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Common visual features used in target tracking, including colour and grayscale, are

prone to failure in a confusingly similar-looking background. As the technology of

three-dimensional visual information acquisition has gradually gained ground in recent

years, the conditions for the wide use of depth information in target tracking has been

made available. This study focuses on discussing the possible ways to introduce depth

information into the generative target tracking methods based on a kernel density

estimation as well as the performance of different methods of introduction, thereby

providing a reference for the use of depth information in actual target tracking systems.

First, an analysis of the mean-shift technical framework, a typical algorithm used for

generative target tracking, is described, and four methods of introducing the depth

information are proposed, i.e., the thresholding of the data source, thresholding of the

density distribution of the dataset applied, weighting of the data source, and weighting

of the density distribution of the dataset. Details of an experimental study conducted to

evaluate the validity, characteristics, and advantages of each method are then described.

The experimental results showed that the four methods can improve the validity of

the basic method to a certain extent and meet the requirements of real-time target

tracking in a confusingly similar background. The method of weighting the density

distribution of the dataset, into which depth information is introduced, is the prime choice

in engineering practise because it delivers an excellent comprehensive performance

and the highest level of accuracy, whereas methods such as the thresholding of both

the data sources and the density distribution of the dataset are less time-consuming.

The performance in comparison with that of a state-of-the-art tracker further verifies

the practicality of the proposed approach. Finally, the research results also provide a

reference for improvements in other target tracking methods in which depth information

can be introduced.

Keywords: target tracking, confusion from similar background, introduction of depth information, data source,

density distribution of dataset

INTRODUCTION

Video target tracking refers to the continuous tracking of the state of a target in a sequence of
frames subsequent to the given initial position and scale information of the target. This is the
basis for high-level vision tasks, such as a visual measurement, visual navigation, and visual serving
(Karakostas et al., 2020; Nousi et al., 2020a,b; Shen et al., 2020; Wang et al., 2020). In practical
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applications, similar-looking backgrounds and target-scale
changes may lead to a failure of the target tracking (Kashiani and
Shokouhi, 2019; Makhura and Woods, 2019; Zhou et al., 2020),
which remains a challenging task.

The existing target tracking methods are roughly divided
into two categories: discriminant and generative methods (Chen
et al., 2020). Discriminant methods that address tracking by
discriminating the foreground from the background of an image
are closely related to target detection (Li and Zheng, 2020), image
segmentation (Bhandari et al., 2020; Guan et al., 2021), and other
technologies. The boosting method (Yang et al., 2016), support
vector machine (Feng et al., 2018), and deep neural network
(Tong et al., 2019; Jain et al., 2020) are all good approaches
for discriminant target tracking. Generative tracking methods
rely on certain tracking strategies to determine the optimal
solution from many candidate targets. They can be divided into
methods based on the kernel density estimation, methods based
on subspace, and methods based on a sparse representation
(Dash and Patra, 2019; Luo et al., 2019; Wang and Zhang, 2019;
Yan et al., 2019; Chen et al., 2020). These methods improve
the respective characteristics and scope of the applications. In
general, the discriminant methods are more robust, whereas the
generative methods are independent from the training samples
and are easy to implement and apply in real-time.

Common visual features used in target tracking, including
colour, grayscale, derivative histogram, optical flow, texture, and
key points, are prone to failure in confusingly similar-looking
backgrounds. This problemwill not be eradicated if no additional
information source for the target tracking is introduced (Hu
et al., 2017; Kang et al., 2018; Guan et al., 2020). In the field
of computer vision, depth information refers to the position
information of the target in the direction perpendicular to the
image plane, which cannot be obtained by traditional monocular
cameras. In recent years, three-dimensional visual information
acquisition technologies such as time-of-flight (TOF) cameras,
RGB-D cameras, and light detection and ranging (LiDAR) have
gradually become popular. This means that, in addition to
traditional appearance information, the conditions allowing the
depth information to be widely used in target tracking have
become available. This has drawn the attention of scholars
focusing on how to introduce depth information into a target
tracking algorithm and improve its performance. For example,
Wang Y. et al. (2020) proposed a robust fusion-based RGB-
D tracking method that integrates depth data into a visual
object tracker to achieve the robust tracking of a target. In
addition, Xiao et al. (2019) proposed a new tracking method
that uses a kernel support vector machine (SVM) online learning
classifier to detect and track a specific target in a single RGB-
D sensor. Cao et al. (2015) also proposed a method that uses
depth information obtained from a moving binocular camera to
detect and recover occlusions. Experimental results demonstrate
the robustness of the proposed 3D tracking method based on a
comparison with several state-of-the-art tracking methods. Wu
et al. (2015) proposed a robust fused tracker that utilises the depth
information to achieve accurate 3D hand tracking even under
extremely complex scenes. Existing research on video target
tracking into which depth information is introduced has mostly

focused on discriminant methods and seldom on generative
approaches. It is pertinent to further expand and deepen research
in this area.

