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Abstract: Using hybrid multi-particle collision dynamics (MPCD) and a molecular dynamics (MD)
method, we investigate the effect of arms and shear flow on dynamical and structural properties of the
comb long-chain branched (LCB) polymer with dense arms. Firstly, we analyze dynamical properties
of the LCB polymer by tracking the temporal changes on the end-to-end distance of both backbones
and arms as well as the orientations of the backbone in the flow-gradient plane. Simultaneously,
the rotation and tumbling behaviors with stable frequencies are observed. In other words, the LCB
polymer undergoes a process of periodic stretched–folded–stretched state transition and rotation,
whose period is obtained by fitting temporal changes on the orientation to a periodic function. In
addition, the impact induced by random and fast motions of arms and the backbone will descend
as the shear rate increases. By analyzing the period of rotation behavior of LCB polymers, we find
that arms have a function in keeping the LCB polymer’s motion stable. Meanwhile, we find that the
rotation period of the LCB polymer is mainly determined by the conformational distribution and
the non-shrinkable state of the structure along the velocity-gradient direction. Secondly, structural
properties are numerically characterized by the average gyration tensor of the LCB polymer. The
changes in gyration are in accordance with the LCB polymer rolling when varying the shear rate. By
analyzing the alignment of the LCB polymer and comparing with its linear and star counterparts,
we find that the LCB polymer with very long arms, like the corresponding linear chain, has a high
speed to reach its configuration expansion limit in the flow direction. However, the comb polymer
with shorter arms has stronger resistance on configuration expansion against the imposed flow
field. Moreover, with increasing arm length, the comb polymer in shear flow follows change from
linear-polymer-like to capsule-like behavior.

Keywords: multi-particle collision dynamics; dynamical properties; long-chain branched polymer;
shear flow

1. Introduction

Dynamical behaviors, such as tank treading, tumbling and cyclic motions, have been
found by many studies for deformable soft polymers under shear flow [1–8]. Such complex
motions strongly perturb the flow field through hydrodynamic interactions (HIs) [9,10]. The
mixture of both rotational and extensional components [11] in shear flow can cause large
conformational changes, in particular for a free polymer [4,5,12–16] and, hence, HIs between
the polymer and shear flow fluctuate significantly. Moreover, hydrodynamic simulations
have shown that a highly stretched tethered polymer in shear flow reduces the local shear
rate remarkably by sticking the surrounding solvent [17,18]. In addition, hydrodynamic
simulations have also revealed a non-monotonic stretching response caused by HIs at large
shear rates [19–22]. On the contrary, a study showed that structural and dynamical properties
of the semiflexible polymer in shear flow have no dependence on HIs [16]. Theoretical
calculations generally neglect such hydrodynamic fluctuations [16,23,24]. To gain more
insights into the HIs between polymers and shear flow, there must be more investigations on
properties and motions of structural-complex polymers, especially branched polymers.
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The properties of the branched polymer in equilibrium and nonequilibrium conditions
have been investigated by theoretical analysis [25–29], experiments [24,26,27,30–33] and
simulations [9,34–39]. The influence of long-chain branching on the rheological properties
of conventional polyolefins, such as polyethylene (PE) [40–44] and polypropylene (PP),
has been investigated [45–47]. Studies reveal that long-chain branches have a significant
impact on the processing properties [48] and have a strong effect on the viscosity as well as
the elasticity under small-amplitude oscillatory shear flow [49]. The fundamental charac-
teristics of dynamics of entangled LCB polymers have been explained by the mean-field
tube theory, which assumes that the chain is strictly restricted to such a one-dimensional
curvilinear tube region, leading to a snake-like repetitive motion [50]. Similar motion that
each dangling arm of the LCB polymer performs a repetitive retractive motion starting
from its free end all the way down to the junction point on the backbone has also been
found [28,29,33]. Nevertheless, the complexity of the structure of LCB polymers (e.g.,
star, pom-pom, H-shaped, Y-shaped and comb structure, et al.) and interactions among
arms leaves the understanding of dynamical behaviors and rheological properties of LCB
polymers as still inadequate. Recently, coarse-grained nonequilibrium molecular dynamics
(NEMD) studies have shown that a short-chain branched (SCB) linear polymer generally
exhibits a more compact and less deformable chain structure. It has reduced shear-thinning
and smaller elastic stress behaviors, which are quite distinct from that of the corresponding
linear polymer [36,38]. The very short arm of the SCB polymer has a small contact area
with shear flow, leading to a high proportion of intrinsic random motions rather than the
motions induced by flow in weak-to-intermediate shear flow regime. However, a long arm
may experience more regular motions, which are caused by the large contact area in shear
flow. Such behaviors of the arm may lead to more rich dynamical behaviors and properties
in the LCB polymer. Hence, to explore and understand the influence of branches imposed
on the motion and structural fluctuations of the LCB polymer, the study on properties of a
comb polymer at a wide range of arm lengths and shear rates is needed.

