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Abstract

Purpose: Automated tools can help identify radiation treatment plans of unacceptable quality. To 

this end, we developed a quality verification technique to automatically verify the clinical 

acceptability of beam apertures for 4-field box treatments of patients with cervical cancer. By 

comparing the beam apertures to be used for treatment with a secondary set of beam apertures 

developed automatically, this quality verification technique can flag beam apertures that may need 

to be edited to be acceptable for treatment.

Methods and Materials: The automated methodology for creating verification beam apertures 

uses a deep learning model trained on beam apertures and digitally reconstructed radiographs from 

255 clinically acceptable planned treatments (as rated by physicians). These verification apertures 

were then compared with the treatment apertures using spatial comparison metrics to detect 

unacceptable treatment apertures. We tested the quality verification technique on beam apertures 

from 80 treatment plans. Each plan was rated by physicians, where 57 were rated clinically 

acceptable and 23 were rated clinically unacceptable.

Results: Using various comparison metrics (the mean surface distance, Hausdorff distance, and 

Dice similarity coefficient) for the 2 sets of beam apertures, we found that treatment beam 

apertures rated acceptable had significantly better agreement with the verification beam apertures 
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than those rated unacceptable (P < .01). Upon receiver operating characteristic analysis, we found 

the area under the curve for all metrics to be 0.89 to 0.95, which demonstrated the high sensitivity 

and specificity of our quality verification technique.

Conclusions: We found that our technique of automatically verifying the beam aperture is an 

effective tool for flagging potentially unacceptable beam apertures during the treatment plan 

review process. Accordingly, we will clinically deploy this quality verification technique as part of 

a fully automated treatment planning tool and automated plan quality assurance program.

Introduction

The treatment planning process is a primary source of radiation therapy incidents.1,2 For this 

reason, treatment planning is the focus of many quality assurance (QA) tasks, including 

physicist and physician reviews of treatment plans. Reviewing the treatment plan is a time-

consuming task, and although it is considered one of the most effective forms of QA, it still 

does not reliably catch all errors that occur in treatment planning.3–5 Automating the plan 

review process could improve the effectiveness of error detection by drawing reviewers’ 

attention to aspects of the treatment plan that are incorrect or suboptimal and sparing them 

from reviewing every minute plan detail.

Many radiation therapy groups have already automated various components of the plan 

review process. Some automation techniques verify the technical accuracy of the plans (eg, 

the consistency of the prescription, correct settings for the dose calculation, and 

completeness of physician contouring),6–8 whereas other techniques verify the quality of the 

treatment plans by comparing them to physician-specified plan quality objectives, estimated 

achievable dose metrics, or other similar plans.9–13 The development of techniques to verify 

plan quality can be more subjective and difficult than the development of techniques to 

verify the technical accuracy of plans, and most work to date has focused on the quantitative 

dose metrics involved in assessing plan quality for advanced treatments, such as intensity 

modulated radiation therapy.9–13 However, many clinics rely heavily on simpler treatment 

techniques. For example, radiation therapy treatment for patients with cervical cancer can be 

delivered through the use of a 4-field box with beam apertures based on the bony pelvic 

anatomy. This treatment planning technique is common in resource-constrained settings in 

which soft-tissue contouring is not available owing to limitations of staff time or availability 

of computed tomography (CT) scans for 3-dimensional treatment planning.14,15 The 

International Atomic Energy Agency and American Society of Clinical Oncology 

recommend that resource-constrained clinics use it to deliver radiation therapy to patients 

with cervical cancer.14,15

In this work, we propose a novel technique for the automatic verification of the plan quality 

of radiation treatments for cervical cancer. This proposed technique detects clinically 

unacceptable beam apertures for 4-field box treatments by comparing the planned treatment 

beam apertures to a set of verification beam apertures automatically created for the same 

patient using a novel technique. This concept is similar to the approach of verifying dose 

calculation using a secondary, independent algorithm to calculate dose for a given patient’s 

treatment plan. The rationale for using this approach was that if 1 technique of creating 
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beam apertures was susceptible to a certain kind of error, an independent technique using 

different methods may not be susceptible to that same kind of error.

