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Abstract: Adenomyosis is related to infertility and miscarriages, but so far there are no robust in vitro
models that reproduce its pathological features to study the molecular mechanisms involved in this
disease. Endometrial organoids are in vitro 3D models that recapitulate the native microenvironment
and reproduce tissue characteristics that would allow the study of adenomyosis pathogenesis and
related infertility disorders. In our study, human endometrial biopsies from adenomyosis (n = 6) and
healthy women (n = 6) were recruited. Organoids were established and hormonally differentiated to
recapitulate midsecretory and gestational endometrial phases. Physiological and pathological charac-
teristics were evaluated by immunohistochemistry, immunofluorescence, qRT-PCR, and ELISA. Secre-
tory and gestational organoids recapitulated in vivo glandular epithelial phenotype (pan-cytokeratin,
Muc-1, PAS, Laminin, and Ki67) and secretory and gestational features (α-tubulin, SOX9, SPP1,
PAEP, LIF, and 17βHSD2 expression and SPP1 secretion). Adenomyosis organoids showed higher
expression of TGF-β2 and SMAD3 and increased gene expression of SPP1, PAEP, LIF, and 17βHSD2
compared with control organoids. Our results demonstrate that organoids derived from endometria
of adenomyosis patients and differentiated to secretory and gestational phases recapitulate native
endometrial-tissue-specific features and disease-specific traits. Adenomyosis-derived organoids are
a promising in vitro preclinical model to study impaired implantation and pregnancy disorders in
adenomyosis and enable personalized drug screening.

Keywords: adenomyosis; organoids; secretory endometrium; gestational endometrium; preclinical
model; infertility

1. Introduction

Adenomyosis is a benign uterine disease affecting 35% of women of reproductive
age [1], characterized by invagination of endometrial glands and stroma into the my-
ometrium [2]. Many mechanisms have been postulated to be involved in adenomyosis’
development and its associated symptoms, such as altered sex steroid signaling, excessive
proliferation and invasiveness of the endometrium, and an abnormal immune response [3].
To date, the exact trigger of the disease is not known but there are two main hypotheses that
attempt to explain adenomyosis origin [4,5]. The first and most commonly accepted theory
lies in the invasiveness of the basal endometrium into the inner myometrium [6]. This is
due to a combination of two events. On the one hand, endometrial epithelial cells undergo
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a process called epithelial–mesenchymal transition (EMT), in which they lose their cell po-
larity and intercellular junctions are disrupted, facilitating the transition to a mesenchymal
state and increasing the invasive capacity [7,8]. On the other hand, there is a partial loss
of continuity of the junctional zone (JZ) that facilitates the invasion and establishment of
adenomyotic lesions [6]. The second theory is that adenomyotic lesions are generated de
novo rather than originating from the eutopic endometrium [4,5]. This would be due to a
differentiation of the misplaced Müllerian remnants into tissue that resembles endometrial
tissue and would therefore grow in ectopic sites [9,10]. However, other authors support
that ectopic lesions could be due to endometrial stem cells (ESCs) that are transported in
retrograde menstruation [11,12], which have the ability to adhere, implant, differentiate,
and propagate in ectopic locations [13]. The incidence and prevalence of adenomyosis is
unknown due to the lack of an adequate and standardized diagnostic criteria [14,15]. The
main diagnosis of adenomyosis is made either by imaging or by histological examination
after hysterectomy, which implies the need to establish a diagnosis compatible with the
woman’s reproductive intentions [16–18]. Moreover, no clear pattern of coexistence of
adenomyosis with uterine diseases such as endometriosis, leiomyomas, and other uterine
conditions has been established [18]. Although one third of women affected by adeno-
myosis is asymptomatic, most of them may present abnormal uterine bleeding, chronic
pelvic pain, dysmenorrhea, or dyspareunia [19]. This condition can also result in infertility
and miscarriages [19], leading most affected women to undergo assisted reproductive
techniques [20]. Meta-analyses found that implantation, clinical and ongoing pregnancy,
and live birth rates are significantly lower in patients with adenomyosis compared with
healthy women, while miscarriage rates are higher [21–23].