In this paper, we employ the HOOM-blue molecular dynamics packages to perform
the hybrid MPCD and MD simulations [51,52]. The pure Python interface of HOOMD-
blue makes the simulation much more adjustable than other traditional simulation soft-
ware. Therefore, we recommend it and the link of this open-source software is: https:
//hoomd-blue.readthedocs.io/en/v3.5.0/index.html (accessed on 24 September 2022). We
mimic the system by placing a comb LCB polymer in shear flow, which is confined in two
parallel planes. During simulation and analyzing processes, we focus on the dynamical
and structural properties of LCB comb polymers in shear flow. This work is helpful to
understand the transport mechanism of LCB polymers in shear flow and may provide the
theoretical guidance for future application in polymer physics and biophysics.

2. Results and Discussion

In shear flow, the tumbling behaviors are observed for LCB polymers, similar behaviors
of linear chains [36], ring polymers [3], short-chain branched (SCB) polymers [36] and star
polymers [5] have also been observed. It is shown in Figure 1a,b that a stretched–folded–
stretched conformational transition for an LCB polymer under shear flow with Wi = 27.7 at
xoy and xoz views, respectively. In addition, the change in arms’ color means that the
rotation of LCB polymer contains not only a stretched–folded–stretched conformational
transition but also the tumbling behavior of the backbone. The strong stretched state of
LCB polymer is maintained; even when the polymer’s backbone at the folded state in the
flow-gradient plane (see Figure 1b), such a behavior is the tank-treading motion, which
has been observed for the star polymer in shear flow [5]. The xoy view of the snapshot
(Figure 1a) shows that the LCB polymer’s configuration expands along the flow direction
and arms tend to place along the flow direction because the velocity gradient is only present
in xoz plane. The tumbling behaviors for the backbone are presented in Figure 1c.

https://hoomd-blue.readthedocs.io/en/v3.5.0/index.html
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rience more complex motions because of the effects of entanglement and random mo-
tions. However, even under the influence of arms’ disordered motions, the backbone 
displays periodic stretched–folded–stretched transitions and rotation behaviors.  

Figure 1. (a) xoy view and (b) xoz view of conformations of the LCB polymer with Lb = 20, La = 20 in
shear flow of Wi = 27.7 at various time steps. (c) The xoz view of the backbone of the above polymer.

To gain more insights into the tumbling and rotation behaviors, we perform a statistic
on structural properties of the LCB polymer in shear flow with Weissenberg number
Wi = 27.7 for time steps. The end-to-end distance of the backbone, the angle that the
backbone’s end-to-end vector makes with respect to the flow direction in the flow-gradient
plane (xoz plane) and the mean end-to-end distance of arms are shown in Figure 2a, b and c,
respectively. Figure 2a shows a periodic curve for the end-to-end distance of the backbone;
that is, the

∣∣Rete,back
∣∣ of the polymer increases to a value larger than its contour length

Lb = 20 and then gradually decreases to a value smaller than one half of its contour length.
The LCB polymer will fold as

∣∣Rete,back
∣∣ descends and stretch as

∣∣Rete,back
∣∣ ascends. The

low density of points on the ascending line and high density of points on the descending
line mean that the folding process is faster than the stretching process in strong shear
flow regime. Figure 2a shows the details of stretched–folded–stretched conformational
transitions of the polymer. The rotation motion of the polymer and more information
of states between two transitions are shown in Figure 2b. In Figure 2b, the angle θback
periodically changes as simulation time goes on. However, the value is aggregate to 0
or π and then a periodical change occurs between 0 and π at high Weissenberg number
Wi. Such a result means that the backbone stays at a strong stretched state and is more
likely to remain parallel to the flow direction in strong shear flow regime. The minimum
values of

