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Abstract

Introduction: Organ-specific composition of extracellular matrix proteins (ECM) is a determinant of metastatic host organ
involvement. The chemokine CXCL12 and its receptor CXCR4 play important roles in the colonization of human breast
cancer cells to their metastatic target organs. In this study, we investigated the effects of chemokine stimulation on
adhesion and migration of different human breast cancer cell lines in vivo and in vitro with particular focus on the liver as a
major metastatic site in breast cancer.

Methods: Time lapse microscopy, in vitro adhesion and migration assays were performed under CXCL12 stimulation.
Activation of small GTPases showed chemokine receptor signalling dependence from ECM components. The initial events of
hepatic colonisation of MDA-MB-231 and MDA-MB-468 cells were investigated by intravital microscopy of the liver in a rat
model and under shRNA inhibition of CXCR4.

Results: In vitro, stimulation with CXCL12 induced increased chemotactic cell motility (p,0.05). This effect was dependent
on adhesive substrates (type I collagen, fibronectin and laminin) and induced different responses in small GTPases, such as
RhoA and Rac-1 activation, and changes in cell morphology. In addition, binding to various ECM components caused
redistribution of chemokine receptors at tumour cell surfaces. In vivo, blocking CXCR4 decreased extravasation of highly
metastatic MDA-MB-231 cells (p,0.05), but initial cell adhesion within the liver sinusoids was not affected. In contrast, the
less metastatic MDA-MB-468 cells showed reduced cell adhesion but similar migration within the hepatic microcirculation.
Conclusion: Chemokine-induced extravasation of breast cancer cells along specific ECM components appears to be an
important regulator but not a rate-limiting factor of their metastatic organ colonization.
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Introduction

Metastasis is the result of multiple sequential steps and is a

highly organized, non-random, and organ-selective process [1].

Tumour cell interactions with endothelium and subendothelial

extracellular matrix (ECM) constitute crucial factors in determin-

ing the organ preference of metastasis. The interplay between

malignant tumour cells and their surrounding ECM has been

implicated at nearly every stage of the metastatic process; ranging

from steps that involve the local invasion of tumour cells away

from the primary tumour to those that are involved in mediating

extravasation through microvessel-associated basement mem-

branes at the site(s) of metastasis formation [2]. Initial arrest and

attachment of circulating tumour cells in the secondary organs are

believed to be crucial events for haematogenous metastasis, but the

actual processes in in vivo conditions remain a matter of debate

[3,4,5,6,7]. Adhesion of circulating tumour cells to microvascular

endothelial cells and their underlying ECM represents an initial

event of metastatic organ colonisation alongside extravasation into

the host organ parenchyma [8].

Many of these characteristics for metastasis formation are

related to tumour cell adhesion and migration with haptotactic

guidance. Chemotactic molecules, such as chemokines and their

receptors, were also shown to play an important role in organ-

specific colonization of metastatic tumour cells [9,10,11]. Physi-

ologically, chemokines are active on neutrophils and T-lympho-

cytes (-CXC- type), while –CC- type chemokines are active on

monocytes and lymphocytes, predominantly mediating stimulation

of leukocyte chemotaxis during inflammation [9]. Tumour cell

migration and metastasis appear to share many similarities with

leukocyte trafficking. Müller et al. [12] reported that tumour cells

express a distinct pattern of functionally active chemokine

receptors which correlates with their metastatic behaviour.
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Breast cancer is an example for a tumour with an organ-specific

pattern of distant metastasis formation. It mainly colonizes lung,

liver, lymph nodes and bone marrow, all of which are abundant

sources of chemokine ligands [12,13]. Overexpression of chemo-

kines - especially of CXCR4 and CCR7 - was observed in breast

cancer cells and surgical specimens, but chemokine receptors are

also highly expressed in other tumour types including cancers of

epithelial, mesenchymal and hematopoietic origin [14]. The role

of CXCR4 in the metastatic cascade of breast cancer and also its

ability to predictpatient survival have been intensively studied

[15]. Several groups found that CXCR4 and its ligand

CXCL12 can promote tumour cell migration and invasion

[9,12,16,17,18,19,20]. For example, CXCL12/SDF-1a induced

cellular responses, such as calcium mobilization, actin polymeri-

zation, and chemotaxis in metastatic cells, whereas non-invasive

cells were unresponsive [21]. In addition, CXCL12 activated

multiple signalling pathways downstream of G-proteins in highly

invasive cells but failed to activate downstream kinase cascades in

non-invasive cell lines [21]. Since chemotactic tumour cell

characteristics are related to cellular interactions with ECM

components, the composition of these matrix proteins appears to

be relevant to the metastatic process [22]. AsECM composition

differs between organs and tissue types, chemokine activity in

breast cancer cells may be dependent on ECMavailability, as is

true for haematogenous cells. In T-lymphocytes, for example,

chemokines presented within a collagen matrix increased depth of

migration of infiltrating cells in vitro whereas the presence of

fibronectin within the collagen substrate modulated their adhesive

and migratory properties [23].

Recently, we reported that the hepatic subendothelial space

of Dissé is constituted of fibronectin (FN), von Willebrandt-

factor, type I (C I) and type IV collagen (C IV) and small

amounts of laminin-5 (LN). Using different types of inhibitors,

we found that initial adhesion of circulating tumour cells within

the liver sinusoids was mainly mediated by RGD-dependent

integrin binding to FN. In contrast, binding to C I or C IV was

not involved in initial cell adhesion but C I enabled tumour cell

extravasation into the liver parenchyma via a2b1-integrins. LN

was not involved in any of these steps [24]. Taken together,

these results suggest that hepatic colonization is brought about

by organ-specific tumour cell migration and chemotactic stimuli

within the liver. Downstream signalling of both integrins and

chemokine receptors involves small Rho-GTPases. Correspond-

ing to the increased cell motility of cancer cells, it was found that

RhoA, Rac1 and Cdc42 are dramatically overexpressed in

breast cancer, but also in colon and lung cancer compared to

corresponding normal tissues [25]. These GTPases are involved

in the detection of chemotactic gradients and the formation of

cell polarity, and they also represent importartant regulators of

actin, modulating the assemby and disassemby of actin

filaments. Their activation leads to stress fibre formation,

lamellipodial protrusions, membrane ruffling and directed cell

movement [26].