In this paper, we present our new technique for automatically verifying the quality of beam 

apertures. This quality verification technique could be applied to beam apertures created 

manually, such as for clinical trial quality assurance, or those created using automated 

approaches. In this work, we describe its application in plans created automatically by the 

Radiation Planning Assistant, a recently developed, fully automated treatment planning tool 

intended for use in resource-constrained settings.16,17 Because staff is one of the most 

limited resources in such clinics,18 any improvement in the efficiency and effectiveness of 

QA tasks may have a substantial clinical effect.

Methods and Materials

To detect clinically unacceptable treatment beam apertures, this technique uses an 

independent, fully automated technique to generate verification beam apertures for the 

patient’s treatment planning CT scan. This secondary set of beam apertures is used to verify 

the treatment apertures via comparing the spatial differences in the 2 sets of beam apertures 

(treatment and verification). Poor agreement between the treatment and verification beam 

apertures indicates that the treatment beam apertures are potentially clinically unacceptable 

and can be used to alert the physician that the beam apertures may be in need of editing. The 

next 3 sections describe (1) the ground truth data set used in this study (treatment beam 

apertures), (2) the automated technique for creating the verification beam apertures using 

deep learning, and (3) the comparison technique used to detect when the treatment and 

verification beam apertures were not in agreement. All patient data used in this study were 

handled in accordance with an approved institutional review board protocol.

Treatment beam apertures: Ground truth

The ground truth treatment plans used in this study were created previously as part of the 

development and testing of an automated treatment planning tool, the Radiation Planning 

Assistant, which designs 4-field box treatments for locally advanced cervical cancer with 

beam apertures based on a patient’s bony anatomy. The automation technique for planning 

the treatments uses a different algorithm than used in this work for the quality verification 

(described in the next section). The planning automation algorithm and its validation have 

been previously described elsewhere.16,17 In brief, the input to the automated planning tool 

is a treatment planning CT scan. To create the beam apertures, the patient’s bony anatomy is 

automatically segmented using a technique that employs deformable registration of multiple 

atlases.19 Then, the bony anatomy is projected into the beam’s-eye-view for each of the 4 

fields, and the beam apertures are determined based on these projections. Next, the beam 

apertures are converted into jaw and multileaf collimator positions specific to the type of 

linear accelerator and multileaf collimator to be used for treatment. In testing the final 

version of this automated planning tool, 89% of the beam apertures were found to be 

clinically acceptable.16 During this prior work, over 400 treatment plans were created and 

reviewed for clinical acceptability by expert radiation oncologists.16 A subset of these plans 

serve as the ground truth treatment beam apertures that were subjected to the automated 
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quality verification technique presented in this current study. A different subset of these 

clinically acceptable plans was also used in training of the deep learning model described in 

the next section.

Verification beam apertures: A novel deep learning application

For the verification technique developed in this work, we used the DeepLabv3 + deep 

learning architecture20 to automatically predict the shape of the beam apertures from the 

digitally reconstructed radiographs (DRRs) for each beam angle. The inputs to the model 

training were DRRs with corresponding beam apertures. The resulting trained model takes 

DRRs as input and outputs a prediction of the beam aperture shape. Essentially, this was a 2-

dimensional segmentation task in which the deep learning model was trained to learn which 

parts of the DRRs should be included in the beam apertures on the basis of the visible 

anatomy.21 The deep learning model was trained and tested on the beam apertures and DRRs 

from 310 clinically acceptable 4-field box treatment plans (255 used for training, 55 held-out 

for final testing). The plans used for training and testing of the deep learning model were 

from those created in our previous work and rated as clinically acceptable.16

During training, 3-fold cross-validation (170 train and 85 cross-validation out of 255) was 

used to fine-tune the model parameters (learning rate, decay, etc). Based on our previous 

work,22 we have found that using 3-fold cross validation on the training set allows for more 

robust selection of hyperparameters when dealing with limited imaging data. This is 

consistent with other works in the field of statistical learning where nested cross-validation 

approaches have been shown to produce unbiased estimators of the true classifier error.23

After the optimal parameters were identified during cross-validation, the model was trained 

on the complete training set (255 CT scans, split into 230 for training and 25 to evaluate the 

model during training) for 35 epochs. The number of epochs was chosen conservatively to 

allow for the network to learn features on the input images. Early stopping was used during 

parameter optimization and final training of the model. All models stopped training below 

the 35-epoch mark.