∣∣Rete,back
∣∣ in Figure 2a correspond to the value of θback very close to π/2 in

Figure 2b and the stretched–folded–stretched transition corresponds to 0 ∼ π transition of
θback. The average end-to-end distance of the polymer’s arm |Rete,arm| is very small in the
fully relaxed state and increases instantly to a value near 15δ after the shear applies on it
(Figure 2c). Non-period fluctuations in |Rete,arm| displayed in Figure 2c at a long period of
time mean that arms of the LCB polymer experience more complex motions because of the
effects of entanglement and random motions. However, even under the influence of arms’
disordered motions, the backbone displays periodic stretched–folded–stretched transitions
and rotation behaviors.
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for various LCB polymers are shown in Figure 3b,d; here, the colors of lines correspond 
to PDFs of backbone in Figure 3a,c, respectively. For the backbone, as shown in Figure 
3a,c, the PDFs of the end-to-end distance of the backbone extend and the peak shifts for 
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linear counterparts of LCB polymers have strong resistance on confined motions against 
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but far from PDF of bare backbone at both small and large shear rate. Meanwhile, in 
Figure 3c, the peaks increase as the arm length increases. Such results show that, for the 

Figure 2. (a) The end-to-end distance of the backbone, (b) the angle that the backbone’s end-to-
end vector makes with respect to the flow direction in xoz plane, here the unit of angle is radian.
(c) The mean end-to-end distances of arms of the LCB polymer are plotted as a function of time. Here
Lb = 20, La = 20 and Wi = 27.7.

The probability distribution functions (PDFs) of the end-to-end distance of the back-
bone under weak (

.
γ = 0.001) and strong (

.
γ = 0.3) shear flows are shown in Figure 3a,c;

here, the LCB polymers with arm lengths La = 10, 20, 30, 40 and a bare backbone (La = 0)
are taken into account. The PDFs of the average end-to-end distance of the arm for various
LCB polymers are shown in Figure 3b,d; here, the colors of lines correspond to PDFs of
backbone in Figure 3a,c, respectively. For the backbone, as shown in Figure 3a,c, the PDFs
of the end-to-end distance of the backbone extend and the peak shifts for each LCB poly-
mer and vanishes for the bare backbone as the shear rate increases quickly. In the strong
shear flow regime, the peaks of PDFs of the backbone shift toward

∣∣Rete,back
∣∣ = 30, which

is much longer than its contour length 20, but the extending range of PDF for the bare
backbone only reaches backbone’s contour length 20. This is because the strong shear flow
decreases the period of stretched–folded–stretched configuration transition and increases
the duration of highly stretched states of the backbone. Specifically, the PDF of the bare
backbone has an obvious peak in very wake shear flow but the peak range expands and
even nearly disappears in strong shear flow regime, indicating linear counterparts of LCB
polymers have strong resistance on confined motions against the imposed field. The PDFs
of backbones of LCB polymers are adjacent to each other but far from PDF of bare backbone
at both small and large shear rate. Meanwhile, in Figure 3c, the peaks increase as the arm
length increases. Such results show that, for the LCB polymer, the backbone experiences
very strong disturbances imposed by random and flow-induced motions of arms. As the
shear strength increases dramatically, the peak positions of these four PDFs are close to
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its corresponding contour length, implying that most of the LCB polymer’s arms tend to
stretch along flow direction at strong shear flow regime and the random motion of the arm
has been compressed. For the arm of the LCB polymer, as shown in Figure 3b,d, unlike
the position changes on peaks of PDFs of the backbone, which shift to the positions much
larger than the contour length of backbone, the positions of peaks for end-to-end distance
of arms |Rete,arm|move toward corresponding contour lengths when shear rate increases
from 0.001 to 0.3. It is because arms near the center of the backbone are folded and arms
near the ends of the backbone only experience one-side shear. Meanwhile, each arm has
one free end and such structure leaves the arm more likely to perform random motions and
cannot gain more energy from shear flow field to keep stretching. To gain more insights
into the LCB polymer’s response to shear flow, we plot the PDFs of backbone and arms
for comb polymers with shorter arms in Figure 4. As shown in Figure 4a,c, the PDFs at
high shear rate are closer to each other than that at low shear rate, indicating the random
motions of arms play a critical role in weak shear flow regime but the response against
applied shear flow becomes critical in strong shear flow regime. As shown in Figure 5b,d,
unlike the results for comb polymers with longer arms, the PDFs of polymers with shorter
arms shift and extend slightly as shear rate increases, indicating the shear flow is not able
to obviously disturb the fast and random motions of shorter arms.
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Figure 3. Probability distribution function (PDF) of the end-to-end distance of (a,c) the backbone and
(b,d) arms of the LCB polymer in shear flow at shear rate