Local inflammation [24], oxidative stress [25], impaired vascularization [26], hypere-
strogenism [27], and epithelial–mesenchymal transition (EMT) [28] may be mechanisms
involved in adenomyosis pathogenesis. Steroid hormones disruption, particularly hypere-
strogenism, which ultimately results in progesterone resistance, are known to play a key
role in its pathogenesis [3,27]. Since many of the mechanisms involved in the pathogenesis
of adenomyosis are driven by estrogen upregulation, adenomyosis is widely known as
an estrogen-dependent disease [27]. Estrogen induces proliferation of endometrial cells,
which, in the case of adenomyotic endometrium, results in an overproliferation [29]. In
this regard, it has been hypothesized that estrogen is responsible for triggering EMT in
adenomyosis [30]. Transforming growth factor (TGF)-β1 and TGF-β2 are growth and dif-
ferentiation factors involved in EMT induction and regulation [31], which are upregulated
in secretory endometrium from patients with adenomyosis [32–34], suggesting dysfunc-
tionality during the secretory phase. Further, TGF-β/SMAD (SMAD Family Member 3)
signaling is implicated in adenomyosis’ pathology [35]. SMAD2/3 are downstream pro-
teins of TGF-β pathway involved in endometrial function maintenance, including early
glandular formation, appropriate endometrial hormonal response, and tumor suppres-
sion [36]. Specifically, it has been reported that SMAD3 is overexpressed in epithelial cells
from eutopic adenomyosis endometrium in secretory phase [37]. Since SMAD3 is involved
in endometrial receptivity and embryo implantation [38], these findings suggest SMAD3 as
a key protein in adenomyosis-related infertility [37].

SPP1 (Secreted Phosphoprotein 1) is an adhesion protein secreted by ECM (extracellu-
lar matrix) involved in endometrial-embryo signaling and embryo attachment [39], which
is upregulated in the receptive phase human uterus [40]. PAEP (Progestagen Associated
Endometrial Protein), also called Glycodelin-A (GdA), is a marker of morphological dif-
ferentiation and an immunosuppressive molecule [41] secreted from luminal epithelial
cells and localized in endometrial glands during pinopodes formation [42] in the secre-
tory phase [43]. PAEP has been found to be elevated in the decidua throughout early
pregnancy [44], being essential in the first processes of placentation [45]. LIF (Leukemia
Inhibitory Factor) is a glycoprotein cytokine considered as an endometrial receptivity
biomarker [46] that mediates implantation and immune response in several species [47],
being crucial in decidualization regulation. 17βHSD2 (Hydroxysteroid 17-Beta Dehydroge-



J. Pers. Med. 2022, 12, 219 3 of 17

nase) is an enzyme that metabolizes estradiol [48] and is overexpressed in both midgestation
and placenta [49]. Furthermore, its activity is elevated during the secretory phase in dis-
eased endometrium and estrogen metabolism is altered in the endometria of patients with
estrogen-dependent benign diseases [50].

Patients with adenomyosis experience defective decidualization [51], altered uter-
ine peristaltic activity [52] and endometrial receptivity [53], impaired embryo-maternal
communication [54], and delayed pinopode formation, resulting in unsuccessful embryo
implantation [55]. However, molecular mechanisms underlying these embryo implan-
tation and pregnancy defects remain largely unknown, mainly due to the difficulty in
obtaining secretory and gestational endometrium samples and the lack of reliable pre-
clinical study models. Overcoming these challenges is crucial to significantly improve
adenomyosis-related infertility therapies.

Organoids are self-organized in vitro in 3D structures that are genetically stable during
long-term culture and viable after cryopreservation [56–59]. Organoids overcome the dis-
advantages of 2D culture by recapitulating the native microenvironment and reproducing
native tissue characteristics [60]. Endometrial organoids may be differentiated, mimicking
the midsecretory phase, in response to ovarian hormones estradiol (E2), progesterone (P4),
and 8-Bromoadenosine3′,5′-cyclicmonophosphate (cAMP) [61,62] and acquire an early ges-
tation phenotype with pregnancy hormones prolactin (PRL) and human placental lactogen
(hPL) [61]. There are several patient-derived organoid models of endometrial diseases,
such as endometriosis and endometrial cancers [63], which can be cryopreserved and used
for preclinical studies [59].

Human organoids derived from adenomyosis eutopic endometrium and their differ-
entiation to midsecretory and early pregnancy phases represent a powerful platform to
study the dysregulated molecular mechanisms involved in implantation and pregnancy
disorders. Generation of an organoid biobank representing healthy and pathological condi-
tions would provide innovative and powerful preclinical study models for drug screening
and personalized medicine.

2. Materials and Methods
2.1. Patient Samples

Endometrial biopsies were obtained from adenomyosis patients and healthy women
(n = 6/group) at IVI Valencia. The study population underwent pelvic ultrasound exami-
nation as the routine workout in infertile women. All patients, cases, and controls were
carefully scanned by transvaginal ultrasound. A heterogeneous myometrium with blurring
of the endometrial border is the key for diagnosis of adenomyosis. In case of suspected
adenomyosis, MRI (Magnetic Resonance Imaging) or hysteroscopic evaluation of the en-
dometrial cavity was performed. Hysteroscopic findings were superficial openings on the
endometrial cavity, endometrial hypervascularization, and cystic hemorrhagic lesions. Con-
trol group is based on young healthy women included in an egg donation (ED) program
with a standard uterine volume, with no evidence of adenomyotic lesions by ultrasound,
who were free from other gynecologic (endometrial or myometrial or ovarian) pathologies
and without medication during the previous 3 months, as condition to be included in the
ED program. Human tissue use was approved by the Clinical Ethics Committee at Hospital
La Fe (2004-FIVI-039-HF; Valencia, Spain). Informed consent was provided.