We postulated that tumour cell extravasation into host organs is

a result of the specific availability of chemokine responses within

the target organ’s microenvironment and the organ’s specific

composition of ECM components. We observed tumour cell arrest

within the liver intravitally and investigated the adhesive and

migratory properties of breast cancer cells in response to various

ECM components in vitro, thus analysing the role of the

CXCL12/CXCR4 axis in the initial steps of the metastatic

cascade of host organ colonization.

Materials and Methods

Reagents
Phycoerythrin (PE)-conjugated anti-human CXCR4 antibodies

were obtained from R&D Systems (Wiesbaden, Germany).

Unlabelled, function-blocking anti-human CXCR4 antibody was

a kind gift from A. Müller, Düsseldorf, Germany. Anti-human

RhoA antibody was purchased from Santa Cruz (Santa Cruz, CA,

USA), anti-human Rac1 from BD Pharmingen (San Jose, CA,

USA) and anti-human Cdc42 antibody was obtained from Cell

Signaling (Danvers, MA, USA). For integrin subunits the following

antibodies were used: b1, b4, a2, a3 (all from Chemicon,

Hofheim, Germany), a1 (upstate biotechnology, Hamburg,

Germany), a5 (Serotec, Eching, Germany) and a6 (gift from J.

Eble, Münster, Germany). Alexa Fluor 488 and 546 labelled

secondary antibodies, phalloidin, CalceinAM and Hoechst 33342

were purchased from Molecular Probes/Invitrogen (Karlsruhe,

Germany). Human recombinant chemokine SDF1a/CXCL12

was obtained from R&D systems (Wiesbaden, Germany).

Glutathione-Agarose Rac/Cdc41 PAK-1 PBD beads and Rho

Rhotekin RBD beads were obtained from Upstate/Millipore (Eching,

Germany). ECM components C I, FN and LN were purchased from

Sigma-Aldrich (Saint Louis, Missouri, USA). All other chemicals were

purchased from Sigma or Roth (Karlsruhe, Germany).

Cell lines and culture conditions
Subclones of the MDA-MB-231 cells (originally obtained from

the ATCC) were provided by M. Kochetkowa, Adelaide,

Australia. These cells were originally derived from a 51 years

old Caucasian female and are invasive and tumorigenic in nude

mice. MDA-MB-468 cell line was purchased from ATCC

(Manassas, VA) and was originally derived from a pleural effusion

of a 51-year old black female patient with metastatic adenocar-

cinoma of the breast. MDA-MB-231 cell line was maintained in

RPMI 1640 or DMEM medium (Gibco/Invitrogen, Karlsruhe,

Germany) containing 10% foetal bovine serum (FBS, Gibco)

without antibiotics. Two clones with shRNA-mediated CXCR4

reduction were also provided by M. Kochetkowa. These clones

(MDA-MB-231-19 and MDA-MB-231-27) were obtained using

CXCR4 shRNA-expressing constructs 5-gatctGGTGGTCTAT-

GTTGGCGTCTGttcaagaGACAGACG CCAACATAGACCA-

CCtttttta-3 and 5-agcttaaaaaaGGTGGTCTATGTTGGCGTC-

TG tctcttgaacagacgccaacatagaccacca-3 (21-nucleotide CXCR4 at

position 470–490 of human CXCR4 cDNA). [21,27] MDA-MB-

468 cells were cultured in DMEM medium (Lonza, Verviers,

Belgium) containing 10% FBS and L-glutamine (Gibco/Invitro-

gen, Karlsruhe, Germany) without antibiotics. The cells were

starved overnight in serum-free media before their application in

experiments. After trypsinization, the cells were resuspended in

serum-free adhesion medium (containing 1% bovine serum

albumin) for reconstitution of surface proteins prior to experi-

mentation.

Transwell assay
The breast cancer cells were added to FN, LN or C I-coated

transwell inserts with 8 mm-pore-size (Nunc/Thermo Fisher

Scientific, Rockford, IL, USA). The cells were suspended into

the upper chamber at a final concentration of 0,76105 cells/ml in

500 ml adhesion medium. After 60 min adhesion time, CXCL12

in concentrations 25, 50 or 100 ng/ml were added to the lower

chamber. Unstimulated cells served as negative control. For diffuse

stimulation CXCL12 at equal concentrations was added in the

lower and upper chamber.

CXCL12-Induced Tumour Cell Extravasation
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After 4 or 16 h of incubation, the cells on the upper surface of

the filter were removed by wiping with Q-tips, and the migrated

cells on the lower side were fixed with formalin and stained with

crystal violet and haematoxylin. Cellular transmigration was

enumerated in 16 standardized microscopic fields per membrane.

To test the specific chemotactic response of the cells to

CXCL12 the CXCR4 receptor was blocked using a neutralizing

mouse-anti-human CXCR4 antibody (kind gift of A. Müller,

Düsseldorf, Germany). The antibody was added to the upper

chamber at concentrations of 5 and 10 mg/ml and migration of

the cells was observed for 4 or 16 h.

Static adhesion assays
Microtiter plates (96 wells, Greiner BioOne, Frickenhausen,

Germany) were coated with C I (10 mg/ml), FN (10 mg/ml), LN

(10 mg/ml) or 1% BSA (negative control). Blocking of nonspecific

binding sites was performed with 1% BSA for 30 min. After

reconstitution of cell surface proteins in adhesion medium for

45 min, cells were resuspended in adhesion medium at a final

concentration of 16106 cells/ml and seeded to the coated wells.

The cells were stimulated with CXCL12 with concentrations of

25, 50 and 100 ng/ml. After 30 or 60 min adhesion time cells

were washed, fixed with formalin and then stained with crystal

violet for 15 min. The absorbance was measured at 630nm using a

spectrophotometer. All experiments were performed in triplicates

and repeated at least three times.

Time lapse microscopy
The cells were added to ECM-coated culture dishes for 20 min.

After washing adhesion medium containing CXCL12 at different

concentrations was added. The cells were observed for 60 min

under a time lapse video microscope (Nikon, Düsseldorf,

Germany). For quantification of cell motility cell tracking was

done using software packages Cell Dˆ .