A mean-shift is a typical generative method for tracking
targets based on a kernel density estimation. It follows a certain
similaritymeasure criterion to calculate the degree to which every
region of a data source image matches the visual features of the
tracked target. The calculation results are presented in the form
of the density distribution of the two-dimensional dataset, and
then starts from the initial position to locate the target by finding
the local extrema. Although new methods of target tracking have
emerged one after the other, the mean-shift algorithm, owing to
its strong practicability and good comprehensive performance, is
still widely used in actual systems, and many studies have been
devoted to further improving its performance. For example, Hu
et al. (2018) proposed an anti-occlusion video target tracking
based on a prediction-algorithm-based strategy and re-matching
to address the problem where the mean-shift algorithm is likely
to fail in the case of a target occlusion. The results showed
that the method takes credit for the strong capability of anti-
occlusion and reliability tracking during the video target tracking
process. In addition, Iswanto et al. (2019) combined the mean-
shift algorithm with both particle and Kalman filtering and
obtained a good overall performance. Ap and Na (2020) reduced
the computational complexity of the mean-shift algorithm by
applying speeded-up robust features (SURF) and re-projection
techniques. Moreover, Sliti et al. (2017) proposed four adaptive
scale and orientation mean shift trackers, which proved to be
more stable and less prone to drifting away from the target than
purely coloured or feature-based trackers.

To improve the performance of the generative target
tracking methods widely used in actual systems, relevant studies
conducted both at home and abroad based on the mean-shift
approach, which is a typical technology framework of generative
target tracking, were referenced. In this article, four target
tracking methods based on the similarity measure criteria of the
histogram back projection into which the depth information is
introduced are proposed, i.e., a thresholding of the data source,
thresholding of the density distribution of the dataset, weighting
of the data source, and weighting of the density distribution
of the dataset. Experimental research has verified at length the
validity of the improvement methods and arrived at a discussion
regarding their characteristics. To the best of our knowledge, a
more comprehensive discussion of the possible ways to introduce
depth information into generative target tracking methods based
on a kernel density estimation as well as on the performance of
different introduction methods has yet to be conducted.

MEAN-SHIFT TARGET TRACKING
METHOD

To apply the mean-shift algorithm for target tracking, one must
first calculate the degree to which every area of an image matches
the visual features of the target being tracked using a certain
method, and then present the calculation result in the form
of the density distribution of the two-dimensional dataset. A
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histogram back projection is a common method for constructing
the density distribution of a two-dimensional dataset. To do
so, one should rely on certain digital features (e.g., grey or in
colour) of digital image pixels as the source of the data structure
for the histogram, assuming that there are a total number of
t pixels within the tracked target, and that the coordinates of
each pixel are expressed as (x1, y1), (x2, y2), ..., (xt , yt). The target
histogram with a quantisation level of m is h =

{

hu
}

, where
u = 1, 2, · · · ,m and

hu =

t
∑

i=1

δ
[

G
(

xi, yi
)

− fu
]

. (1)

In the equation, δ [•] is the Kronecker delta function, and
G

(

xi, yi
)

is the digital eigenvalue of the pixel with coordinates
(xi, yi). In addition, fu is the value range covered by the digital
feature at level u, in which the digital feature G(x, y) at (x, y) in
frame G of the tracking image is within the interval fs. Image P of
the histogram back projection is obtained by setting the grayscale
at (x, y) to P(x, y):

P(x, y) =
hs

max
{

h1,h2, · · · , hm
} × Q, (2)

where Q is the highest grayscale value of the back projection P
(given that the back projection is usually in an 8-bit unsigned
integer data structure, and the value of Q is 255).