2.2. Derivation and Culture of Organoids from Human Endometrial Tissue Samples

Endometrial biopsies from adenomyosis patients (n = 6) and healthy (n = 6) women
were processed to isolate the epithelial glandular fractions [61]. Biopsies were mechanically
and enzymatically digested with 50 U/mL Dispase II (Sigma-Aldrich, St. Louis, MO,
USA, D4693) and 4 mg/mL Collagenase-V (Sigma-Aldrich, St. Louis, MO, USA, C9263).
Supernatant was passed through 100 µm cell sieves (Corning, Tewksbury, MA, USA, 431752)
to retain glandular elements; the pellet was resuspended in 15% DMEM/F12 (Invitrogen,
Invitrogen, Paisley, UK, 12634010) and 85% Matrigel (Corning, Bedford, MA, USA, 354234)
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and 20 µL droplets were seeded. A total 250 µL of organoid Expansion Medium (ExM)
(Table 1) were added and changed every 2 days. Organoid passage was made every
7 days, with pipetting up and down forcefully and centrifuging to disaggregate organoids
and remove Matrigel. Pellets containing organoid fragments were resuspended in 15%
DMEM/F12–85% Matrigel.

Table 1. Expansion medium (ExM) composition.

Product Company Product Number Concentration in ExM

Advance DMEM/F12 Life Technologies 12634010 1X

N2 supplement Life Technologies 17502048 1X

B27 supplement minus vitamin A Life Technologies 12587010 1X

Primocin Invivogen ant-pm-1 100 µg/ml

N-Acetyl-L-cysteine Sigma A9165 1.25 mM

L-glutamine Sigma G7513 2 mM

Recombinant human EGF Peprotech AF-100-15 50 ng/ml

Recombinant human Noggin Peprotech 120-10c 100 ng/ml

Recombinant human Rspondin-1 Peprotech 120-38 500 ng/ml

Recombinant human FGF-10 Peprotech 100-26 100 ng/ml

Recombinant human HGF Peprotech 100-39 50 ng/ml

ALK-4, -5, -7 inhibitor, A83-01 Peprotech 9094360 500 nM

Nicotinamide Sigma N0636 10 nM

Abbreviations: DMEM/F12 (Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12), EGF (Epidermal
Growth Factor), FGF-10 (Fibroblast Growth Factor 10), HGF (Hepatocyte Growth Factor), ALK (Activin
Receptor-like Kinase).

2.3. Differentiation of Endometrial Organoids to Secretory and Gestational Phases

Organoids in passage 3 (p3) were cultured with ExM for 7 days to maintain undifferen-
tiated status (derived-organoids). For differentiation experiments [61], after 4 days in ExM,
culture media was enriched with 10 nM E2 (Sigma-Aldrich, St. Louis, MO, USA, Sigma
E4389) for 48 h; and with 10 nM E2, 1 µM P4 (Sigma-Aldrich, St. Louis, MO, USA, Sigma
P7556), and 1 µM cAMP (Sigma-Aldrich, St. Louis, MO, USA, Sigma B7880) for 4 days to
promote differentiation to the secretory phase (sec-organoids). To induce gestational phase
(gest-organoids) differentiation, 20 ng/mL PRL (Peprotech, Cranbury, NJ, USA, 100-07)
and 20 ng/mL hPL (R&D, Minneapolis, MN, USA, 5757-PL) were added to previously
supplemented ExM for 8 days.

2.4. Immunohistochemical (IHC) and Immunofluorescence (IF) Characterization

To verify that Control- and adenomyosis (Adeno) derived-organoids reproduced
biological and pathological features of the native tissue, organoids were fixed, paraffin
embedded [64], and cut into 4-µm sections. Periodic acid-Schiff (PAS) (glycogen secretion)
(Sigma-Aldrich, St. Louis, MO, USA, 395B) staining was performed according to manu-
facturer’s protocol. For assessment of MUC-1 (mucin-1) (glandular secretion), Ki67 (cell
proliferation), SOX9 (SRY-Box Transcription Factor 9) (progenitor cells markers), TGF-β2,
and SMAD3 (adenomyosis development) protein expression, samples were incubated
with primary antibodies (Table 2) overnight at 4 ◦C. After endogenous peroxidase activ-
ity blockage, slides were incubated with labeled-polymer HRP (horseradish peroxidase),
substrate-chromogen and counterstained with hematoxylin. To evaluate pan-cytokeratin
(epithelial marker), vimentin (stromal component), laminin (basoapical polarity), and
acetylated α-tubulin (cilia presence) expression, samples were incubated with primary anti-
bodies overnight at 4 ◦C and their correspondent secondary antibody 45 min at RT (room
temperature) (Table 2). Samples were visualized using a Nikon Eclipse 80i microscope. To
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measure SOX9, α-tubulin, TGF-β2, and SMAD3 protein expression levels, four images per
sample were quantitatively assessed with Image ProPlus (Media Cybernetics, Rockville,
MD, USA). Quantification was made by calculating the ratio between the area stained by
the signal and the total area of the histological section.

