and Optimization

CV-free sampling avoids the need to identify a set of optimal CVs and can be highly
desirable for simulating high-dimensional conformational fluctuation of IDPs. Many CV-
free sampling methods have also been developed, including the tempering-based and
energy-scaled biased methods. Tempering-based sampling methods rely on increasing the
effective simulation temperature (i.e., tempering) to accelerate barrier crossing. Examples
include the temperature cool walking [105], annealed importance sampling [106], simu-
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lated tempering [83], and temperature-based REMD (T-REMD) [36]. T-REMD, in particular,
has proven highly effective for protein folding and studies of IDP conformation ensembles,
where multiple replicas are simulated at different temperatures in parallel to promote bar-
rier crossing as the system undertakes a random walk in the temperature space (Figure 2).
Nevertheless, one potential limitation is the number of replicas required for T-REMD scales,
as the squared root of the number of degree of freedoms (DOFs) of the whole system, to
maintain a reasonable exchange acceptance probability. This can dramatically increase
the computational cost of the explicit solvent T-REMD simulations. Several methods have
been proposed to avoid the demanding cost, such as adding energy-related terms (such
as accelerated-MD or Gaussian accelerated MD, named GaMD) or scaling the potential
energy function (including the scaled MD that scaled all energy terms and replica exchange
solute tempering (REST) methods that scaled part of energy terms) [88,93,107,108].

aMD adds boost potentials to reduce the energy barriers and accelerate sampling [74].
However, it suffers from a serious energetic noise when reweighting [109]. The GaMD has
been thus developed to reduce noise by introducing a new harmonic boost potential, to
allow a new reweighting technique that could accurately recover the free energy landscape
using a cumulant expansion to the second order [86]. GaMD has achieved some success in
studying protein folding, protein–ligand binding, and protein–protein interactions [109]. In
particular, specifically developed Ligand GaMD [110] and Peptide GaMD [111] can capture
the binding and dissociation of molecular ligands and highly disordered peptides within
microsecond simulations. Recently, this GaMD method has also been combined with the
REMD protocol, which can avoid the energy reweighting problem [108]. A combination
of replica-exchange umbrella sampling (REUS) and GaMD has also been designed for
the conformational sampling and free energy calculations [88]. It is noted that the CVs-
free enhanced sampling methods are more generally more suitable for simulating IDP
conformations and dynamics, because of the difficulty of identifying appropriate CVs for
IDP simulations as discussed above.

REST is a special variant of T-REMD designed specifically to reduce the number
of DOFs that contribute to the Metropolis criteria of replica exchange, such that smaller
number of replicas is needed [37,85]. The basic idea of REST is to separate the system into
two ‘hot solute’ and ‘cold solvent’ regions. The ‘solvent’ could be actual water molecules
but could also be any region of the system where no tempering is to be applied. This offers
great flexibility in tailoring REST for a specific system of interest. Even more generally,
the ‘solute’ region can be defined to include only a subset of interaction terms within
the ‘solute’ region, such as dihedral-angle energy or Lennard–Jones energy term in the
generalized REST (gREST) method [84]. Temperature-dependent factors are used to scale
the ‘solute’–‘solute’ and ‘solute’–‘solvent’ interactions, while keeping the ‘solvent’–‘solvent’
interactions intact:

uREST
m (X) = λ

pp
m Epp(X) + λ

pw
m Epw(X) + λww

m Eww(X),
REST1 : λ

pp
m = βm, λ

pw
m = β0+βm

2 , λww
m = β0,

REST2 : λ
pp
m = βm, λ

pw
m =

√
β0βm, λww

m = β0,
(1)

where X is the conformational coordinates and βm is the inverse of kBTm. The scaling of
‘solute’-‘solute’ interactions allows the ‘solute’ to be simulated with an effective temperature
of Tm while maintaining the ‘solvent’ temperature at T0. As a result, the exchange accep-
tance probability will be independent of ‘solvent’–‘solvent’ interactions, which reduces the
effective system size and requires fewer replicas to cover the same temperature range. A
key open choice in REST is how the ‘solute’–‘solvent’ term is scaled (Equation (1)). Different
solute–solute and solute–solvent scaling factors can strongly affect the ability of driving
conformational transitions of the selected ‘solute’ region. A strong solute–solute interaction
favors to compact the protein conformations, whereas a strong solute–solvent interaction
prefers the disordered, solvent-exposed conformations. Different scaling schemes lead to
very different characteristics of REST1 (original) and REST2 (revised) protocols (Equation
(1)). High temperature conditions favor the unfolded conformations in REST1, while both