With the two-dimensional dataset density distribution derived
from the histogram back projection, the mean-shift tracking
algorithm makes it possible to track the target by iteratively
locating the region most similar to the target:

Step 1 - Based on the position in the last frame, place the initial
search window somewhere in the density distribution of the
two-dimensional dataset.
Step 2 - Calculate the centroid coordinates

(

xc, yc
)

of the
search window:

xc =
M10

M00
, (3)

yc =
M01

M00
, (4)

whereM00 is the zeroth moment of the search window;M10, and
M01 are the first moment thereof:

M00 =

∑

xj

∑

yj

P(xj, yj), (5)

M10 =

∑

xj

∑

yj

xj × P(xj, yj), (6)

M01 =

∑

xj

∑

yj

yj × P(xj, yj), (7)

where xj and yj are the coordinates of the spot within the
search window.

Step 3 - Move the centre of the search window to the position
of the centroid along the mean-shift vector.
Step 4 - If the displacement s of the centre of the search
window is less than the threshold ε or the number of iterations
n is greater than the threshold N, the current search window
position is output as the target location and the iteration ends;
otherwise, return to step 2.

In summary, the algorithm flow by which the mean-shift
method tracks a target in a sequence of frames is shown
in Figure 1.

METHODS FOR INTRODUCING DEPTH
INFORMATION

Although the technology to acquire three-dimensional visual
information has been proven, the introduction of depth
information to improve traditional target tracking methods
promises better robustness. In the mean-shift tracking
framework, depth information can be introduced at the
data source level or at the density distribution level of the
dataset. In terms of the fusion method, one may set the
range of the possible presence of the target based on depth
information or use the depth information to weight the
data. Based on the above, this article proposes four methods,
into which depth information is introduced to improve the
mean-shift algorithm.

Introducing Depth Information Into the
Thresholding of the Data Source
The basic idea of the algorithm is to exclude the area where
the depth value is excessively different from the depth of
the target at the last moment from the candidate area where
the target is located, thereby improving the performance of
the target tracking algorithm. In the methods described in
section Mean-Shift Target Tracking Method, depth information
is introduced into the thresholding of G by the following
formula once the grayscale image (the data source) to be tracked
becomes available:

TG
(

x, y
)

=

{

G
(

x, y
)

T1 < D
(

x, y
)

< T2

0 others
, (8)

where D(x, y) is the grayscale value of the point (x, y) in the
depth image D corresponding to G; T2 and T1 are the high
and low depth thresholds, respectively. In the algorithm, the
grayscale image TG, thresholded after the introduction of the
depth information, takes the place of the original grayscale image
G used in the method described in section Mean-Shift Target
Tracking Method, thereby serving as the data source for the
calculation of the back projection.

Compared with the traditional mean-shift target tracking
method, this algorithm adds no more than 2 × M × N
comparison operations in a single tracking (when the detected
image size is M pixels× N pixels).
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FIGURE 1 | Algorithm flow of the mean-shift using back projection.

Introducing Depth Information Into the
Thresholding of the Density Distribution of
the Dataset
The basic idea of this algorithm is the same as that of the
algorithm described in section Introducing Depth Information
Into the Thresholding of the Data Source. In the method
described in section Mean-Shift Target Tracking Method, depth
information is introduced into the thresholding of P using
the following formula once back projection P (the density
distribution of the dataset) of the grayscale image to be tracked
becomes available:

TP
(

x, y
)

=

{

P
(

x, y
)

T1 < D
(

x, y
)

< T2

0 others
, (9)

where D(x, y), T2, and T1 each have the same meaning as in (3).
In this algorithm, the original back projection P is replaced by
the back-projection TP threshold after the introduction of the
depth information.

This algorithm needs the same additional computing
resources as the method described in section Introducing Depth
Information Into the Thresholding of the Data Source.

Introducing Depth Information Into the
Weighting of the Data Source
The basic idea of the algorithm is to use depth information to
assign different weight coefficients to different areas of a tracking
image. The closer the depth is to the previous depth of the target,
the larger the weight coefficient, and vice versa. If the mean
grayscale value of the area where the target was located in the
depth image at the last moment is MF, and the grayscale value
of the spot with coordinates

(

x, y
)

in the depth image D at this
moment is D

(

x, y
)

, then the weight coefficient C
(

x, y
)

at
(

x, y
)

is

C
(

x, y
)

=
1

K
∣

∣D
(

x, y
)

−MF
∣

∣ + 1
, (10)

where K is the environmental coefficient, to which a value
may be assigned according to the characteristics of the specific
application because the largerK is, the more obviously the weight
coefficient varies with the depth of the pixel location. Once the
weight coefficient of each spot in the tracked image is available,
the image to be tracked G (the data source) is weighted by the
following formula:

WG
(

x, y
)

= G
(

x, y
)

× C
(

x, y
)

. (11)
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With this algorithm, using the method described in section
Mean-Shift Target Tracking Method, G is replaced with a
weighted grayscale,WG.