Table 2. Primary and secondary antibodies.

Antibody Company Product Number Concentration

Anti-MUC-1 Abcam ab109185 1:250

Anti-SOX9 Abcam ab185966 1:100

Anti-Ki67 Dako M7240 1:100

Anti-TGF-β2 Abcam ab36495 1:1000

Anti-Smad3 Abcam ab40854 1:500

Anti-PanCK Abcam ab86734 1:100

Anti-Vimentin Abcam ab92547 1:250

Anti-Laminin Abcam ab11575 1:200

Anti-acetylated α-tubulin Santa Cruz Bt 611B1 1:500

AlexaFluor 488 goat antimouse IgG1 Invitrogen A21121 1:500

AlexaFluor 555 goat antirabbit IgG Invitrogen A21429 1:500

AlexaFluor 488 goat antirabbit IgG Invitrogen A11034 1:500

AlexaFluor 488 goat antimouse IgG Invitrogen A11029 1:500

Abbreviations: MUC-1 (mucin-1), SOX9 (SRY-Box Transcription Factor 9), TGF Transforming growth factor),
Smad3 (SMAD Family member 3), PanCK (Pancytokeratin), IgG (Immunoglobulin G).

2.5. Gene Expression Analysis

To confirm organoid differentiation into secretory and gestational phases, gene ex-
pression of implantation and placentation biomarkers SPP1, PAEP, LIF, and 17βHSD2
was evaluated by quantitative real time PCR (qRT-PCR) using a StepOnePlus system (Ap-
plied Biosystems, Waltham, MA, USA, 4376600). To evaluate the possible role of these
biomarkers in implantation and pregnancy in adenomyosis, their expression was assessed
in Control and Adeno differentiated organoids. Total RNA was extracted from organoids
(n = 6/group) using Trizol reagent (Qiagen, Gilde, Germany, 79306). Gene expression
levels were normalized with housekeeping gene GAPDH (Glyceraldehyde-3-Phosphate
Dehydrogenase), quantified by the ∆∆Ct method, and represented as fold-change in each
group. Primers were designed using Primer Quest Tool (DNA Integrated Technologies)
(Table 3).

Table 3. Primers sequences.

GENE Forward Sequence Reverse Sequence

SPP1 CGAGGTGATAGTGTGGTTTATG GTCTGTAGCATCAGGGTACT

PAEP ATGGCGACCAACAACATC CTCTCCAAGGACCTTCTTCT

LIF AACTGGCACAGCTCAATG ATAGCTTGTCCAGGTTGTTG

17HSDß2 TGAATGTCAGCAGCATGG GGAAAGCTCCAGTCTCATAAC

GAPDH AACGTGTCAGTGGTGGACCTGA ACCACCCTGTTGCTGTAGCCAA

Abbreviations: SPP1 (Secreted Phosphoprotein 1), PAEP (Progestagen Associated Endometrial Protein), LIF
(Leukemia Inhibitory Factor), 17HSDβ2 (Hydroxysteroid 17-Beta Dehydrogenase), GAPDH (Glyceraldehyde-3-
Phosphate Dehydrogenase).
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2.6. ELISA

To assess proper sec-organoid differentiation, we evaluated SPP1 protein secretion.
Culture media from Adeno and Control derived- and sec-organoids were collected and
supernatants were concentrated with Vivaspin2-concentrators (Generon, Slough, UK,
VS0291). Osteopontin (SPP1) Human ELISA (Enzyme-Linked ImmunoSorbent Assay)
(Invitrogen, Eugene, OR, USA, BMS2066) was performed in duplicate according to the
manufacturer’s instructions.

2.7. Chromosomal Stability

Chromosomal stability of Control and Adeno derived-, sec-, and gest-organoids
(n = 3/group) was evaluated using a Genome-Wide high-resolution Affymetrix-Cytoscan
750K-array (Affymetrix Inc, Santa Clara, CA, USA). DNA was extracted using the Cells
and Tissue DNA-Isolation Micro-Kit (Norgen, Thorold, ON, Canada, 57300). Data were
analyzed using Affymetrix Chromosome-Analysis Suite (ChAS4.2).

2.8. Statistical Analysis

Graphpad Prism 6.0 was used for statistical analyses. Two-tailed Student’s t-test and
one-way ANOVA were used for comparisons between two and three groups, and p < 0.05
was considered statistically significant.