.
γ = 0.001 (a,b) and 0.3 (b,d). In (a) and (c),

the bare backbone (purple) and comb polymers with arm length La = 10 (red), 20 (blue), 30 (green)
and 40 (black) are considered. The orange vertical lines in (a,c) are used to mark the backbone’s
contour length Lb = 20. The vertical lines in (d) are used to mark the arm’s contour length La = 10
(red), 20 (blue), 30 (green) and 40 (black), respectively.
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Figure 4. Probability distribution function (PDF) of the end-to-end distance of (a,c) the backbone and
(b,d) arms of the LCB polymer in shear flow at shear rate

.
γ = 0.001 (a,b) and 0.3 (b,d). In (a) and (c),

the bare backbone (purple) and comb polymers with arm length La = 2 (red), 4 (blue), 6 (green) and
8 (black) are considered. The orange vertical lines in (a,c) are used to mark the backbone’s contour
length Lb = 20. The vertical lines in (d) are used to mark the arm’s contour length La = 2 (red),
4 (blue), 6 (green) and 8 (black), respectively.
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Figure 5. Probability distribution functions (PDFs) of the end-to-end distance of (a,c) the backbone
and (b,d) arms of the LCB polymer with Lb = 20 and (a,b) La = 10 and (c,d) La = 40 in shear flow
with various Weissenberg numbers. The orange vertical lines are used to mark (a,c) backbone’s and
(b,d) arm’s contour length.

In order to explore the influence of shear flow strength on the LCB polymer’s struc-
ture, we depict the probability distribution functions (PDFs) of the backbone length (see
Figure 5a,c) and the arm length (see Figure 5b,d) for various Wi. In Figure 5a,c, as Wi
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increases, the peak of PDF for La= 10 decreases and then keeps at a low value near 0.1;
however, the peak of PDF for La= 40 decreases and then increases. The very different
changes mean that the comb polymer with longer arms is more likely to be reshaped by
shear flow because the larger configuration span means the comb polymer has more chance
to reach the high-velocity flow region. In addition, the strong shear flow makes the polymer
shrink to a more compact structure, which means the backbone length has more chance to
reach a relatively small value at its folded state, during the stretched–folded–stretched state
transition process. Moreover, in Figure 5a,c, the distribution of PDF expands a little when
Wi increases from a relatively high value. It is because the impacts imposed by shear nearly
reach their limit when Wi increases to a very high value. In Figure 5b,d, similar to PDFs of
the backbone length, the peak position of PDF for each arm length shifts to a large value
and the distribution broadens as the Wi increases because the large shear rate prolongs
the duration of the stretched state and also decreases the duration of structural transition
process. However, the ranges of PDFs of arms are not broad like those of backbones because
arms have one free end and the arm connecting to the position near two ends of backbone
only experience one-side shear. The arm with one free end cannot gain enough energy from
the shear flow field to overcome the bond extension energy and keeps its length growing
along shear flow direction at intermediate-to-high shear rate. Moreover, the decreasing
trend for peaks in Figure 5d means that the long contour length of the arm leaves them far
from the center of flow, where the velocities of fluid particles are close to 0 and reach the
high shear velocity region. As the arm length increases, the heights of peaks in Figure 5d
are much lower than those in Figure 5b, indicating the dynamical behaviors of arms are
mainly determined by their contour length.