Intravital microscopy
Intravital microscopy was performed as previously described

[6,7]. The adequacy and reliability of this model in the

investigation of early interactions between circulating tumour cells

and the hepatic microcirculation was confirmed previously [28].

Briefly, Sprague Dawley rats (200 to 250 g) (Charles River,

Sulzfeld, Germany) were cared for in accordance with standards of

the German Council on Animal Care, under an approved

protocol of the local animal welfare committee (Landesamt für

Naturschutz, Umweltschutz und Veterinärmedizin: LANUV

G84/2002). Rats were anesthetized using inhalation of isofluorane

(Curamed, Karlsruhe, Germany). Permanent catheters were

introduced into the left heart via the carotid artery and the right

heart via the jugular vein. After a wide median laparotomy was

performed, the left liver lobe was careful mobilized without

disturbing hepatic microcirculation. Using a heated operating

table, animals were fixed under an upright microscope and

positioned on their left side. This positioning allowed a partial

luxation of the mobilized left liver lobe that was placed on a

specific holder to investigate its lower surface. During the

experiments the liver was continuously irrigated with isotonic

saline solution.

An upright epifluorescence microscope (Zeiss, Oberkochen,

Germany) was used with a 20-fold objective that was located over

a glass slip covering the organ surfaces. The microscope was

connected with a video enhancer-zoom lens system and a low-light

charge-coupled device video camera (Peiper, Düsseldorf, Ger-

many) allowing real-time imaging via a separate monitor.

Fluorescence images were recorded using timer-containing S-

VHS video system for further analysis.

In Vivo Observation of Metastatic Tumour Cell Adhesion
and Extravasation

For intravital observation of adhesive interactions between

circulating tumour cells and the host organ microcirculation,

single cell suspensions of CalceinAM fluorescence-labelled tumour

cells (16106) were injected intra-arterially within 60 sec. Previ-

ously [6,7], we have shown that the route of cell application (left

heart, right heart, portal vein) did not influence the adhesive or

migratory behaviour within the liver sinusoids. This technique did

not interfere with cardio-circulatory or pulmonary functions of the

animals.

Off-line analysis was used to determine tumour cell behaviour

within the target organs as previously described [24,29]. Various

parameters were used for further investigation and semiquantita-

tive analysis of these interactions. A semiquantitative analysis of

tumour cell adhesion and extravasation was performed throughout

a 30 min observation period, and the numbers of adherent cells

were counted for each of the 5 min intervals. Using a standardized

procedure, all fields were analysed in each observation period and

average numbers of adherent cells, migrated cells, and total cells

observed were counted. The numbers provided represent the total

numbers of cells within 30 microscopic fields for each 5 min

period. Numbers of arrested cells represent the total of adherent

and extravasated cells. Relative migration rates were calculated as

percentages of cells within the host organ parenchyma in relation

to the numbers of arrested cells.

GTPase activation assay
Non-adherent cells (107) in suspension unstimulated or

stimulated with CXCL12 (25, 50, 100 ng/ml) for 15 min were

washed once with ice cold PBS and lysed with 50mM Tris-HCl

pH 7.4, 150 mM NaCl, 1% NP40, 0.5% deoxycholate, 0.1%

SDS, 5mM EDTA and 1 ml inhibitor cocktail (Sigma) per 1 ml

lysis puffer. Alternatively, adherent cells were seeded at different

ECM proteins (C I, FN and LN) for 60 min to exclude

interference with initial adhesive behaviour and subsequently

stimulated with CXCL12 in a similar manner. As controls poly-l-

lysine (PLL for non-integrin mediated adhesion) and BSA

(negative control) were used.

Lysates were clarified by centrifugation at 14,000xg for 5 min

and stored at 280uC. After protein quantitation and standardi-

zation 8 ml Rho Assay Reagent (Rhotekin RBD glutathione

agarose beads) or 10 ml Rac/Cdc42 assay reagent (PAK-1 PBD

agarose conjugate) were added to 1000 mg total protein and

incubated for 45 min at 4uC. Samples were washed three times

with magnesium-containing lysis puffer (25 mM HEPES pH 7.5,

150 mM NaCl, 1% Igepal CA-630, 10% Glycerol, 10mM MgCl2,

1mM EDTA) and 1 ml inhibitor cocktail per 1 ml lysis puffer.

Agarose beads were resuspended in 4x Laemmli sample puffer and

boiled for 5min. Total Rho, Rac-1 or CDC42, respectively, served

as loading control in each of the experiments. The lysates were

loaded on 12% polyacrylamide gels, then transferred to PVDF

membranes and GTPases finally detected with rabbit anti-RhoA

antibody (Santa Cruz), mouse anti-Rac antibody (BD Biosciences

Pharmingen) or rabbit anti-Cdc42 antibody (Cell Signalling).

Bands were visualized with enhanced chemiluminescence (Milli-

pore, Schwalbach, Germany). Quantitative densitometry analysis

was performed using ImageJ densitometry software (version 1.6,

NIH, Bethesda, MD) and selected bands were semi-quantified

based on their optical densities.

CXCL12-Induced Tumour Cell Extravasation

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30046



Immunofluorescence staining
The cells were added to C I, FN, LN or Poly(L)lysine (PLL)-

coated chamber slides, incubated for 60 min and then stimulated

using different chemokine concentrations (25, 50 and 100 ng/ml)

for different time intervals (5, 15 and 30 min). Subsequently, cells

were washed and fixed using 4% paraformaldehyde. For

intracellular staining, the cells were blocked and permeabilized

using PBS containing 1% BSA and 0, 1% Triton X100, whereas

permeabilization was not performed to achieve cell surface

staining. Cells were incubated for 30 min with anti-human

CXCR4 antibodies and subsequently with Alexa Fluor conjugated

secondary antibody for additionally 30 min. For actin filament

staining phalloidin Alexa Fluor 488 and for nuclear staining

Hoechst 33342 was used.

Imaging was performed as combination of 3D-fluorescence

reconstruction and phase contrast microscopy using a Nikon

Eclipse TE2000 microscope. For each substrate 20 representative

CXCR4 clusters were evaluated regarding their localization at the

cell, their size and shape. The size of CXCR4 clusters was

calculated using software packages Cell̂D (Olympus, Münster,

Germany).