3. Results
3.1. Human Endometrial Organoids Can Be Derived from Adenomyosis Patients and Recapitulate
Endometrial Gland Biology In Vivo

To evaluate if Adeno derived-organoids recapitulate the biological characteristics of
the native endometrium, we determined their glandular epithelial origin, organoid struc-
ture, secretions, proliferation capacity, and apicobasal polarity maintenance (Figure 1A).
Endometrial organoids were derived from healthy women for the control group. PAS
staining confirmed organoid production of epithelial glycogen, a main component of en-
dometrial glandular secretions [61]. MUC-1 was secreted by organoids into the luminal
compartment, as observed in human endometrial gland lumen. Ki67 expression in the
organoids demonstrated maintenance of proliferative capacity. Laminin presence along the
basolateral membrane confirmed that organoid epithelial cells maintain apicobasal polarity.
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Figure 1. Characterization of glandular origin, proliferation, and epithelial polarity in human
endometrial-derived organoids. Representative images of (A) PAS staining as well as MUC-1, Ki67,
and laminin expression by IHC; (B) pan-cytokeratin and vimentin staining by IF; and chromoso-
mal stability in Control (C) and Adeno (D) derived-organoids. Scale bars are 100 µm. Kidney,
endometrium, and breast cancer samples were used as positive controls.
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Pan-cytokeratin (glands) and vimentin (stroma) expression confirmed correct isola-
tion of the epithelial glands (Figure 1B). Pan-cytokeratin was expressed in organoid cell
cytoplasmic compartment while vimentin was not expressed, corroborating the epithelial
origin of the organoids.

3.2. Differentiation to Secretory and Gestational Phases of Human Adenomyosis-Derived
Organoids in Response to Hormonal Treatments

To reproduce secretory (sec) and gestational (gest) in vivo conditions, human-derived
organoids were exposed to E2, P4, and cAMP to promote transition to receptive state, and to
PRL and hPL to mimic the early gestational phase. We confirmed that glandular epithelial
origin was preserved after differentiation in Control and Adeno sec- and gest-organoids
(Supplementary Figure S1A,B).

SOX9 and α-tubulin expression was evaluated by IHC and IF to confirm differentiation
of Control (Figure 2A) and Adeno (Figure 2B) sec- and gest-organoids. SOX9, a progenitor
cell marker, was increased in derived organoids and, after differentiation, its expression
was significantly reduced in Control (p = 0.0012 and 0.0025) and Adeno (p < 0.0001 for
both) sec- and gest-organoids (Figure 2C), as occurs in decidual glands in vivo. Secretory-
and gestational-phase hormonal treatment significantly promoted formation of ciliated
cells, indicated by expression of acetylated α-tubulin, in Control (p = 0.0031 and 0.0048)
and Adeno (p = 0.0146 and 0.0056) sec- and gest-organoids (Figure 2D), as occurs in vivo.
Differentiation was evaluated at the protein level by ELISA of implantation marker SPP1
secretion into the culture media (Figure 2E). Secreted SPP1 levels were higher in Control
and Adeno sec-organoids compared with derived organoids, confirming differentiation.

Higher expression of the secretory and gestational markers SPP1, PAEP, LIF, and
17βHSD2 in sec- and gest-organoids compared with derived-organoids from Control and
Adeno corroborated the differentiation to secretory and gestational phase in both con-
ditions (Figure 2F–I). Hormonal treatment to induce secretory and gestational phases
in Control organoids increased expression of SPP1 (Fold Change (FC) = 2.215 ± 2.577;
FC = 1.330 ± 1.102), PAEP (FC = 3.926± 3.535; FC = 4.331± 5.599), LIF (FC = 2.031 ± 1.116;
FC = 0.9502± 1.161), and 17βHSD2 (FC = 4.520± 3.080; FC = 8.641± 7.006, p = 0.0168) com-
pared with Control untreated, derived organoids. In sec- and gest-phase Adeno organoids,
expression of SPP1 (FC = 2.172 ± 2.853; FC = 2.137 ± 2.195), PAEP (FC = 1.948 ± 1.0.72;
FC = 8.330 ± 6.775, p = 0.0145), LIF (FC = 1.234± 0.8801; FC = 2.187± 1.218), and 17βHSD2
(FC = 1.760 ± 1.021; FC = 1.163 ± 0.9616) were also increased compared with Adeno
untreated, derived organoids.