Biomolecules 2021, 11, 1416 9 of 21

folded and unfolded conformations were observed in REST2 model for the condition with
the same effective ‘solute’ temperature. The reason for this is that REST2 was designed to
have a weaker solute-solvent interactions to promote the sampling of folded conforma-
tions even at high temperatures [85]. While this could allow the sampling of reversible
folding transitions at all temperatures in REST2, it could lead to conformational trapping,
hampering the sampling of disordered conformations of IDPs. One important implication
is that the performance of REST can be sensitive to the balance of protein–protein and
protein–water interactions of a given protein force field. For example, Liu et al. showed
that, while REST2 was highly effective in generating converged ensembles of 61-residue
p53 N-terminal transactivation domain (TAD) using a99sb-disp, it completely failed to
converge even with ~1 µs/replica in CHARMM36m and CHARMM36mw force fields [112].
Separate standard MD simulations reveal that p53-TAD can readily escape the apparent
trapped conformations observed during REST2, suggesting that these traps arise due to the
imbalance of scaled protein–protein, protein–water, and water–water interactions [112].

REST has proven to be one of the most reliable choices for enhanced sampling of
protein folding and particularly disordered conformational ensembles [113,114]. Sugita
and co-workers leveraged gREST to target the dihedral-angle energy term and successfully
sampled folding transitions of beta-hairpins and Trp-cage in explicit water, using fewer
replicas but covering wider conformational space compared to REST2 [84]. Walsh et al.
applied REST to investigate n16N disordered peptide conformational ensembles [115].
The conformations obtained via REST methods showed a high consistency with NMR
experimental data. Furthermore, REST are specifically appropriate in simulating IDRs
as the disordered region can be targeted in REST without tempering the well-structured
region (or water). Zhou and co-workers studied the disordered loop of Staphylococcus
aureus sortase A (SrtA) to order transition upon binding to calcium [116]. Chen and Liu
characterized Bcl-xL interfacial conformational dynamics in explicit solvent [117]. Both
works directly showed that REST covered broader conformational spaces for intrinsically
disordered regions and led to faster convergence compared to either standard MD or
T-REMD simulations. REST simulations have also been successfully integrated with
experiments to study how cancer-associated mutations and drug molecules may modulate
the disordered ensembles of p53-TAD and Aβ peptides in recent years [118–121].

Despite the success of REST for CV-free enhanced sampling, it does not benefit from
targeted acceleration along specific CVs that are known to be rate limiting. For this, REST
(or REX in general) has been combined with CV-based enhanced sampling to maximize the
efficiency of sampling the complex, high dimensional conformational space of proteins.
Some of the examples are discussed in the sections above. Here, we note a couple additional
recent examples. By integrating free energy perturbation (FEP) and REST methods, Abel
et al. obtained more thorough samplings of different ligand conformations around the
active site and realized relative binding affinity predictions [122]. Okamoto and co-workers
have applied the REUS/REST two-dimensional replica-exchange method to predict two
protein–ligand complex systems with the help of REST to weaken the solute–solvent
interactions but improve the binding events and REUS to enhance the sampling along with
the reaction coordinates [87].