To explore the mechanism of LCB polymer’s tumbling as the shear flow strength
increases, we analyze the end-to-end distance of the backbone

∣∣Rete,back
∣∣ by varying shear

rate and arm length. The end-to-end distances of fully stretched backbones for comb
polymers as a function of

.
γ are shown in Figure 6a, where Lb = 20 and La = 0 (bare

backbone), 5, 10, 20, 30, 40, respectively. At a wide range of shear rates, due to the random
motions and self-entanglement behaviors of long arms

∣∣Rete,back
∣∣, increases quickly as the

arm length increases. It is because the longer arms make the comb polymer more sensitive
to strong shear flow and make the backbone’s end-to-end distance reach its upper limit
fast as

.
γ increases. However, the length of the bare backbone at the fully stretched state

increases as fast as La = 40 but reaches another steady value, which is close to its contour
length. This phenomenon indicates that the energy the backbone gains for overcoming
elastic force of bonds and stretching longer than its contour length is mainly transferred
from arms and determined by the shear flow strength and the arm length. To show the
characteristics for the fully stretched state of the comb polymer under shear flow field, we
calculate the angle that the end-to-end vector Rete,back of the fully stretched backbone makes
with respect to the flow direction and plot it as a function of

.
γ in Figure 6b. Obviously, the

angle θback decreases as the
.
γ increases. It is because LCB polymers tend to stretch strongly

along the flow direction and shrink at the velocity-gradient direction in strong shear flow
regimes. Specially, in Figure 6b, the value of θback for bare backbone is irregular at low shear
rate regime but close to the value for LCB polymers at high shear rate regime, indicating
that the smaller the configuration span a polymer has, the stronger resistance on structural
change against the imposed field the structure has.
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Figure 6. (a) The end-to-end distances of the fully stretched backbone for the bare backbone and the
LCB polymer as a function of Weissenberg number Wi. (b) The angles that the backbone’s end-to-end
vectors make with respect to flow direction at flow gradient plane (i.e., xoz plane) as a function of
Weissenberg number Wi; here the unit of angle is radian.

As the stable tumbling and rotation behavior of the LCB polymer is shown in Figure 1a,b,
we determine the period of rotation behaviors by fitting the temporal changes of cos θback(t)
to a periodic function: f (t) = A cos(ωt + φ) + B. This angle is determined by

cosθback(t) = < Rete,back(t), x̂ >/
∣∣< Rete,back(t), x̂ >

∣∣, (1)

where Rete,back(t) is the end-to-end vector of backbone and x̂ represents the unit vector
of flow direction. The temporal changes in cosθback for Wi = 1.04 and 31.17 are plotted
in Figure 7a,b, respectively, where the red lines show the results of fitting data with the
standard periodic function f (t); here, we choose La = 20 and Lb = 20. In Figure 8a,b,
the periods of rotations are 2π/

(
1.62× 10−3) ≈ 3876τ and 2π/

(
1.31× 10−2) ≈ 480τ

for Wi = 1.04 and 31.17, respectively. Figure 7c,d plot the period T̃(
.
γ) as a function

of
.
γ for comb polymers with various arm lengths. In Figure 7c, the rotation period of

comb polymers with arms that are shorter than 10 remains adjacent at various shear rates,
indicating a gradual configuration expansion induced by small increment on arms will not
dramatically influence the rotation behavior of the comb polymer. The irregular changes in
period for the bare backbone (La = 0) show the very different rotation behaviors between
linear chains and comb polymers. The difference indicates that arms have a function of
keeping the motion of the branched polymer more stable. Specifically, in Figure 7d, the
periods of rotation behaviors of comb polymers with arm lengths La = 20, 30, 40 are close
to each other at small

.
γ but larger than rotation period for La = 10, indicating the comb

polymer with long arms has strong resistance, caused by the fast and random motions of
arms under medium–weak constraints, to structurally shrink at intermediate to low shear
flow regimes. However, the period T̃(

.
γ) of La = 20 and 30 decreases and becomes close to
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that of La = 10 at large
.
γ. Such results mean that random motions of arms have a weak

effect on polymer’s structural fluctuations in strong shear flow regime, so the LCB polymer
can reach an extremely compact structure.
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In Figure 8, the ensemble averaged tumbling frequency ω̃TB for the comb polymer
with various arm lengths is shown as a function of Weissenberg number Wi. As shown
in Figure 8a, for the comb polymer with relatively short arms, the curve for characteristic
tumbling frequency keeps a similar exponential increasing trend as the arm length La
increases from 2 to 10. Such obvious exponential dependence of the tumbling frequency on
Weissenberg number has been observed for ring and star polymers [38,53,54]. However, for
comb polymers with relatively long arms (see Figure 8b), the exponential growth of ω̃TB
decays to linear as the arm length grows further from 35. Similar behaviors for capsules [55]
and star polymers [5] have been observed in strong shear flow regime. Such results indicate
that the LCB polymer with very long arms is likely to have properties similar to the capsule
at large Wi and has high resistance on massive shape fluctuations. The different changes
in curves from varying the arm length from small and large value also indicate that the
polymer size plays a critical role in the dynamical properties when the comb polymer
is placed in shear flow. Meanwhile, as shown in Figure 8b, the value of ω̃TB decreases
significantly as the arm length grows from 30 to 45 in the strong flow regime, implying that
the comb polymer with very long arms has properties that are similar to the star polymer
and the capsule, distinct from the comb polymer with small-to-intermediate branch size.