Flow Cytometry
Cells were fixed with 4% paraformaldehyde and then washed

and resuspended in PBS containing 0.5% BSA. After this the cells

were incubated for 45 min with PE-conjugated anti chemokine

antibodies (R&D systems). After washing the integrin or

chemokine receptor surface expression was measured using a

FC500 flow cytometer (Beckman Coulter, Krefeld, Germany).

After gating of the cell population, the mean fluorescence

intensities (MFI) of the antibody-stained cells were detected and

the relative amounts of positive cells were calculated using the flow

cytometer software.

Statistical analysis
Statistical analysis was performed using the SPSS V.14 (SPSS

Inc., Chicago, IL) statistical program. Data were shown as

mean6SD. For comparison of different parameters between the

treatment groups p-values were calculated according to the

Scheffé-test (ANOVA post-hoc-test) for dependent or independent

samples as appropriate. For other analyses Student’s t-test has

been used. Significant differences were accepted for p,0.05.

Results

Chemokine-induced cell migration in vitro
To examine chemotactic migratory responses to chemotactic

stimuli MDA-MB-231 and MDA-MB -468 cells were exposed to

different CXCL12 gradients (0, 25, 50 and 100 ng/ml) in

Transwell chambers coated with different ECM components.

Spontaneous migration without chemotactic gradients was found

in both cell lines at basal levels. Bell-shaped concentration

dependence showed maximum effects at 25 ng/ml at C I and

FN (p,0.05). Higher concentrations (100 ng/ml) resulted in

migration rates at these ECM components that were comparable

to unstimulated cells. (fig. 1a). In order to confirm specific

responses, cells were additionally treated with an inhibitory anti-

CXCR4 antibody. In unstimulated cells this resulted in slightly

increased migration rates suggesting partial agonistic activity of the

antibody. In contrast, in stimulated cells, anti-CXCR4 completely

blocked migration and only basal levels of migration were

detected. (p,0.001; fig. 1b) Finally, migration rates were

compared in the presence of different ECM components.

Chemotactic response to CXCL12 significantly increased 3–4

fold at C I and FN in both cell lines (p,0.001). In contrast, at LN,

a slight but significant (p,0.05) increase was induced in MDA-

MB-231, but not MDA-MB-468 cells. (fig. 1c+d)

In Vitro Tumour Cell Adhesion
We analysed whether cell adhesion properties to the proposed

interacting ECM components could be modified by CXCL12 in

vitro. During adhesion to C I, FN or LN for 30 or 60 min, tumour

cells were treated with CXCL12 at concentrations of 25, 50 and

100 ng/ml or remained untreated. Under untreated conditions,

both cell lines showed high adhesion rates at C I and FN, but only

moderate (MDA-MB-231, fig. 1e) or weak cell adhesion (MDA-

MB-468, fig. 1f) when LN was present. These differences were

expected due to the differing expression of LN-receptors at the

cells’ surfaces (Table 1). The presence of CXCL12 did not

significantly modulate this static cell adhesion at any of the ECM

components in both cell lines. (fig. 1e+f) In addition, stimulation

with 25ng/ml CXCL12 for 15 min in nonadherent single cell

suspensions of both cell lines did not affect the integrin surface

expressions. (data not shown)

Expression of CXCR4 chemokine receptors
The highly metastatic MDA-MB-231 cells expressed CXCR4 in

84.5%, whereas the less metastatic MDA-MB-468 cells showed

78.7% expression. The two clones MDA-MB-231-19 and MDA-

MB-231-27 had ,40% residual CXCR4 expression as estimated

by flow cytometry (Table 1, fig. 2).

CXCL12 affects the motility of breast cancer cells
Our previous observations [24,30] of chemotactic responses and

ECM-dependence of colon carcinoma cell extravasation into the

liver suggested interactions between ECM composition and

chemotaxis. The results of this study confirmed these observations.

Thus, we studied the dependence of short term chemokine

stimulation and cell motility using single cell fluorescence-assisted

time lapse microscopy. The cells were observed for 1 h in 30 sec

intervals.

For quantification of these effects we initially determined cell

surface areas, their circumferences, various cell diameters, length

of moving path and the numbers of membrane ruffles over the

time with or without CXCL12 stimulation. All of these parameters

showed high variability between the cells (data not shown), but

length of the motility path was the single parameter with

reproducible effects that was used for further quantitative analysis.

Using a cell tracking software, time-dependent path lengths of the

cells were quantified (figure 3a).

If cells remained without chemokine stimulation, both cell lines

showed comparable patterns of basic cell motility, but MDA-MB-

231 cells were more motile than MDA-MB-468 cells with longer

lengths of path during the observation period. In the presence of

CXCL12, cells plated at C I had a similar increase in motility with

a slightly different concentration-dependence in both cell lines

(fig. 3b+c). Comparable to transwell migration, only MDA-MB-

231 cells were responsive to CXCL12 at LN, whereas at FN, only

MDA-MB-468 cells showed stimulation of motility. The

CXCL12-dependent stimulating effects were not found in

CXCR4-knock-down cells (MDA-MB-231-27). (fig. 3d)

MDA-MB-231 cells plated at C I developed distinct lamellipo-

dia. If stimulated with CXCL12, the cells were more motile and

showed directed movement. In the presence of FN, these cells

formed smaller lamellipodia but formed protrusions especially

using 25ng/ml CXCL12. When MDA-MB-231 cells migrated at

CXCL12-Induced Tumour Cell Extravasation
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LN, numerous filopodia and spindle-like cell forms were observed

(see Video S1).

Low metastatic MDA-MB-468 cells developed small filopodia

(microspikes) if seeded at C I or FN. Lamellipodia were not formed

at C I, but cells appeared stretched when FN was present. In the

presence of high concentrations of CXCL12 (100 ng/ml), the cells

partially started lamellipodia formation. In contrast to MDA-MB-

231 cells, MDA-MB-468 cells did not spread at LN and formed

only short filopodia (see Video S2).

CXCL12 induces tumour cell migration into the liver
parenchyma

The in vitro results suggested that chemotactic CXCL12/

CXCR4-signaling is a crucial determinant of site-specific tumour

cell extravasation into the liver that was further analysed using the

in vivo model for hepatic tumour cell colonization. Breast cancer

cells showed specific adhesive and migratory properties as

previously described for other tumour entities [6,7,23,26].