A single model was trained to segment all 4 beams (anteroposterior [AP], posteroanterior 

[PA], right lateral [RT], and left lateral [LT]) independently. The model was trained with an 

equal distribution of each beam’s DRRs, and the architecture was designed such that each 

DRR view (either AP, PA, RT, or LT) was fed individually (single-view input) into the model 

to obtain its respective beam apertures. To augment the input data, we applied random 

vertical and horizontal shifts of ± 5 mm to the input images. Rotational augmentations were 

investigated but were found to be inappropriate owing to the nature of the beam aperture 

shape, where the edges defined by the jaws were straight vertical and horizontal lines, rather 

than diagonal, because the collimator was not rotated from zero degrees.

After training, the performance of the deep learning model was assessed by comparing the 

predicted beam apertures with the ground truth beam apertures for the 55 test patient CT 

scans. For this assessment, the predicted beam apertures were postprocessed before 

comparison to impose more typical beam aperture qualities, such as straight edges at the 
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field borders to replicate the jaw edges. Averaged across all 4 postprocessed beams for all 

patients, the mean surface distance (MSD) was 1.6 mm (standard deviation [SD] = 1.0 mm), 

and the Hausdorff distance (HD) was 6.6 mm (SD = 4.8 mm) (unpublished data).

Comparison technique: Detecting unacceptable apertures

To detect whether the treatment beam apertures were clinically acceptable, we compared 

them quantitatively to the verification beam apertures. In this comparison we used the raw 

verification beam apertures (the predictions from the deep learning model before 

postprocessing). We quantitatively assessed the agreement between the beam apertures using 

the following spatial agreement and overlap metrics24:

• MSD: the average minimum Euclidean distance between the points that define 

the edges of the 2 beam apertures. A larger MSD indicates worse agreement.

• HD: the maximum of all minimum Euclidean distances between the points that 

define the edges of the 2 beam apertures. A larger HD indicates worse 

agreement.

• Dice similarity coefficient (DSC): the overlap of the beam apertures as measured 

by the ratio of their intersection to their mean area. A DSC value of 1 indicates 

perfect agreement, whereas 0 indicates no agreement.

We tested this technique on 80 treatment plans (320 total treatment beam apertures), 

including those rated both clinically acceptable (n = 228 beam apertures) and clinically 

unacceptable (n = 92 beam apertures). These plans were from the ground truth data set but 

were separate from those used to train and test the deep learning model.

To determine whether the beam apertures for the clinically acceptable plans had better 

agreement with the verification beam apertures than those for the clinically unacceptable 

plans, we compared the values of the agreement metrics using a 1-sided t test. A P value 

of .05 was used to determine statistical significance. We then used a receiver operating 

characteristic (ROC) analysis to quantify the sensitivity and specificity with which we could 

detect unacceptable beam apertures. In this analysis, a true positive result corresponded to 

beam apertures that were correctly flagged as unacceptable for treatment.

Results

Figure 1, in which each panel corresponds to a different patient, shows examples of the 

treatment beam apertures and verification beam apertures (without postprocessing). Panel A 

shows a true negative case in which the 2 sets of beam apertures agreed, and the treatment 

beam apertures were clinically acceptable. Panels B and C show true positive cases in which 

the 2 sets of beam apertures disagreed, and the treatment beam apertures were clinically 

unacceptable. In panel C, neither set of beam apertures was clinically acceptable. Each set of 

beam apertures was created using independent methodologies that failed in different ways, 

and the disparate failures successfully flagged the unacceptable beam apertures.
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Comparison metrics

The histogram distributions of the MSD, HD, and DSC values for both clinically acceptable 

and unacceptable beam apertures are shown in Figures 2 to 4, respectively. The means and 

SDs of the comparison metrics tested are embedded in the corresponding figures. For all 

comparison metrics, the average agreement was significantly better (lower for MSD and HD, 

higher for DSC) for clinically acceptable plans than for clinically unacceptable plans (all P 
< .001). The histograms show only a small overlap between the 2 sets of beam apertures.