3.3. Human Adenomyosis-Derived Organoids Maintain Chromosomal Stability
after Differentiation

Chromosomal stability of Control (n = 3) and Adeno (n = 3) derived-organoids
(Figure 1C–D), sec-organoids, and gest-organoids (Supplementary Figure S1C–D) were
assessed using a cytogenetics microarray and compared against a reference genome. No
DNA copy number alterations were observed after derived-organoids culture and passage
until p3. Exposure to secretory and gestational phase hormonal treatment had no effect on
chromosomal stability. All established organoid lines from women with adenomyosis and
controls showed a normal 46, XX karyotype.
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Figure 2. Characterization of sec-organoids and gest-organoids. Representative images of SOX9
and α-tubulin expression in sec-organoids and gest-organoids derived from (A) Control and
(B) Adenomyosis patient samples by IHC and IF. Quantification of (C) SOX9 and (D) α-tubulin
protein expression in derived, secretory, and gestational Control and Adeno organoids. (E) SPP1
protein secretion levels in derived, secretory, and gestational Control and Adeno organoids by ELISA.
(F) SPP1, (G) PAEP, (H) LIF, and (I) 17βHSD2 gene expression in derived, secretory, and gestational
Control and Adeno organoids by qRT-PCR. Scale bars are 100 µm. Endometrium was used as a
positive control. * p < 0.05, ** p < 0.01, **** p < 0.0001.

3.4. Human Adenomyosis Secretory and Gestational Organoids Recapitulate Disease-Specific Traits
To determine whether organoids are a suitable in vitro model of the in vivo pathologi-

cal features of adenomyosis, TGF-β2 and SMAD3 expression were evaluated by IHC in Con-
trol and Adeno (n = 6/group) sec- and gest-organoids. TGF-β2 and SMAD3 (Figure 3A,B)
expression were upregulated in Adeno compared with Control sec-organoids (TGF-β2:
55.78 ± 20.26% vs. 14.45 ± 7.51%, p < 0.0001 and SMAD3: 33.95 ± 9.88% vs. 11.22 ± 7.51%,
p < 0.0001), and gest-organoids (TGF-β2: 43.81 ± 12.22% vs. 1.41 ± 2.00%, p = 0.0003
and SMAD3: 28.81 ± 87.69% vs. 21.16 ± 11.44%, p = 0.3282) (Figure 3C,D), as observed
in adenomyosis [32,37].
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Figure 3. Pathological characterization of adenomyosis secretory and gestational organoids. Represen-
tative images of (A) TGF-β2 and (B) SMAD3 in Adeno and Control sec-organoids and gest-organoids
by IHC. Quantification of (C) TGF-β2 and (D) SMAD3 protein expression in Adeno and Control
sec-organoids and gest-organoids. *** p < 0.001, **** p < 0.0001.

3.5. Dysregulation of Secretory and Gestational Biomarkers in Human Adenomyosis Organoids

As a first approach in understanding impaired implantation and pregnancy dis-
orders characteristic of women with adenomyosis, expressions of secretory and gesta-
tional endometrial biomarkers SPP1, PAEP, LIF, and 17βHSD2 were evaluated in adeno-
myosis sec- and gest-organoids by qRT-PCR and compared with Control sec- and gest-
organoids (Figure 4A–D). These biomarkers are involved in regulation of implantation
(midsecretory phase) and placentation (early pregnancy); their expression was increased
in Adeno sec- and gest-organoids compared with Control organoids in the same phases
((SPP1 FC = 3.603 ± 4.733, p = 0.3636; FC = 4.850± 4.983, p = 0.0879), (PAEP FC = 9.610 ± 5.292,
p = 0.0030; FC = 68.70± 55.88, p = 0.0141); (LIF FC = 3.054± 2.179, p = 0.0436; FC = 16.85 ± 9.388,
p = 0.0020); 17βHSD2 FC = 4.984 ± 2.892, p = 0.0071; FC = 2.345 ± 1.939, p = 0.1201)).
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Figure 4. Gene expression of secretory and gestational endometrial biomarkers involved in regulation
of implantation and placentation. (A) SPP1, (B) PAEP, (C) LIF, and (D) 17βHSD2 gene expression
in Adeno and Control secretory and gestational organoids by qRT-PCR. Scale bars are 100 µm.
Endometrium was used as a positive control. * p < 0.05, ** p < 0.01.

4. Discussion

Adenomyosis is one of the most widespread uterine conditions among women of
reproductive age, but so far, there have been no robust in vitro models that reproduce
its pathological features to study the molecular mechanisms involved in its pathogenesis
and infertility disorders. We have been able to develop a human organoid model of the
adenomyosis secretory and gestational endometrium, recapitulating specific native tissue
features and disease traits. These organoids will provide powerful preclinical research
models to study adenomyosis-impaired implantation and increased miscarriages as well as
to enable personalized medicine.

Previous studies in the field of reproductive medicine have relied on organoids such
as 3D in vitro models to study endometrial physiology and disease [60,63,65–67]. In this
regard, organoids have been exploited in the study of defective endometrial proliferation,
such as endometriosis or endometrial cancer [63,68], disorders affecting decidualization [67],
endocrine disruptors [67], or gynecological infections [69,70]. In addition, its potential
in personalized medicine or as a source of biological material in regenerative therapy is
becoming increasingly evident [71–73].