Compared with the traditional mean-shift target tracking
method, this algorithm adds M× N addition operations, M× N
subtraction operations, and 2×M×Nmultiplication operations
for one tracking (when the detected image size is M pixels ×

N pixels).

Introducing Depth Information Into the
Weighting of the Density Distribution of the
Dataset
The basic idea of this algorithm is the same as that of the
algorithm described in section Introducing Depth Information
Into the Weighting of the Data Source. Once the weight
coefficient of each spot in the tracking image is available based
on Equation (11), the back projection P obtained by the method
in section Introduction is weighted by the following formula:

WP
(

x, y
)

= P
(

x, y
)

× C
(

x, y
)

. (12)

In this algorithm, using the method described in section Mean-
Shift Target Tracking Method, P is replaced with the weighted
back projectionWP.

This algorithm requires the same additional computing
resources as the method described in section Introducing Depth
Information Into the Weighting of the Data Source.

EXPERIMENT AND ANALYSIS

Experiment Apparatus and Scenario
This study focuses on how to improve the performance of
generative target tracking methods into which depth information
is introduced; however, most of the existing mainstream datasets
on the available target tracking do not provide depth information.
Therefore, this article addresses how the proposed improvement
methods are verified using test images acquired experimentally.
The image acquisition apparatus for the experiment was a
German camera (Basler tof640-20gm_ 850-nm type TOF) with
a pixel resolution of 640 × 480, a depth measurement range of
0–13m, and a measurement accuracy of ±10mm. The tracking
algorithm was developed and implemented on a PC (Intel Cool
i5-4200u processor, 8 GB of RAM) operating on a VS2015. In the
algorithm, the threshold of the window displacement distance ε

at the end of the iterations is set to 1 pixel, and the threshold of
the number of iterations N is 10.

The experimental scenario was designed such that a white
round cover acted as the object tracked in a colour extremely
close to that of the wall, which can be regarded as a confusingly
similar-looking background. To fully verify the robustness of the
algorithm, during the experiment, the tracked object also had a
significant displacement in the depth direction (the minimum
distance between the tracked object and the wall at the initial
moment was 104mm, and then gradually increased to 209mm).
For the experiment, three-dimensional vision data at 81moments
were acquired on a continuous basis. The 28th frame of the

FIGURE 2 | The 28th frame.

TABLE 1 | The relationship between the value of parameter m and the validity of

the method.

Histogram

quantization

series

Method validity

Traditional

Mean-shift

Method 1 Method 2 Method 3 Method 4

2 Invalid Invalid Valid Valid Valid

19 Invalid Valid Valid Valid Valid

39 Invalid Valid Valid Invalid Valid

59 Invalid Valid Valid Invalid Valid

99 Invalid Valid Valid Valid Valid

150 Invalid Invalid Valid Valid Valid

199 Invalid Invalid Valid Valid Valid

219 Invalid Invalid Valid Invalid Valid

239 Invalid Invalid Valid Invalid Valid

256 Invalid Invalid Valid Invalid Valid

grayscale image is shown in Figure 2, where the TOF camera is
1,462mm away from the wall.

Parameter Value and Method Validity
This section begins with a discussion of how the parameter values
are assigned to each method. The high and low depth thresholds
must be determined before introducing depth information into
the thresholding of the data source (hereinafter, referred to
as Method 1), and the depth information is introduced into
the thresholding of the density distribution of the dataset
(hereinafter, referred to as Method 2). The values are assigned
to the two thresholds above based on the priori information of
the displacement of the object tracked in the depth direction
and its distance from the TOF camera under the application
scenario. During this experiment, the distance between the
TOF camera and the tracked object was between 1,253 and
1,358mm. Considering that a certain margin is required in actual
applications, distances of 1,044 and 1,462mm are assigned to T2

and T1.
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FIGURE 3 | Tracking results from the method of thresholding the data source into which depth information is introduced. (A) The 10th frame; (B) the 30th frame; (C)

the 50th frame; (D) the 80th frame.

FIGURE 4 | Tracking results from the method of thresholding the density distribution of the dataset into which depth information is introduced. (A) The 10th frame; (B)

the 30th frame; (C) the 50th frame; (D) the 80th frame.