ROC analysis

Using ROC analysis, we quantified how well each of the comparison metrics could 

determine whether a beam aperture was unacceptable. The resulting ROC curves for all 3 

metrics are shown in Figure 5. The areas under the curve (AUCs) for the AP, PA, RT, and LT 

beams are also shown (minimum AUC = 0.89). The high AUC values indicate that these 

comparison metrics could detect unacceptable beam apertures with good sensitivity and 

specificity. Overall, the HD metric resulted in the highest AUC for 3 of the 4 beam apertures.

To determine a threshold at which to flag plans that may be deemed unacceptable, we 

considered 2 scenarios: 1 with high sensitivity, giving a true-positive fraction (TPF) of 0.90, 

and another with high specificity, giving a low false-positive fraction (FPF) of 0.10. Using 

the HD metric, we determined the threshold values and the corresponding FPFs and TPFs 

for the beams in the high-specificity and high-sensitivity scenarios, respectively (Table 1). 

For the high-sensitivity scenario, the corresponding FPF was relatively low, ranging from 

0.16 to 0.21. For the high-specificity scenario, the corresponding TPF was relatively high, 

ranging from 0.74 to 0.87. With these values and assuming that 11% of planned beams are 

unacceptable, in the high-sensitivity scenario, 1% of all planned beams would represent an 

unacceptable beam that goes undetected and approximately 16% of all beams would be 

unnecessarily flagged. In the high-specificity scenario, about 2% of all planned beams would 

represent an unacceptable beam that goes undetected and 10% of all beams would be 

unnecessarily flagged.

Discussion

In this work, we have presented a novel technique for automatically detecting unacceptable 

beam apertures for 4-field box treatments of cervical cancer. We were able to successfully 

detect unacceptable beam apertures by comparing the planned beam apertures to a set of 

verification apertures created using an independent, automated technique. We found that the 

treatment beam apertures that were rated acceptable had significantly better agreement with 

the verification beam apertures than those rated unacceptable (P < .01). Upon ROC analysis, 

we found the AUC for all comparison metrics tested to be 0.89 to 0.95, which demonstrated 

the high sensitivity and specificity of our quality verification technique. This technique 

could be an effective tool for flagging potentially unacceptable beam apertures during the 

treatment plan review process.

In a previous risk assessment of automated treatment planning using failure modes and 

effects analysis, it was found that beam aperture creation was 1 of the high-risk areas subject 
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to failure.25 Currently, standard practice relies solely on 1 physician to determine the clinical 

acceptability of the beam apertures; there is no secondary check by an independent expert. 

To our knowledge, the QA technique presented in this work is the first technique to 

automatically verify the clinical acceptability of beam apertures. Because this technique was 

effective at detecting the clinically unacceptable beam apertures in need of editing before 

patient treatment with high sensitivity and specificity, it could make plan reviews more 

effective without requiring additional effort from staff. The increases in efficiency and safety 

wrought by automatic verification could be especially effective in resource-constrained 

settings, where there are immense staff shortages.18

We have implemented this novel automatic beam aperture verification technique as part of 

an automatic QA program that accompanies the Radiation Planning Assistant, an automated 

planning tool for cervical cancer radiation therapy that will be offered as a web-based 

service.16,17 The goal of the technique is to alert the physician (or other reviewer of plan 

quality) to potentially unacceptable beam apertures that, compared with a secondary 

verification set of beam apertures, exceed a threshold for a comparison metric. Based on the 

results of this study, we will initially use the HD as our comparison metric in our clinically 

deployed beam aperture verification and will select a threshold that results in high sensitivity 

to unacceptable beam apertures. However, this may result in an excessive number of false 

positives (ie, it may create alerts for plans that a physician would deem acceptable for 

treatment); in turn, this could cause the alerts to eventually be disregarded. Accordingly, in 

the initial clinical deployment of the automated planning tool and QA program, we will 

quantify the effectiveness of the automatic verification of beam apertures and solicit 

feedback from the physician users regarding the practicality of the thresholds employed for 

the automatic verification.

By inspecting the plans that were misclassified by the QA technique, we found that most 

could be attributed to DRRs that were difficult to interpret. Causes of poor quality DRRs 

included obscured anatomy, poor image quality, or high contrast material in the CT scan. An 

example of a DRR that was difficult to interpret is shown in panel C of Figure 1. Poor DRR 

quality presents a challenge for both the deep learning automation technique, which predicts 

the beam aperture using the DRR, and for physician review of the beam apertures via the 

DRR.