Multiscale enhanced sampling (MSES) is yet another fascinating example of a CV-free
enhanced sampling strategy. Protein folding and other cooperative transitions such as
self-assembly are known to be dominated by entropy barriers, which renders tempering
ineffective for driving faster transitions. Coupled with a lack of obvious CVs, sampling
complex conformational transitions of IDPs and their interactions is challenging for both
CV-based and REX-based CV-free methods. For this, an effective solution is to couple
atomistic simulations with a coarse-grain (CG) model, such that one could benefit from
both faster transitions of CG modeling and accuracy of atomistic force field [123]. A
particularly attractive approach was first introduced by Kidera and coworkers, where
restraint potentials were used to couple CG and atomistic conformational dynamics along
“essential” DOFs shared by the two models [35]. The bias introduced by the coupling
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potential is removed using Hamiltonian REX (H-REX). Chen and coworkers further adapt
the method to utilize topology-based CG models (see below), better coupling potential
and advanced Hamiltonian/temperature REX (H/T REX) [34,124,125]. Coupling the CG
and atomistic models using restraints is a key strength of these MSES protocols. It allows
full control of the energetic impact of diverged structures at different resolutions, which
improves exchange efficiency and provides superior scalability to large systems. MSES
coupling also provides robust tolerance of CG defects by preventing the CG model from
dictating the conformational dynamics. The efficacy of MSES has been illustrated using
several systems. It was highly effective in simulate reversible transitions of small β-hairpins
and helical IDPs [34,124,125] and proved instrumental in further refinement of a GBMV2
implicit solvent protein force field for both ordered and disordered peptides [126]. Very
recently, MSES was also observed to be effective in sampling the cis–trans transitions of
lutein by coupling the atomistic model with the Martini CG model [127]. Nonetheless, the
application of MSES to larger and more complex proteins has proven more challenging
than originally expected, apparently due to the difficulty in effective coupling of CG and
atomistic conformational fluctuations of a larger protein.

Other tempering methods including integrated tempering and simulated tempering
have also been combined with different biased potentials to enhance sampling [89,128].
For example, an integrated accelerated MD method has recently been used to sample
the conformations of pepX peptides, and it was shown that this method can improve
the sampling efficiency and provide a good strategy for simulating IDPs [69,89]. The
combination with the metadynamics has also been presented to sample the conformational
space of silica, and the acceleration was increased by over one order of magnitude [128].
One significant benefit is that only a single replica is required and could be suitable for
Anton specialized hardware [50]. However, one drawback is that we have to estimate the
relative free energies of all conditions (or equivalently the density of states), which requires
recursive simulations and can be difficult to converge for complex systems, such as large
IDPs and complexes.

4.3. Reweighting Techniques for Generating Unbiased Ensembles

When bias potentials are used to enhance sampling, reweighting is often required
to obtain the unbiased samples and construct statistically optimal unbiased free energy
surfaces. Two reweighting methods are widely used for this, including the weighted his-
togram analysis method (WHAM) for the biased simulations with specific CVs and a more
general multistate Bennett acceptance ratio (MBAR) approach [129,130]. The stability of
both WHAM and MBAR can be susceptible to large energetic fluctuations due to exponen-
tial dependence of weights on the value of the unitless potentials. Large energy fluctuations
among sampled conformations can lead to large uncertainties during reweighting and thus
final unbiased distributions. Another population based reweighting method has been used
for unbiasing the scaled MD simulations by making a multidimensional histogram of all
sampled configurations [131]. However, the dimensionality of configurational space is
usually very huge, and thus can hardly be completely described by some dimensionality
reduction techniques (such as principal component analysis). Recently, it was proposed
that this energetic noise can be alleviated by truncating the cumulant expansion of the
exponential average [86], which was originally used in the accelerated molecular dynamics.
It has shown that it can accurately recover the free energy profiles within an acceptable
error (~kBT), especially for the near-Gaussian biased unitless potentials [86]. This approxi-
mated reweighting methods have therefore been successfully used for reweighting several
biased simulations [88]. It should be mentioned that those reweighting techniques can be
used for reweighting any biased simulation, even for the REMD simulations. Nonetheless,
all reweighting methods including MBAR relies on good overlap between the true confor-
mational space and the region sampled by biased simulations. When the overlap is limited,
the reweighted distributions will remain significantly different from the true result. The
conformational space of even very short IDPs (e.g., ~10 residues or longer) can be complex
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enough to present formidable challenges for recovering the true disordered ensemble from
a biased trajectory, generated either at high temperatures or with modified Hamiltonian.
Instead of analyzing self-convergence (as a function of simulation time), a more rigorous
test of convergence is to analyze results obtained from simulations initiated from distinct
initial states (such as highly structured and fully disordered conformations [7]).