To characterize the conformational properties of the comb polymer in shear flow, we
evaluate the average gyration tensor

Gαβ =
1
N

N

∑
i=1

〈
ri,αri,β

〉
, (2)

where N = Lb + NaLa is the total number of beads on a comb polymer, ri,α is the position of
bead i relative to the center of mass of the comb polymer, and α, β ∈ {x, y, z}. The alignment
of a comb polymer is characterized by the orientation angle χG. In our simulation system,
the flow direction is along x-axis and the velocity-gradient direction is along z-axis. Then
the orientation angle χG can be determined by

tan(2χG) =
2Gxz

Gxx − Gzz
≡ mG/Wi, (3)

where the orientation resistance parameter mG is defined by the right side of equation [7,8].
The components in the average gyration tensor of comb polymers as a function of

.
γ are

plotted in Figure 9a. The squared radius of gyration tensor RG
2 and alignment parameter

tan(2χG) vs.
.
γ are plotted in Figure 9b. To explore the impacts of the arm impose on

the backbone, the same analysis on gyration tensor for a bare backbone are plotted in
Figure 9c,d. As shown in Figure 9a,c, Gxx increases largely while Gyy and Gzz decrease
slightly as the shear rate

.
γ increases. The increment of Gxx for La = 40 is much larger

than that for the bare backbone (La = 0) because long arms expand the comb polymer’s
configuration greatly. However, a power-law fit yields the dependence Gxx ∼

.
γ

0.11 for the
comb polymer and Gxx ∼

.
γ

0.1 for the bare backbone. The similar dependences indicate that
the comb polymer with very long arms is at the same level of sensitivity to shear flow as the
bare backbone and configurations of these two types of polymers will change slowly as the
shear rate increases in medium and strong shear flow regime. However, the exponent of the
dependence for the comb polymer with the arm length between 0 and 40 increases to 0.3 and
then decreases to a value about 0.1 (see Figure 10), indicating the bare backbone and comb
polymer with very long arms are more vulnerable to stretching along the flow direction on
exposure to shear flow. In fact, if the data can be collected from large enough shear flow
regime, all exponents will decay to 0. It is because the configuration expansion is close
to the limit when the shear rate grows further from a high value that such a result can be
easily inferred from the changes in the backbone’s length at the fully stretched state shown
in Figure 6a. As shown in Figure 9b,d, a power-law fit yields the dependence RG

2 ∼ .
γ

0.12

for the comb polymer with arm length 20 and RG
2 ∼ .

γ
0.18 for the bare backbone. These
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results indicate the configuration of the comb polymer with long arms is more compact
than the bare backbone and the structure of the comb polymer is more steady in strong
shear flow regime. Moreover, Figure 9b,d show the dependence tan 2χG ∼

.
γ
−0.38 for the

comb polymer and tan 2χG ∼
.
γ
−0.23 for the bare backbone, indicating that the resistance

on the change in orientation for the comb polymer is stronger than the bare backbone when
a shear field is introduced.
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Figure 10. The exponent of power-law relation Gxx ∼
.
γ

α (see Figure 9) for various comb polymers as
a function of the arm length.