An area of potential exploration for this quality verification technique would be to test 

whether a combination of comparison metrics could improve the sensitivity and specificity 

of this quality verification technique. Alternatively, another approach would be to train a 

model to simply classify the beam apertures as acceptable or not, bypassing the need for 

using comparison metrics.

In addition to having utility within the automated planning tool for cervical cancer,16 the 

technique we have presented in this work could be translated to other treatment sites for 

which beam apertures are designed using the beam’s eye view. Our group has created such a 

tool for use in whole-brain treatments with lateral beams,26 which will be integrated within 

the Radiation Planning Assistant. The methodology presented in this work can be 

implemented in other clinics wanting to verify the quality of their beam apertures. To use 
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this technique, they could train a deep learning model on their existing, clinically approved 

treatment plans. They would then use the resulting predictions from the model as the 

verification beam apertures to compare with their treatment beam apertures. Sets of beam 

apertures that have poor agreement could be flagged for further review.

With the development and clinical deployment of automated treatment planning, it is natural 

to include automated processes that aid the physicist and physician in the review of 

treatment plans before treatment. However, although automated plan quality verification is a 

useful means of enhancing the QA process and aiding staff in planning safe and effective 

radiation treatments, it should only be used for those purposes and never as a substitute for 

final manual reviews by staff. Physicians always have the responsibility of ensuring that only 

high-quality plans are approved for treatment. In this study, even with a threshold set for 

high sensitivity, 10% of beam apertures rated as clinically unacceptable would not have been 

flagged by the QA technique.

Conclusions

In this work, we tested the ability of a novel beam aperture quality verification technique to 

detect clinically unacceptable beam apertures. We found this technique to be very effective, 

with AUC values of 0.89–0.95. By comparing the treatment beam apertures with a 

verification set that was created using an independent, automated technique, we were able to 

detect clinically unacceptable beam apertures with high sensitivity and specificity. This 

technique will be deployed as part of a fully automated treatment planning tool for cervical 

cancer, the Radiation Planning Assistant, and could be translated to other treatment sites.
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Figure 1. 
Comparison of treatment and verification beam apertures. The beam apertures (treatment 

apertures in red solid line and verification apertures [without postprocessing] in yellow 

dotted line) are shown for the anteroposterior and right lateral beams (left and right images, 

respectively). Panel A shows examples of beam apertures that were correctly classified as 

clinically acceptable by the quality assurance (QA) technique (a true negative result). Panels 

B and C show examples of beam apertures that were correctly classified as clinically 

unacceptable by the QA technique (true positive results).
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Figure 2. 
Histogram of the mean surface distance (MSD) values. Comparison of the treatment and 

verification beam apertures, shown for apertures rated clinically acceptable (blue) or 

unacceptable (red) by physicians. In each subfigure, the mean is reported, and the standard 

deviation is in parentheses for both the acceptable and unacceptable beams. Lower MSD 

values indicate better agreement. Abbreviations: AP = anteroposterior; LT = left lateral; PA 

= posteroanterior; RT = right lateral.
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Figure 3. 
Histogram of the Hausdorff distance (HD) values. Comparison of the treatment and 

verification beam apertures, shown for apertures rated clinically acceptable (blue) or 

unacceptable (red) by physicians. In each subfigure, the mean is reported, and the standard 

deviation is in parentheses for both the acceptable and unacceptable beams. Lower HD 

values indicate better agreement. Abbreviations: AP = anteroposterior; LT = left lateral; PA 

= posteroanterior; RT = right lateral.
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Figure 4. 
Histogram of the Dice similarity coefficient (DSC) values. Comparison of the treatment and 

verification beam apertures, shown for apertures rated clinically acceptable (blue) or 

unacceptable (red) by physicians. In each subfigure, the mean is reported, and the standard 

deviation is in parentheses for both the acceptable and unacceptable beams. Higher DSC 

values indicate better agreement. Abbreviations: AP = anteroposterior; LT = left lateral; PA 

= posteroanterior; RT = right lateral.
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Figure 5. 
Receiver operating characteristic (ROC) curves for each comparison metric. The areas under 

the curve (AUCs) for each metric and beam angle are shown in the corresponding subfigure. 

Abbreviations: AP = anteroposterior; LT = left lateral; PA = posteroanterior; RT = right 

lateral.
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