Differentiation between adherent and extravasated cells enabled

Figure 1. CXCL12 stimulated cell adhesion and migration. Transwell migration assays were performed for 16 h using different gradients of
CXCL12 (0–100 ng/ml). (a) Bell-shaped response is shown for MDA-MB-231 cells at C I. (b) This response was specific for CXCL12 and could be
reversed by inhibitory anti-CXCR4 antibodies in these cells. A slight agonistic effect of the anti-CXCR4-mAb was observed. (c) In MDA-MB-231 cells
this response (25 ng/ml CXCL12) occurred at all ECM components, but to different extent. (d) In contrast, in MDA-MB-468 cells stimulated migration
(25 ng/ml CXCL12) was found at C I and FN, but not at LN. The values are reported as means 6 SD of three independent experiments (* p,0.001 and
+p,0.05). Cell adhesion: (e) MDA-MB-231 and (f) MDA-MB-468 cells were plated at C I (&), FN (;), LN (%). Binding to BSA coated surfaces was used
as background control. Cells were treated with 25, 50 or 100 ng/ml CXCL12 or left untreated (0 ng/ml). After 30 min adhesion time absorbance was
measured as optical density (OD) at 630 nm. CXCL12 did not significantly modify cell adhesion of both cell lines, but adhesion properties were
depended from the adhesive substrates with high adhesion rates at C I and FN compared to low or absent adhesion at LN.
doi:10.1371/journal.pone.0030046.g001

CXCL12-Induced Tumour Cell Extravasation
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semiquantitative analysis. All arrested cells did not completely

occlude the vessel lumen, suggesting specific adhesive interactions

with the sinusoidal vessel wall. (fig. 4a) Using highly metastatic

MDA-MB-231 cells, significantly (p,0.05) higher numbers of cells

arrested within the hepatic sinusoids compared to less metastatic

MDA-MB-468 cells (MDA-MB-231: 67–85 cells/interval; MDA-

MB-468: 37–43 cells/interval). In addition, MDA-MB-231 cells

extravasated at similar relative migration rates into the liver

Table 1. Cell surface expression of chemokines receptors.

MDA-MB 231 wt MDA-MB 231-19 MDA-MB 231-27 MDA-MB 468

neg 0.9 0.7 0.5 0.3

IgG control 3.5 4.2 2.7 14.9

CCR 3 72.6 76.1 75.2 94.2

CCR 7 18.3 26.7 37.4 70.6

CXCR 1 82.7 79.8 81.9 94.2

CXCR 2 5.2 6.6 7.5 56.7

CCR 1 1.6 1.8 1.0 2.0

CCR 2 1.9 1.9 1.3 2.1

CCR 6 33.9 35.1 33.7 89.4

CXCR 4 84.5 39.8 41.5 78.7

CXCR 5 78.7 75.1 77.9 91.3

CCR 5 40.1 58.6 63.1 88.2

CXCR 3 85.4 86.4 80.2 93.2

Cell surface expression was analysed by flow cytometry. shRNA transfection resulted in a reduction of CXCR4 expression in MDA-MB231-27 cells. Negative and IgG
controls are given as examples for the controls that have been used in each measurement. IgG controls were subtype-specific.
doi:10.1371/journal.pone.0030046.t001

Figure 2. Flow cytometry analysis of breast cancer cells. The cell surface expression of CXCR4 (3) was found in different breast cancer cell
lines MDA-MB-231 (a) and MDA-MB-468 (b). Downregulation of CXCR4 expression in clones MDA-MB-231 Cl 19 (c) and MDA-MB-231 Cl 27 (d). (isotype
control IgG2b: NNNN; negative control:&).
doi:10.1371/journal.pone.0030046.g002
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parenchyma. (MDA-MB-231: 19–25%; MDA-MB-468: 20–23%).

(fig. 4b+c)

Since CXCL12 is specifically expressed within the sinusoidal

structures [28] we investigated whether this chemokine and its

receptor CXCR4 are involved in this behaviour. To validate the

CXCL12-induced breast cancer cell migration in vivo MDA-MB-

231 cells with shRNA-mediated reduction of CXCR4 (MDA-MB-

231-19 and MDA-MB-231-27) were compared with wild-type

cells. In both clones this inhibition of CXCR4 receptor expression

did not affect adhesion of tumour cells within liver sinusoids

(fig. 4d) but significantly (*p,0.001) decreased relative migration

rates (fig. 4e).

This observation raised the question whether the rapid

extravasation is mediated by chemotactic responsiveness of breast

cancer cells within the hepatic micro-environment or by different

integrin expression at their surfaces.

Expression of integrins
In order to exclude differences in the cell surface expression of

both cell lines, flow cytometric analysis of CXCR4 and integrin

expression was performed. The cell surface expression of most

integrin subunits relevant to the ECM components used in this

study were present in similar amounts in both cell lines. The major

difference between the cell lines was observed for ligands of LN

(a3, a6 and b4) that were detected in both MDA-MD-231 and

MDA-MB-468 cells, but were less present in the latter. Integrin

receptors for C I or FN binding were available in both cell lines.

(Table 2) Since both cell lines showed similarly high CXCR4

expression levels, functional responsiveness of this receptor was

tested.

Signalling responsiveness of CXCR4
We investigated whether binding of the ligand CXCL12 could

activate CXCR4 signalling and whether these responses were be

modulated by ECM binding. CXCR4 responsiveness was tested

using GTPases RhoA, Rac1 and Cdc42 as markers for its

downstream signalling. As mentioned above, FN and C I, but not

C IV or LN were found to mediate cell adhesion and migration

within the liver [24]. Therefore, we specifically focussed on C I

and FN, respectively. Since LN is not involved in these processes

and was found only in small quantities within the liver, we used

this ECM component as control.