We derived endometrial organoids from healthy women, as previously described [61,64],
and for the first time, have reproducibly established organoids from endometria of adeno-
myosis patients. Organoids recapitulated the molecular signatures of in vivo endometrial
glands. Histology confirmed expression of several cytokeratins in Control and Adeno
organoids, which exert structural function in epithelial cells and have an important role
in differentiation and tissue function [74]. Likewise, glycogen (glandular secretions) and
MUC-1 (mucus release) presence in the luminal compartments of Adeno organoids sug-
gests that they mimic glandular tissue functioning in the same way as Control organoids.
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Lastly, both Control and Adeno organoids maintained proliferative capacity (Ki67), cell
apicobasal polarity (laminin), and chromosomal stability after successive passages.

Hormone responsiveness of healthy endometrial organoids has been reported [75–77];
so, we wanted to evaluate this response ability in Adeno organoids towards the differ-
entiation into secretory and gestational endometrium. Similar to our Control organoids,
Adeno organoids showed E2 and P4 treatment sensitivity, acquiring a secretory phenotype,
and when further stimulated with pregnancy (hPL) and stroma (PRL) signals, adopted
gestational endometrium characteristics. This was substantiated by decreased expression
of progenitor cell marker SOX9, indicating differentiation processes, appearance of ciliated
cells (α-tubulin), and increased synthesis of SPP1. Acquisition of differentiated pheno-
types was further verified by upregulation of SPP1, PAEP, LIF, and 17βHSD2, which are
expressed by secretory endometrium and decidua. SPP1 levels are high in the human
uterus in the receptive phase [40] and luminal epithelium in early pregnancy in pigs [75],
suggesting that SPP1 is essential for endometrial receptivity and implantation [78]. PAEP
secretion is increased by P4 midpregnancy [79,80], relating it to endometrial receptivity
and early pregnancy. Reported increased LIF expression in mouse endometrium during
late diestrus phase, and in the human endometrium during the secretory phase and mid-
to late-pregnancy [47,81,82], suggest that LIF is an endometrial receptivity biomarker. High
17βHSD2 expression and activity is found in secretory phase, midgestation, and term
human placentas [49].

Adenomyosis is thought to be promoted by EMT, which is induced and regulated
by factors including TGF-β1 and TGF-β2 [31,34]. The TGF-β/SMAD3 pathway par-
ticipates in embryo implantation, as TGF-βs and SMADs largely expressed in human
endometrium during implantation window [38]. TGF-β/SMAD3 signaling is a major
mechanism involved in endometrial fibrosis [37] and plays a key role in adenomyosis
development [35]. Further, patients with adenomyosis present increased TGF-β2 and
SMAD3 levels in their eutopic endometrium during the secretory phase compared with
disease-free women [32,33,37]] SMAD3. Remarkably, our secretory adenomyosis organoids
showed significant TGF-β2 and SMAD3 upregulation compared with controls, confirming
successful secretory-phase differentiation and accurate reproduction of specific disease
traits. Thus, this adenomyosis in vitro model appears suitable for studying patients with
impaired implantation.

Adenomyosis causes defective placentation [83], which is significantly associated
with increased risk of preeclampsia [84,85]. TGF-βs—through activation of downstream
signaling mediators—and SMAD2/3 are triggering factors for preeclampsia, resulting in
abnormal placental development [86,87]. SMAD3 is further involved in key gestational
processes, immune regulation, and inflammation and its altered expression may be associ-
ated with recurrent pregnancy loss [88] and preterm birth [89]. Accordingly, our gestational
adenomyosis organoids (imitating early pregnancy) showed increased levels of TGF-β2 and
SMAD3, recapitulating adenomyosis tissue characteristics. This implies that gestational
differentiated organoids represent a potent preclinical platform and research approach for
studying placentation and early-pregnancy disorders in women with adenomyosis.

SPP1, PAEP, LIF, and 17βHSD2 expression were upregulated in adenomyosis sec- and
gest-organoids compared with control organoids, indicating possible molecular mecha-
nisms involved in adenomyosis-impaired implantation and pregnancy disorders. SPP1,
which is involved in endometrial-embryo signaling and embryo attachment [39], was
upregulated in adenomyosis secretory organoids compared with healthy organoids, as
it was described in adenomyosis women ectopic endometrium [90]. Increased SPP1 in
our gestational adenomyosis organoids compared with control suggests abnormal en-
dometrial SPP1 expression during implantation window [90] and placentation [91] and
could contribute to adenomyosis-related infertility. PAEP, a morphological differentia-
tion marker and immunosuppressive molecule [41] secreted from luminal epithelial cells
and localized in endometrial glands during pinopode formation [42], was significantly
upregulated in our Adeno secretory organoids. Abnormal PAEP expression during the
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secretory phase in endometriosis eutopic endometrium [43] suggests that dysregulated
PAEP expression could be related to impaired endometrial receptivity. PAEP was also
increased in Adeno gestational organoids compared with healthy organoids. This marker
is abundant in the decidua during early pregnancy and is crucial in placentation events and
fetomaternal defense, regulating trophoblast and immune cell functions during early preg-
nancy [45]. Thus, its upregulation in adenomyosis sec- and gest-organoids suggests that
abnormal endometrial PAEP levels could be involved in early pregnancy loss, preeclamp-
sia, and recurrent miscarriage in women with adenomyosis, as previously suggested for
endometriosis disease [43].