Figure 11 shows the orientational resistance parameter mG as a function of Wi for comb
polymers with long arms (a) and short arms (b). A power-law relation, i.e., mG ∼ f αWiµ,
of which mG for star polymers with f arms in shear flow under large Wi was found in [5].
We also evaluate our simulations to fit the power-law dependence of mG on Wi. The results
are shown in Figure 11a,b. We obtain µ = 0.78, which is also larger than the exponent
µ = 0.54± 0.03 obtained for self-avoiding linear polymer [7,8] for SCB polymers. We obtain
µ = 0.70, which is larger than the exponent µ = 0.65± 0.03 obtained for star polymer [5]
for LCB polymers. These differences show that there is great variation in conformational
and dynamical properties between branched polymers with simple and complex structures.
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The decline in exponent for long arms indicates that LCB polymers with very long arms
are vulnerable, in terms of their linear counterparts, to stretch along the flow direction on
exposure to shear flow.
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To measure the LCB polymer’s ability to impact the shear flow, we evaluate the
intrinsic viscosity [η] for various arm length and shear flow strength. The intrinsic viscosity
[η] is determined by

[η] = lim
c→0

.
w1 +

.
w2

η0
.
γ

2c
, (4)

where η0 is the viscosity of the solvent, c is the concentration,
.

w1 is the rate of energy
dissipation due to the perturbation of flow field and

.
w2 is the frictional dissipation due to

the rotation of the polymer [56]. Figure 12 shows the log-log plot of the intrinsic viscosity
vs. Wi for comb polymers with various arm lengths. As shown in Figure 12a, for the
comb polymer with shorter arms (La ≤ 10), the dependence of the intrinsic viscosity on Wi
reads [η] ∼Wi0.25. The consistent results for various arm lengths indicate that the gradual
increasing in arm length in the short arm regime will not dramatically change the comb
polymer’s ability and mechanism in changing the property of shear flow. However, as
shown in Figure 12b, the power-law relation decays in the long arm and strong flow regime,
indicating that properties in the comb polymer with very long arms are quite distinct from
those with shorter arms. Such results are in accordance with the dynamical properties in
LCB polymers discussed before.
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3. Materials and Methods
3.1. Comb Polymer

In our model system, a comb polymer is composed of many evenly distributed linear
arms and a linear backbone in which each monomer is linked by one end of an arm (see
Figure 13a). The monomer number of the backbone and each arm are Lb and La, respectively.
The arm number of the polymer is Na. Correspondingly, the total monomer number is
N = Lb + NaLa. Specifically, the monomers of the backbone and arms having excluded-
volume short-range interactions between non-bonded beads are taken into account by the
Lennard–Jones (LJ) potential

ULJ(r) =

{
4ε
[(

σ
r
)12 −

(
σ
r
)6
]
, r ≤ 21/6σ

0, r > 21/6σ
, (5)

where r =
∣∣ri − rj

∣∣ denotes the distance between the centers of two monomers i and j
located at ri and rj. σ and ε are taken as unit length and energy, respectively.
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The bond that connects adjective monomers is described by a finitely extensible
nonlinear elastic (FENE) potential [57]
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(
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, r < l0, (6)

where r denotes the distance between the centers of two monomers connected by the bond,
l0 is the maximum bond length and K is the spring constant. l0 = 1.5σ is chosen to avoid
bond crossing [58] and the spring constant is chosen to be K = 30ε/σ2.

3.2. Multiparticle Collision Dynamics (MPCD)

The explicit solvents are modeled as point-like particles of mass m in MPCD [59–61].
The dynamics proceeds in discrete time increments h, denoted as collision time, by alter-
nating streaming and collision steps [61,62]. In the streaming step, the solvent particles
move ballistically with their respective velocities within the time interval h between two
consecutive collision steps and the position of solvent particle i is updated according to

ri(t + h) = ri(t) + vi(t)h. (7)

In the collision step, all the particles are sorted into cubic cells of edge length a. Their
relative velocities with respect to the center-of-mass velocity of the cell which they locate
are rotated around a randomly oriented axis by a fixed angle α [63]. The velocity of solute i
after the collision step is updated according to

vi(t + h) = vcm(t) + (R(α)− I)[vi(t)− vcm(t)], (8)

where R(α) is the rotation matrix determined by α, I is the unit matrix and
vcm = ∑Nc

j=1 vj/Nc is the center-of-mass velocity of the cell with Nc solute particles for
pure fluid simulations. Mass, energy and momentum are conserved in this process, which
ensures that hydrodynamic behavior emerges on larger-length scales [61,64].

The coupling of comb polymers and the fluid occurs in the collision step; here, each
cell contains Ns

c solute particles and Nm
c monomers of polymer; thus, the center-of-mass

velocity of the cell at time t should be determined by [65,66]

vcm(t) =
∑Ns

c
i=1 mvi(t) + ∑Nm

c
j=1 Mvj(t)

mNs
c + MNm

c
. (9)

The mass, local momentum and energy are still conserved during the collision step.
To ensure the Galilean invariance, a random shift in the collision grid is performed before
every collision step [67,68].