Initially, CXCL12 treatment was performed in single cell

suspensions to show integrin and adhesion independent activation

Figure 3. CXCL12 increases cell motility dependent from the ECM. (a) Cells that were attached to different ECM components were observed
for one hour using time-lapse video microscopy. The length of their moving path was determined using a cell tracking software (Cell Dˆ H). (b) MDA-
MB-231 and (c) MDA-MB-468 cells showed different patterns of chemokine stimulated motility (% unstimulated; & 25ng/ml; ///50ng/ml; ; 100ng/ml
CXCL12). Highly metastatic MDA-MB-231 cells were more motile at CI and LN (*p,0.001) with a concentration-dependent stimulation (+p,0.05) of
their motility that was not observed at FN. In contrast, low-metastatic MDA-MB-468 cells were less motile at C I and LN, but showed a concentration-
dependent stimulation at FN. (d) In CXCR4-knock-down cells (MDA-MB-231-27) these CXCL12-dependent stimulating effects were not found. The
results are shown as mean 6 SD for three independent experiments. For statistical analysis ECM dependent migration was compared for all three
ECM components and concentration dependence of CXCL12 was compared to unstimulated cells. Significances for ECM dependent cell motility are
not marked for improved readability.
doi:10.1371/journal.pone.0030046.g003
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of the GTPases. Basal levels of Rho-GTP, Rac-GTP and Cdc42-

GTP in untreated cells were detected in both cell lines. Treatment

with different concentrations of CXCL12 resulted in increased

activation of RhoA in MDA-MB-231 (+40%) and MDA-MB-468

(+60%) cells compared to untreated cells. (fig. 5a+b) Both cell lines

showed bell-shaped concentration dependence with a maximum at

25 ng/ml. Rac1 activation was increased up to two-fold at higher

CXCL12 concentrations of 50 or 100 ng/ml in both cell lines,

whereas relevant CXCL12-induced Cdc42 activation was not

observed. (fig. 5a+b) This activation reached a maximum at

Figure 4. In vivo migration of breast cancer cells within the liver sinusoids. Single cell suspensions of fluorescence-labelled tumour cells
were injected into Spague-Dawley rats. (a) Example of an adherent cells (white arrow) and a cell starting to migrate (black arrow) into the liver
parenchyma. Magnifications show location of the cells in relation to marked sinusoid-parenchyma borders. Intravital microscopy was done to analyse
adhesion and migration properties of MDA-MB-231 (b) and MDA-MB-468 cells (c). Thirty microscopic fields were analysed in 5min observation periods
for semiquantitative analysis of adherent (x) and migrated cells (%). The total numbers of arrested cells (m) were calculated. CXCR4 inhibition
decreased tumour cell migration in vivo. The MDA-MB-231 cells were transduced with shRNA to inhibit CXCR4 expression. Two clones 19 (e)
and 27 (x) were tested for in vivo adhesion (d) and migration (e) in the rat liver and compared with untreated cells (&). Transfected cells showed
significantly (*p,0.001) decreased relative migration rates into the liver parenchyma but cell adhesion within the hepatic microcirculation was only
slightly influenced by CXCR4 reduction. Relative migration rates were based on the number of arrested cells and were calculated as described [26].
doi:10.1371/journal.pone.0030046.g004
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15 min after stimulation and subsequently dropped to basal levels

after 30–45 min. (data not shown)

For analysis of integrin-dependent activation of the Rho

GTPases, tumour cells were plated at C I, FN or LN. MDA-

MB-231 cells (fig. 5c) showed Rho, Rac and Cdc42 activation if

cells were plated at C I and FN, but lesser activation at LN. Using

MDA-MB-468 cells, (fig. 5d) the GTPases showed less activation

in the presence of C I and FN compared to MDA-MB-231 cells.

The most important difference however, was the almost complete

lack of GTPase activation after seeding MDA-MB-468 cells at LN.

As expected, BSA induced no activation of GTPases in both cell

lines. PLL served as an integrin-independent control. Optical

densities were standardized against the Total-GTPase counter-

parts and these relations were confirmed in all experiments as

shown for one example in fig. 5e.

In order to assess a potential synergism between integrin-

mediated and chemokine-induced activation of the GTPases,

ECM-seeded cells were stimulated with different concentrations of

CXCL12. This resulted in comparable GTPase activation

between unstimulated and stimulated cells. Only FN induced a

slight synergistic increase of Rho in MDA-MB-468, but not MDA-

MB-231cells (fig. 5f).

ECM induced reorganization of CXCR4 cell surface
distribution

Lateral redistribution of cell surface receptors, such as integrins

and growth factor receptors, is known as a mechanism for their

activation and can create synergistic functional effects. Since an

interaction between different ECM components and CXCR4 was

postulated, we further investigated the distribution of this receptor

on the surface of adherent cells using immunohistochemical

staining. After seeding at ECM components, CXCR4 was

detected in clusters in both cell lines. Initially, small clusters were

found in cells in the presence of all ECM components including

PLL without preference of certain localizations. (not shown)

During cell spreading on ECM components, CXCR4 clusters

were relocated to lamellipodia (predominantly seen in FN) or

pseudopodia (predominantly seen in C I) within 5–30 min. In

contrast, in cells adherent to PLL, only small CXCR4 clusters

were observed without changes over time. (fig. 6a–d) The size of

the clusters significantly increased in cells spread at ECM

components compared to PLL-mediated cell attachment

(* p,0.001; +p,0.05; fig. 6e). Corresponding to the lower level

of integrin ligand expression for cell adhesion at LN, spreading at

this adhesive substrate and formation of CXCR4 clusters was less

pronounced than for FN and C I.

Using 3D-reconstruction, we found that larger clusters were

located above the leading edges slightly apart from the adherent

cell regions, whereas small dot-like clusters were located directly at

the leading edges (fig. 5f). The presence of CXCL12 did not result

in differing sizes or localizations of these clusters compared to

unstimulated cells in both cell lines. In contrast, using PLL for

non-integrin-mediated cell attachment, CXCR4 was detected

without signs of special distribution (fig. 6d). Co-localization of

CXCR4 clusters with focal adhesion kinase was used to stain

redistribution towards integrin-mediated focal adhesions, but these

were not detected in any setting (not shown). The clusters started

to disappear 30 min after the beginning of chemokine stimulation

in a comparable manner for both C I and FN. (fig. 7)

Discussion

The interaction of tumour cells with ECM components is an

important step in organ-specific metastasis formation. In order to

invade potential metastatic target organs, tumour cells are usually

required to establish specific adhesion to vascular endothelial cells

and/or the organ’s ECM. Since metastatic colonization of the liver

is one of the most important life-threatening events in breast cancer,

we investigated potential mechanisms that might mediate this

process. Müller et al. [12] showed that chemokines and their

receptors can promote colonization of breast cancer cells into their

targets, such as lymph nodes, lung, liver and bone marrow, all of

these being sites where chemokine ligands are mainly expressed. For

example, Kupffer cells and sinusoidal endothelial cells can secrete

CXCL12 that is the ligand for CXCR4 [28]. Breast cancer cells

specifically express functionally active CXCR4 and CCR7, which

can trigger actin polymerization, pseudopodia formation and

directional movements [12]. In this study, we investigated the role

of CXCR4/CXCL12 in breast cancer cell migration and adhesion

with a focus on its dependence on liver ECM components that may

provide an organ-specific microenvironment for rapid tumour cell

extravasation into this major metastatic organ.