Our data showed significant upregulation of LIF—a glycoprotein cytokine involved
in decidualization and immune response [47]—in secretory and gestational adenomyosis
organoids compared with control. These results are not in line with previous works report-
ing lower LIF levels in adenomyosis patients’ endometrium, but the critical point is that the
control group in these studies included women with other gynecological disorders [92,93].
As LIF regulates the Wnt/β-catenin pathway, which is involved in uterine preparation for
implantation and EMT regulation [94], altered expression of this marker may be related to
impaired implantation and altered EMT, possibly driving endometrial gland and stroma
invagination into the myometrium, characteristic of adenomyosis [28].

Finally, 17βHSD2 is altered in the eutopic endometrium of adenomyosis, endometrio-
sis, and leiomyoma patients [95,96], leading to estrogen metabolism alteration in estrogen-
dependent benign disease patient endometria [50]. The observed 17βHSD2 upregulation in
secretory adenomyosis organoids aligns with previous studies demonstrating that 17βHSD2
activity is increased in the endometrial secretory phase in diseased but not in disease-free
endometrium [50]. In mice, 17βHSD2 disruption results in placentation defects and embry-
onic lethality [97]. Thus, the observed increase in 17βHSD2 expression in Adeno gestational
organoids in the present study suggests a relationship between 17βHSD2 dysregulation in
the endometrial gestational phase and associated early-pregnancy alterations in women
with adenomyosis. However, further studies are needed in order to determine more accu-
rately the involvement of these genes, as well as to describe other potential genes implicated
in implantation and early pregnancy disorders in patients with adenomyosis.

The endometrial organoid model does not include stromal cells, which are involved
in decidualization and other important processes, implying a lack of epithelial–stromal
paracrine and autocrine crosstalk [67,98]. Regarding microenvironment communication,
Matrigel does not allow us to reliably simulate tissue-specific cell–ECM interactions, with
its replacement by decellularized endometrial hydrogels being a potential alternative [99].
In addition, adenomyosis organoid model only reproduces the endometrial component,
leaving unstudied all the mechanisms involved in the damage that occurs in the JZ and
myometrium [6]. However, in recent years, these limitations are being addressed; for
example, organoid implantation models have been implemented in such a way that would
allow accessibility to the luminal compartment [98,100]. Beyond that, our adenomyosis
organoid model opens insights to the development of microfluidic devices and sensor
systems that would help to optimize and standardize organoid cultures [101], solving then
some of the mentioned limitations and improving the study of this condition.

Many authors have discussed the possibility that adenomyosis and endometriosis have
a common origin and are therefore different manifestations of the same disease [102–104].
Since endometriosis organoids models have been already established [63] but to date
there is, to our knowledge, no model of adenomyosis disease, this study could provide a
new insight into the possible common mechanisms involved in the development of both
diseases, as well as the associated infertility.

In conclusion, our adenomyosis organoid model maintains biological and patholog-
ical characteristics observed in secretory and gestational adenomyosis patients’ eutopic
endometria. This model provides new knowledge about the possible role of implanta-
tion and early gestational biomarkers in adenomyosis-related infertility, opening avenues
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for further studies of these biomarkers and for development of therapeutic options for
personalized treatments.

5. Conclusions

Here, we have successfully derived organoids from adenomyosis patients for the
first time. Patient-derived adenomyosis organoids can be established and cryopreserved,
allowing generation of a patient-specific biobank that would permit their use as a preclin-
ical model for drug screening and promoting development of personalized medicine to
improve implantation and avoid pregnancy disorders in adenomyosis patients. This is
the first model demonstrating recapitulation of adenomyosis tissue origin characteristics
at molecular and histological levels, which entails a step forward in generation of robust
preclinical models that faithfully mimic this human endometrial pathology.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jpm12020219/s1, Figure S1: Characterization of glandular origin, prolif-
eration, and epithelial polarity in human secretory and gestational organoids; Table S1: Expansion
medium (ExM) composition; Table S2: Primary and secondary antibodies; Table S3: Primers sequences.
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