FIGURE 5 | Tracking results from the method of weighting the data source into which depth information is introduced. (A) The 10th frame; (B) the 30th frame; (C) the

50th frame; (D) the 80th frame.

FIGURE 6 | Tracking results from the method of weighting the density distribution of the dataset into which depth information is introduced. (A) The 10th frame; (B)

the 30th frame; (C) the 50th frame; (D) the 80th frame.

The environmental coefficient K must be determined before
introducing the depth information into the weighting of the
data source (hereinafter, referred to as Method 3) and introduces
depth information into the weighting of the density distribution
of the dataset (hereinafter, referred to as Method 4). After many
attempts, it was found that a K value of ∼1 in the designed
experimental scenario is reasonable.

In addition, themean-shift method and the four improvement
methods in this study all require a quantisation level m of

the histogram. The grayscale information of each pixel in the
frames collected in the experiment is stored as uint8, which
accommodates up to a total of 256 shades of grayscale, m, and
thus the value can theoretically be taken from the interval (Nousi
et al., 2020a; 256). Table 1 shows the validity of each method
when 10 different values of m are within the theoretical interval.
It can be seen that, for the listed values assigned tom, the original
mean-shift algorithm is invalid, whereas the four improvement
methods described in this article are effective, at least under
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FIGURE 7 | Tracking results from the mean-shift algorithm. (A) The 10th frame; (B) the 30th frame; (C) the 50th frame; (D) the 80th frame.

TABLE 2 | Time consumed by each method in single tracking tasks.

Method names Time-consuming

(ms)

Mean-shift 16.9

Method 1 26.1

Method 2 25.5

Method 3 34.1

Method 4 35.5

certain conditions, and are capable of improving the validity of
the basic algorithm to a certain extent; to be specific, Methods 2
and 4 are valid in all cases, and it is more practical to introduce
depth information at the level of density distribution of the
dataset because it is less difficult to adjust the parameters; in a
number of cases of value assignment to m, Methods 1 and 3
are invalid, suggesting that the practicality of introducing depth
information at the data source level is poor.

When m is set to 19, the four improvements in this study are
valid. For a convenient comparison of the algorithm during the
subsequent part of the experiment, m was set to 19 on a unified
basis for all methods. Figures 3–6 show the tracking effects of
the four improvement methods, and Figure 7 shows those of the
traditional mean-shift algorithm.

Real-Timeliness of Tracking
The mean times spent on the single tracking tasks by the
traditional mean-shift algorithm and by the four improved
methods based on the conducted experiment are shown
in Table 2. The mean time in the case of the mean-shift
algorithm is 16.9ms, whereas those in the case of the four
improved algorithms herein are higher because they involve
more calculations. Methods 1 and 2 spent similar times on
average, i.e., ∼50% more than the standard algorithm. Methods
3 and 4 require a similar amount of time on average, much
longer than the first two methods, and more than twice
the standard algorithm. Nevertheless, even the longest time-
consuming method, which requires 35.5ms for the four single
tracking tasks, can still meet the real-time requirement for
most applications.

Tracking Accuracy
It was impossible to accurately locate the target during the
experiment. To quantitatively evaluate the tracking accuracy, the

FIGURE 8 | Tracking errors of improvement algorithm.

accuracy evaluation system proposed in Hoover et al. (1996) is
adopted in this study to manually capture the target edge and
determine the position of the target centre (Wang et al., 2018)
using the least squaremethod as the true value. The tracking error
is then identified as the distance between the centre position of
the target obtained by each tracking method and the true value.
The tracking error at each moment is shown in Figure 8, and the
error statistics are listed in Table 3. It is clear from Figure 8 and
Table 3 that Method 4 achieves the highest tracking accuracy,
with a peak error of 6.43 pixels, followed by Method 2 and
Method 1. Method 3, with the lowest tracking accuracy, had a
peak error of 9.14 pixels, a mean absolute error (MAE) of 5.61
pixels, and a ratio of peak error to target size of <34% (the pixel
size of the target in the experiment image varies with the distance
between the target and camera, and ranges from 27.3 to 34.2
pixels in terms of diameter); however, the method ensures that
the target tracked will not be lost.

Comparison of Comprehensive
Performance
The comprehensive performance and characteristics of each
improvement method are summarised in Table 4. Method 4,
with an excellent performance in terms of the difficulty in
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TABLE 3 | Tracking error statistics (unit: pixel).