5. Multi-Scale Approaches for Overcoming Sampling Problems of Large Systems

As discussed above, dramatic improvement in atomistic protein force fields coupled
with enhanced samplings and GPU computing have now enabled us to generate the
disordered conformational ensembles of increasingly complex IDPs in both bound and
unbound states. Many important phenomena related to IDPs remain largely out of the
reach of physics-based atomistic simulations, such as aggregation [132–134] and biological
condensates [135–138]. Here, we review two of the key multi-scale approaches that allow
one to simulate longer time-scale bioprocesses and more complex systems within the
capacity of current computational capability, namely implicit solvent and coarse-grained
(CG) models. Both approaches have been extensively studied and applied to globular
proteins as well as IDPs.

5.1. Implicit Solvent Models for Removing Solvent DOFs

Implicit treatment of solvent is an effective approach to reduce the computational cost
of atomistic IDP simulations. The basic idea is to directly estimate the solvation free energy
to capture the mean effect of solvent on the thermodynamic properties of the solute [139].
Implicit solvent is essentially a multi-scale model, where the solvent is represented us-
ing certain physical model while keeping atomistic details of the solute. These models
have emerged as attractive alternatives for simulations of IDPs and their interactions
compared to explicit solvent. In particular, many generalized Born (GB) based implicit
solvent models have been developed, including the fast analytical continuum treatment of
solvation (FACTS) [140], Amber GB models (such as GB-HCT [141], GB-OBC [142], and
GB-Neck [143,144]), analytical generalized Born plus nonpolar (AGBNP) [145,146], and GB
models implemented in CHARMM program (such as GBSW [147] and GBMV [148,149]).
Several of these GB models can be optimized to provide a balance between computational
efficiency and accuracy desired for IDP simulations [126,150,151], by systematic optimiza-
tion of key physical parameters such as atomic radii to balance solvation and intramolecular
interactions. Applied to various model IDPs with extensive experimental data, implicit sol-
vent simulations have provided important insights on detailed conformational properties
of the unbound state and how these properties may support function [32,33,152–154].

Despite many successes, implicit solvent models have not widely been tested and
applied to the studies of larger IDPs. Several factors likely contribute to this. Most implicit
solvent models are built upon existing protein force fields, which until recent years have had
significant limitations in describing disordered protein conformations. Implicit treatment of
solvent also relies on various approximations for computational efficiency, such as treating
water as a continuous dielectric medium in GB models, limiting the ability of implicit
solvent to accurately capture the conformational dependence of solvation free energy. A
particular limitation is the common use of a surface area (SA)-based model to describe
nonpolar solvation energy, which has known limitations in describing the length-scale
dependence as well as solvent screening of dispersion interactions [151]. These limitations
can result in a systematic bias towards an overly compact conformational ensemble, which
is more pronounced for larger IDPs.

Several recent efforts have been made to further improve implicit solvent models for
IDP simulations. The GB-Neck2 model has been optimized to reproduce solvation energies
for a variety of protein systems [144]. Recent benchmark studies have shown that the
GB-Neck2 model can reasonably discriminate folded and disordered peptides and could be
used for quantitative protein folding simulations up to millisecond time scales [155–157].
Recently, the GBMV2 model, which includes an analytical approximation of molecular
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volume and is arguably one of the best GB models, has been implemented on the CUDA
platform using the CHARMM/OpenMM interface [158]. The ~2 order of magnitude
GPU acceleration greatly enables GBMV2 to simulate the conformation and interaction of
larger IDPs. The ABSINTH implicit solvent model focuses on recapitulating the polymer
properties of peptides and has been successfully used for a variety of IDP simulations,
including Aβ peptides and the aggregation of phenylalanine [159,160] and sequence-
conformation relationship of IDPs in general [8,161]. Recently, an ABSINTH-C model
was developed to address the problem of overly shallow Ramachandran distributions of
ABSINTH, by adding residue-specific correction terms [162]. The new model not only has
a capacity to maintain stable native structures of α-/β-folded proteins, but also to increase
the reversible folding of β-hairpin peptides.