In our study, breast cancer cells with differing metastatic

potential demonstrated different cell adhesion to ECM compo-

nents in vitro and slightly different migrative properties. Both

investigated breast cancer cell lines expressed functionally active

CXCR4 at their surfaces and their in vivo potential for

chemotactic extravasation rates into the liver parenchyma was

comparable. Two clones of MDA-MB-231 cells were transduced

with retroviral shRNA [27] to inhibit CXCR4 expression. This

resulted in decreased extravasation in vivo, but did not affect cell

adhesion within the sinusoids. However, only wild-type controls,

but not shRNA-control transductions, were available for this

study. Although cell viability was not altered in the transduced

clones, some toxic effects cannot be completely ruled out. These

intravital results were confirmed by in vitro behaviour in our study

and by Chen et al. reporting the inhibition of breast cancer

invasion/migration by down-regulation of CXCR4 [18]. In

contrast, the adhesive properties of the cells were not influenced

by chemokine stimulation, results that are similar to those found

by Fernandis et al. [19] for MDA-MD-231 cells. Overexpression

of CXCR4 was not used since both cell lines have high

percentages of CXCR4-positive cells. In addition, the receptor

availability at the cell surfaces is strictly regulated and therefore,

overexpression of CXCR4 would be unlikely to result in increased

Table 2. Expression of integrin subunits at cell surfaces.

Integrin subunits MDA-MB-231 MDA-MB-468 Ligands

Neg. 0.5 0.3

IgG control 1.6 0.9

a1 93.7 96.0 C I, LN

a2 24.9 98.6 C I, LN

a3 99.8 96.5 LN 5+10

a5 87.9 53.7 FN

a6 81,4 33,8 LN 1+5

av 97.2 99.7 FN

b1 98,6 99,2 C I, FN, LN

b4 68,7 48.5 LN

Cell surface expression was analysed by flow cytometry. The major difference
between the cells was observed for integrin ligands of LN. Negative and IgG
controls are given as examples for the controls that have been used in each
measurement. IgG controls were subtype-specific.
doi:10.1371/journal.pone.0030046.t002
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cell surface availability. These findings suggest that CXCL12/

CXCR4-mediated chemotactic extravasation of breast cancer cells

is required for metastatic colonization of the liver. Since less

metastatic cells showed less initial tumour cell arrest within the

liver, these initial adhesions - but not subsequent extravasation -

appear to be rate-limiting for hepatic metastasis formation.

In our current study, we observed a dose- and matrix-dependent

CXCL12-induced migration of breast cancer cells. The bell-

shaped response of the migration rates to different concentrations

of CXCL12 has also been shown by others [9,18]. Decreased

migration at higher concentrations may be caused by saturation of

CXCR4 ligand binding at cell surfaces and rapid internalization.

This appears to result in subsequent lack of GTPase activation.

Using breast cancer cells in suspension, Holland et al. [21] found

that only highly invasive cells were able to form G protein abc
heterotrimers with CXCR4. Although non-invasive cells expressed

similar CXCR4 surface levels, they did not respond to CXCL12

due to lack of GTPase activation. Although MDA-MB-231 and

MDA-MB-468 cells had comparable basic in vitro cell motility at

all ECM components in our study, their response to CXCL12

stimulation differed between the ECM components. MDA-MB-

468 cells mainly responded to CXCL12 stimulation when plated

at FN. In contrast, in MDA-MB-231 cells’ chemotactic response in

the presence of C I and LN were found to be more pronounced

than in MDA-MB-468 cells. The slight increase in cell migration

under the influence of anti-CXCR4 is likely caused by a partial

agonistic effect of this antibody as has been described for many

function-blocking antibodies. Since C I appears to be the main

‘‘road’’ for tumour cell extravasation into the liver parenchyma,

the enhanced chemotactic motility at C I might be an important

determinant for liver colonization. It can be speculated that MDA-

MB-231 cells, which were also very motile when LN was present,

Figure 5. CXCL12 and ECM-induced activation of small Rho GTPases. Cells were treated with different concentrations of CXCL12 in single
cell suspensions (a+b) or plated at various adhesive substrates (c+d). Level of activation of RhoA, Rac1 and Cdc42 assessed by pull down assays of the
GTP-bound forms were determined in MDA-MB-231 (a+c) and MDA-MB-468 cells (b+d). As example for total GTPase detection independent from
phosphorylation status in each experiment Total-Rho is shown for (a) and (b). These loading controls were used for standardization of optical
densities (e+f). RhoA and Rac1 activation increased in a dose-dependent manner, but Cdc42 remained at baseline levels. If MDA MB 231 (c) and MDA
MB 468 (d) cells were plated at C I, FN, LN, PLL and BSA differences in ECM dependent activation of GTPases were observed. Comparing relative
optical densities these matrix dependent differences were confirmed (e). Synergistic activation between chemokine stimulation and ECM binding,
such as demonstrated for Rho (f), were not found.
doi:10.1371/journal.pone.0030046.g005
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may use this ECM component to metastasize into target organs

where LN is expressed in higher amounts, such as in the lung. This

would result in earlier escape from the potentially toxic

environment within the microvessels [31].