Method

names

Peak

error

Error standard

deviation

Mean absolute

error

Method 1 7.46 1.27 4.08

Method 2 8.80 1.56 4.25

Method 3 9.14 1.52 5.61

Method 4 6.43 1.32 3.28

TABLE 4 | Comparison of the comprehensive performance of the improvement

methods.

Method

names

Difficulty of

parameter

adjustment

Time-consuming Tracking

accuracy

Method 1 Higher Less Higher

Method 2 Low Less Higher

Method 3 Higher More Minimum

Method 4 Low More Highest

parameter adjustment and the tracking accuracy, albeit with a
higher time consumption, is the prime choice in engineering
practise. Method 3 achieves the lowest tracking accuracy and
has no obvious advantages. Methods 1 and 2 consume less time
and are therefore suitable for occasions in which there is little
confusion at the same depth of the target and a high requirement
for real timeliness.

Comparison With the State-of-the-Art
Tracker
Finally, to further verify the effectiveness of the proposed
methods, a comparison was conducted with the latest method,
i.e., a fully convolutional siamese (SiamFC) approach (Gao
et al., 2019), which is an object tracking method based on
deep learning. Because the hardware platform running the
mean-shift and improved algorithms described in this paper
has a low configuration and cannot realise the training and
tracking of the network, it was replaced by a mobile workstation
with the following specifications: an i5-11400H CPU, 16
GB of RAM, and an RTX 3050 GPU using python3.6 and
PyTorch. Then, the GOT-10k dataset was used to finish the
training of the SiamFC network, and the error curve of the
target tracking for the image sequence mentioned in section
Experiment Apparatus and Scenario is shown in Figure 9. The
peak error is 7.27 pixels and the MAE is 4.11 pixels. The
tracking accuracy of the SiamFC network is similar to that
of Method 1, but lower than that of Method 4. In addition,
the mean tracking time of 81 frames is 19.6ms, which is
slightly higher than that of the four improved algorithms.
Because the configuration of the hardware platform running
the SiamFC network is obviously better than that running the
improved algorithm, a slightly higher time consumption does
not mean that the improved algorithms require more computing
resources. The improved algorithms, which use significantly

FIGURE 9 | Tracking errors of the SiamFC network.

lower hardware configurations, also obtain a roughly equivalent
tracking performance (in terms of the tracking accuracy, some of
the improved methods proposed in this paper are even higher)
to the state-of-the-art tracker under the designed experimental
scenario; therefore, the improved methods described in this
paper have practical value.

CONCLUSION

Generative target tracking algorithms represented by the
mean-shift improve independence on training samples, easy
implementation and real-timeliness etc. and get widely applied
in engineering practise. However, these methods were developed
before 3D visual information acquisition apparatuses could be
put into popular use. Therefore, common visual features used in
target tracking, only including colour and grayscale, and visual
features derived from these two types of information, are prone
to failure in a confusingly similar-looking background. To deal
with the problem above, this study, based on the mean-shift, a
typical framework for generative target tracking, proposes four
improved methods into which depth information is introduced,
i.e., the thresholding of the data source, thresholding of the
density distribution of the dataset applied, weighting of the
data source, and weighting of the density distribution of the
dataset. The experimental study includes a detailed analysis
of the parameter values, validity, tracking real-timeliness and
accuracy of each method. The experimental results showed
that the four methods can improve the validity of the basic
method to a certain extent and meet the requirements of real-
time target tracking in a confusingly similar background. The
method of weighting the density distribution of the dataset,
into which depth information is introduced, is the prime
choice in engineering practise because it delivers an excellent
comprehensive performance and the highest level of accuracy,
whereas methods such as the thresholding of both the data
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sources and the density distribution of the dataset are less
time-consuming, therefore more suitable for occasions where
there is little confusion at the same depth of the target
and a high requirement for real-timeliness. The performance
in comparison with that of a state-of-the-art tracker further
verifies the practicality of the proposed approach. Finally, the
research results also provide a reference for improvements in
other target tracking methods in which depth information can
be introduced.

In the target tracking framework of this study, the essence
of the mean-shift algorithm is actually data clustering.
Some new clustering algorithms (Hu et al., 2019, 2020)
also have the potential to be applied to target tracking.
The next step is to further improve the performance of
target tracking in light of the latest research progress of
clustering techniques.
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