5.2. Coarse-Grain Models for Reducing the DOFs of Proteins

Notwithstanding the ever-improving atomistic modeling, coarse-graining has re-
mained an attractive and often effective strategy for extending the accessible time and
length-scales of MD simulations. By grouping multiple (protein) atoms into CG beads and
using simplified potential energy functions, CG modeling does not only reduce the system
size, often by ~10-fold, but also allows much larger MD integration time steps up to 10 s
of fs. Together, many CG models can be several orders of magnitude more efficient than
atomistic ones. Numerous CG models have achieved varying levels of success in studies of
protein folding, binding, and assembly [43,163]. Nonetheless, there are important distinc-
tions between the conformational properties between globular proteins and IDPs, as well as
the relative importance of electrostatic, hydrophobic, and hydrogen-bonding interactions
in governing their conformational equilibria. Therefore, CG models optimized for the
folded proteins are generally not suitable for the IDP simulations. It is often necessary to
readjust the parameters of protein–protein and protein–solvent interactions or add new
terms for more accurate description of IDP conformations (Figure 3). Here, we summarize
several of these refined CG models for more efficient sampling of IDP conformation and
interactions as well as their successes and limitations.

Gō/Gō-like models, also known as topology-based models, are based on the funneled
energy landscape theory [164] and have been highly successful in describing the folding
mechanism and pathway of structured proteins [165]. Somewhat surprisingly, Gō-like
models have also proven effective for determining the mechanism and kinetics of IDP inter-
actions, particularly the coupled binding and folding process [166–171]. The implication is
that the binding and folding are governed by similar principles that require minimal frus-
tration for efficiency. Note that Gō-like models generally require additional calibrations to
provide a more quantitative description of the balance between intermolecular interactions
and intrinsic conformational propensities [172]. A key limitation of the topology-based
modeling of IDPs is lack of the ability to capture the impacts of non-“native” structural fea-
tures and nonspecific interactions, which could play important roles in IDP structure and
function. This may be partially overcome by including new energy terms (Figure 3), such as
explicit charge-charge interactions, inert crowder molecules, and confinement potentials. A
particularly interesting discovery from such extended topology-based modeling of IDPs is
the role of long-range electrostatic interactions in promoting efficient coupled binding and
folding, allowing IDPs to fold at timescales beyond the µs “folding speed limit” to avoid
a potential kinetic bottleneck in specific recognition [167,169,173]. IDP-binding proteins
have evolved to contain charges near the binding interface to complement those highly
conserved charges on IDPs. Long-range electrostatic interactions between these charges do
not only accelerate the encountering of IDPs, but also promote the efficiency of IDP folding
upon nonspecific encounters.
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Several higher resolution coarse-grained models have been also developed specifically
for modeling IDPs. Thirumalai and co-workers reparametrize the two-bead self-organized
polymer coarse-grained model (SOP-CG) to reproduce Rg values of a set of diverse IDPs
with 20 to 441 residues [174]. The resulting SOP-IDP also accurately reproduce the small-
angle X-ray scattering profiles for these IDPs. Nonetheless, SOP-IDP is designed for
IDPs solely and lacks transferability and compatibility in describing even small globular
proteins under physiological conditions. Recognizing the limitation of CA-only backbone
representation in capturing the intrinsic conformational propensities of IDPs, Chen and
Liu developed a hybrid resolution (HyRes) model that contains an atomistic description
of the backbone, to provide a semi-qualitative description of the secondary structure
propensities, and intermediate resolution side chains, to allow qualitative description of
the overall peptide chain dimension and transient long-range interactions [175]. While
HyRes was originally designed for driving faster atomistic sampling for MSES simulations,
applications to a set of small and large IDPs including p53-TAD suggest that HyRes may
be appropriate for simulating IDP structure and interactions by itself [175]. Papoian and
co-workers have developed the AWSEM-IDP model that can be used to efficiently sample
the large conformational space of IDPs and at the same time can distinguish the levels of
peptide chain expansion of globular proteins and IDPs [176]. AWSEM-IDP includes only
CA, Cβ, and O atoms, and has been reparametrized for IDPs by adjusting the secondary
structure-related potential energy terms as well as introducing a new parameter, VRg term,
for controlling the collapse and size fluctuation of the protein.