Lees–Edwards boundary conditions are applied to generate shear flow [69]. This
yields a linear fluid velocity profile v =

.
γzx̂ along the flow direction (x-axis). A local
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cell-based Maxwell–Boltzmann thermostat is applied by which velocities are scaled to
maintain the desired temperature of the system [70].

3.3. Simulation Details

We simulate the comb LCB polymer immersed in steady shear flow, as shown in
Figure 11b, by means of hybrid method which combines molecular dynamics (MD) for the
comb polymer and MPCD for the solvent particles.

For the fluid, we take the parameters that the time unit τ =
√

ma2/kBT, the collision
period h = 0.1τ, the cubic cell length a = σ, the rotation angle α = 130◦ and the average
number of fluid particles in a collision cell 〈Ns

c 〉 = 10, which yields the solvent viscosity
ηs = 8.7

√
mkBT/a4 which has been shown to be a reliable parameter to account for liquid-

like properties [71]. For the polymer, we set its monomer mass M = 10m and use the
velocity–verlet algorithm with time step hp = 0.005τ to integrate Newton’s equations of
motion. The relaxation behavior of an LCB polymer can be characterized by the exponential
decay of the autocorrelation function Cete(t) of the end-to-end vector of arms,

Cete(t) =
< Rete(t)Rete(0) >
< Rete(0)Rete(0) >

= C0 exp(−t/τeq), (10)

here, < · · · > means the average for all arms. In our simulation, a power-law fit yields the
dependence τeq ∼ L1.55

a for both LCB and SCB polymers. The strength of the shear flow is
either characterized by the shear rate

.
γ or the Weissenberg number Wi =

.
γτeq.

Each simulation runs in the cubic box with side length L = 100σ and the periodic con-
ditions are applied. For more accurate statistics, several independent runs were conducted
for each set of parameters.

4. Conclusions

In this work, we investigate the effects of long arms and shear rates on the dynamical
and structural properties for the LCB polymer using a hybrid simulation method. We
analyze the dynamical properties by tracing the end-to-end distance of the backbones
and arms. In addition, by tracking the variation in angles that the backbones make with
respect to flow direction, we find that the tumbling behaviors of backbones are at a constant
frequency at a large-time-scale simulation for various shear rates. By fitting the angles
of the backbone along the trajectory to a periodic function, one can obtain the period for
the tumbling and rotation motion of the LCB polymer. Through the analysis of tumbling
behaviors and rotation motions along the simulation trajectory, we find that the backbone
experiences two stretched–folded–stretched transitions during the period of each tumbling
motion. The very steady and smooth transition on dynamical properties of LCB polymers
is observed at medium shear flow strength, which means that the interactions among
long arms and random motions of arms cannot compete with the force imposed by shear
flow. By analyzing the rotation period of LCB polymers, we find that arms of branched
polymer have a function in keeping the LCB polymer’s motion stable. Meanwhile, we find
that the rotation period of the LCB polymer is mainly determined by the conformational
distribution and the non-shrinkable state of structure along the velocity-gradient direction.
Moreover, by analyzing the characteristic frequency of the tumbling motion, we also find
that the comb polymer in shear flows change from linear-polymer-like to capsule-like
behavior as the arm length increases.

To evaluate the effects of long arms on structures of LCB polymers for various Weis-
senberg numbers numerically, we carry out statistics on the gyration tensor. We find the
Gxx, which is the component along the flow direction, increases dramatically as the shear
rate increases. By exploring the relation between Gxx and shear rate, we find that, as the
arm length increases, the LCB polymer is more vulnerable to stretching along flow direction
as the linear counterparts. By analyzing orientation resistance parameter mG and fitting it
to a power-law dependence on Wi, we obtain µ = 0.78 for shorter arms and µ = 0.70 for
longer arms. The results are very different from the linear and star counterparts, indicating
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that the random and fast motions of arms put very complex constraints on the motion of
the comb polymer. The decline in the exponent also shows that the LCB polymer, like its
linear counterpart, is vulnerable to stretching along the flow direction on exposure to shear
flow. Our results may help to understand the dynamical and structural properties in the
LCB polymers, which have a high density of arms in shear flow.
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