In cancer cells, different combinations of chemokine receptor

activation and integrin binding appear to enable different

migration programs, such as mesenchymal-amoeboid transition

or collective-amoeboid movement. This form of rescued migration

has been shown to be closely related to integrin-ECM interactions

[32]. Potential interactions between integrin binding and chemo-

tactic responses were previously reported for different tumour

entities. For example, integrin-mediated pancreatic cancer cell

migration at LN was found to up-regulate CXCR4 and IL-8

expression and responsiveness to CXCL12 stimulation [33]. In

addition, CXCL12 induced redistribution of various integrins

between cell surface and intracellular compartments in renal

carcinoma cells [34]. In the breast cancer cells investigated in our

study, similar alterations of integrin expression during exposure to

CXCL12 were not observed.

We found that integrin-mediated cell adhesion at ECM

components can specifically induce redistribution of CXCR4 at

tumour cell surfaces with formation of larger receptor clusters.

Since this was accompanied by intensified formation of lamelli-

podia and pseudopodia, it is likely that specific integrin-mediated

cell adhesion can induce increased CXCR4 sensing [12] and

subsequent ability for rapid extravasation along ECM compo-

nents. These morphological alterations after CXCR4 activation

were strong in the highly metastatic MDA-MB-231 cells, and

present to a lesser extent in the less metastatic MDA-MB-468 cells.

We therefore assume that interactions between integrins and

chemokines during chemotactic tumour cell extravasation are

more related to outside-in signalling, inducing higher chemotactic

Figure 6. Clustering of CXCR4 at tumour cell surfaces. CXCR4 was visualized in wild-type MDA-MB-231 cells using fluorescence-labelled
antibodies (red). Nuclei were counterstained (blue). Scale 50 mm. Figures were taken 15 min after CXCL12 stimulation and merged with phase-
contrast for cellular location of the CXCR4. In both cell lines similar distributions of CXCR4 were observed. MDA-MB-231 cells at C I (a+b; as integrin
dependent) and PLL (c+d; as integrin independent control) are shown as examples. Cell spreading at ECM components induced formation of large
CXCR4 clusters at lamellipodia and pseudopodia (a), whereas in cells adherent at PLL only small dot-like CXCR4 clusters were observed (c). Presence
of 25 ng/ml CXCL12 (C I: b, PLL: d) did not result in alterations of the size or localization of these clusters. (e) The sizes of 20 clusters in at least 10 cells
per experiment were evaluated for each adhesive substrate. Areas (mm2) of these clusters (&) and their circumference (mm, %) were significantly
higher in cells that were spread in an integrin-dependent manner at C I, FN or LN compared to unspread cells at PLL (* p,0.001; +p,0.05). (f) Larger
clusters (c) and dot-like CXCR4 structures (R) were found with a preference of the dot-like structures in the direct neighbourhood of leading
adhesive boundaries.
doi:10.1371/journal.pone.0030046.g006
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cell motility with subsequent faster extravasation. In addition,

inside-out activity can improve sensing of chemokine gradients.

A number of cross-signalling pathways between CXCR4 and

integrins may be responsible for these ECM-dependent chemokine

effects, such as PI3K-AKT [16,35], FAK-Crk, RAFTK/Pyk2

[19]. Besides kinases, chemokine receptors and integrins can

activate or modulate small GTPase signalling pathways [36,37].

RhoA promotes the contraction and retraction of the cell body at

its rear during directed motility. Rac can induce membrane

protrusion at the front of the cell and Cdc42 regulates direction of

migration by regulating cell polarity [38]. In our study, their

CXCL12-induced activation in cell suspensions and increased

responsiveness of cells adherent to C I corresponded to the motility

response of the cell lines. Limited GTPase activation in cells in

suspension without adhesive interactions is likely caused by lost cell

polarity that cannot be developed in a proper manner without

adhesive contacts. The requirement of specific, integrin-mediated

adhesive contacts for sufficient CXCL12 stimulated GTPase

activation in our study appears to promote increased chemotactic

tumour cell motility in various metastatic target organs. This is

further supported by previous observations that GTPase activation

can be differently modified by adhesion of various (tumour) cell

types to various ECM-components [34,39,40].

As previously reported, composition of the ECM within the liver

can provide certain structures that may act as guidance for tumour

cell extravasation. These migrative properties can be influenced by

interactions of integrins with different ECM-components including

FN and type IV collagen for initial cell arrest, and C I for

extravasation [6,7,24]. Sheets of FN and very small amounts of LN

within the subendothelial space of Dissé and fibres of C I occurring

between hepatocytes could form a path for adherent cells to migrate

into the liver parenchyma after sufficient stimulation [24]. Although

some differences in the integrin surface expression were found in the

breast cancer cells in this study, they cannot solely explain the

differing migrative properties. Since tumour cell adhesion but not

extravasation correlated with the metastatic potential of the cells,

initial arrest within the liver sinusoids appears to be more important

as rate-limiting factor in breast cancer metastasis. This is in contrast

to other carcinoma entities where rapid extravasation was central to

determine metastatic potential [27,28].

These findings suggest that the combination of chemokine

availability at optimal local concentrations, specific ECM

composition with differential integrin binding of tumour cells

and interaction of chemokine receptors and integrins via GTPase

activation are determinants of the extent and time course of

tumour cell extravasation into potential metastatic target organs.

Conclusions
In summary, our results show that chemokines appear to be

involved in metastatic tumour cell migration and motility in an

organ-specific manner. Using in vitro and intravital observation

techniques, we were able to demonstrate that CXCR4 plays an

important role in guiding breast cancer cells to target organs, such

as liver, due to integrin-adhesion dependent activation, [41]. This

finding is further supported by the fact that the required cross-

signalling between integrins and chemokine receptors for chemo-

tactic cell motility is ECM-dependent. Availability of chemokine

receptors at tumour cell surfaces, presence of their ligands within

the microenvironment of potential target organs and the suitability

of their ECM composition seem to be required for successful

tumour cell extravasation as early steps of metastasis formation.
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tumour cells are useful in examining early metastasis in vivo, but immune
reaction precludes long-term tumour development studies in immunocompetent

mice. Clin Exp Metastasis 2003 20: 135–141.

5. Ding L, Sunamura M, Kodama T, Yamauchi J, Duda DG, et al. In vivo
evaluation of the early events associated with liver metastasis of circulating

cancer cells. Br J Cancer 2001 85: 431–438.
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