An important application for CG models is to study liquid-liquid phase transitions
(LLPS) that are frequently mediated by IDPs [29,44–46]. Dignon et al. proposed a residue-
based CA-only CG model to represent the disordered low complexity domain of the RNA-
binding protein FUS-LCD and the DEAD-box helicase protein LAF-1 in the formation of
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LLPS [177]. The model uses the Debye–Hückel approximation for long-range electrostatic
interactions and the hydrophobicity scale model [177] or the Kim–Hummer model [178] for
short-range residue–residue interactions. The results indicated that both two approaches
could reproduce the experimentally observed phase behaviors and changes in phase
diagrams caused by mutation. Although they mentioned that the temperature-dependent
phase behaviors were not compatible with the experimental absolute temperature and the
ionic strength dependence was not fully tested due to the breakdown of the Debye-Hückel
electrostatic energy potentials. The model could be further refined. For example, more
residue-type parameters were considered to account for phosphorylation and acetylation
effects [179], which allows in-depth investigation of how post-translational modifications
may control LLPS behaviors. Recently, Latham and Zhang re-tuned the model of Dignon
et al. to better reproduce the Rg distributions of a set of folded and disordered proteins [180].
The resulting maximum entropy optimized force field (MOFF) includes a new residue–
residue interaction matrix and is more transferable for modeling both globular proteins
and IDPs. Hummer and co-workers modified the MARTINI model via re-scaling the solute–
solute non-bonded Lennard–Jones potentials to reproduce the experimental transfer free
energies of phase separation among dilute and dense liquid phases and proposed a more
general approach in tuning CG models with MD for LLPS related studies by optimizing
and balancing the solute–solute and solute–solvent interactions, then matching the CG
data to the atomistic simulation or experimental results [177]. The resulting MARTINI-IDP
model was shown to successfully simulate the droplet formation and capture reversible
phase transformations. Such exciting progress highlights the strong potential for simple CA-
only CG models in molecular simulations of LLPS involving IDPs. Nonetheless, difficulty
in describing local structure propensities (such as transient helices) with the CA-only
representation may be an important limitation for studying certain specific effects of IDPs
in LLPS.

6. Concluding Remarks

Effective and reliable molecular simulations are crucial for characterizing the details of
disordered conformational ensembles of IDPs in isolation, dynamic complexes, or biological
condensates. Such computational capability, integrated with experimental studies, makes
it possible to determine how the dynamic protein states may respond various cellular
stimuli in signaling and regulation and more rigorously establish the (dynamic) structure-
function relationship of IDPs and IDRs. In this review, we highlight recent advances
in meeting two central requirements for reliable IDP simulations, namely accurate force
fields, for describing the energetics of protein conformations, and efficient MD simulation
methods, for the adequate sampling of relevant conformational space. The need to simulate
disordered protein ensembles has played a key role in driving significant improvements
in empirical protein force fields in recent years. Many of these force fields are now well
balanced for both folded and disordered proteins. The force field development itself
has directly benefited from many advanced sampling methods that allow for accurate
calculation of the conformational equilibria of model peptides and proteins during force
field recalibration. These enhanced sampling techniques rely on carefully designed biasing
potentials, modification to the original Hamiltonian, and/or tempering to accelerate barrier
crossing and generate statistically meaningful ensembles with far less computation. Many
of the enhanced sampling strategies are complementary and can be readily integrated
together to further improve the efficiency. Together, the improved protein force fields and
powerful sampling techniques now allow realistic simulations of the conformation and
interaction of at least modest-sized IDPs at the atomistic level.

Nonetheless, the high dimensionality and complex nature of disordered protein
conformation continues to push the limits of the force field and sampling capability. In
particular, none of these methods alone appears to be generally applicable to simulate
IDPs that are large (e.g., more than a few dozens of residues) and/or contain nontrivial
residual structural features. There remains an urgent need and exciting opportunities in
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developing much more effective methods for sampling IDP conformations and dynamic
interactions, such as through the careful integration of various existing CV-dependent and
CV-free strategies. A particular promising direction is to leverage machine learning to
design superior adaptive sampling strategies that can generate optimal bias potentials on
the fly to maximally drive the exploration of the free energy landscape.

Many proteins models with various levels of resolution are also being developed and
fine-tuned for IDP simulations, particularly for studying biological condensates. These
models range from CA-only single-bead protein models to implicit solvent ones with
atomistic proteins. Many of the current models are geared towards modeling systems with
minimal residual structures. A key challenge in the multi-scale modeling and simulation of
IDPs is finding the optimal compromise between resolution, accuracy, and efficiency for the
particular problem of interest. Nonetheless, it can be expected that multi-scale simulations
will continue to play a central role in studying IDPs and dynamic interactions.
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