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The atomic force microscopy (AFM) is a powerful tool for imaging structures of molecules
bound on surfaces. To gain high-resolution structural information, one often superimposes
structuremodels on themeasured images. Motivated by high flexibility of biomolecules, we
previously developed a flexible-fitting molecular dynamics (MD) method that allows protein
structural changes upon superimposing. Since the AFM image largely depends on the
AFM probe tip geometry, the fitting process requires accurate estimation of the parameters
related to the tip geometry. Here, we performed a Bayesian statistical inference to estimate
a tip radius of the AFM probe from a given AFM image via flexible-fitting molecular
dynamics (MD) simulations. We first sampled conformations of the nucleosome that fit well
the reference AFM image by the flexible-fitting with various tip radii. We then estimated an
optimal tip parameter by maximizing the conditional probability density of the AFM image
produced from the fitted structure.
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INTRODUCTION

The atomic force microscopy (AFM) is a powerful tool for imaging the structures of molecules bound
on surface at atomic resolution (Ando et al., 2001; Kodera et al., 2006; Kodera et al., 2010; Uchihashi
et al., 2011; Casuso et al., 2012; Ando et al., 2013; Ando et al., 2014; Dufrêne et al., 2017). However,
because the AFM measurement gives only height information and because biomolecular AFM
measurements often provide medium-resolution images, one often seeks molecular structures that fit
to the AFM image. The fitting of rigid molecules can be achieved simply by translating and rotating a
given structure model to find the best match to the AFM image. On the other hand, when the target
molecules are flexible, as are often the case for biomolecules, one needs to allow a structural change of
the model upon superimposing. This so-called flexible-fitting has been successfully applied in the
modeling based on the cryo-electron microscopy data by various methods, for example, the
molecular dynamics flexible fitting (MDFF) method and its extension (Trabuco et al., 2008;
McGreevy et al., 2016; Singharoy et al., 2016), the correlation-coefficient-based method
(Orzechowski and Tama, 2008), and CryoFold (Shekhar et al., 2020). The flexible-fitting can be
realized by using molecular dynamics (MD) simulations, where a fitting score is integrated with the
standard molecular mechanics force field. Recently, we developed a flexible-fitting MD method for
finding molecular structures that fit the AFM image (Niina et al., 2020).

Generally, these fitting processes require knowledge on parameters that characterize the
measurement, of which values are often unknown a priori. Therefore, one challenge is to infer
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these parameters, simultaneously finding the target molecular
structures. In the case of the AFMmeasurement, such parameters
include the size and the shape of the probe tip, which are usually
unknown, but strongly affect the resulting images.

In this brief report, we focus on the inference of the radius of
the AFM probe tip, assuming that it has the spherical shape.
Using a Bayesian statistical inference approach, we examine
feasibility of the inference of the AFM probe tip radius via
flexible-fitting process. We chose a nucleosome as the test
molecule (Figure 1A). The nucleosome consists of a histone
octamer and a duplex DNA of 223 base pairs, and the initial
structure was modeled using crystal structure (PDB ID: 3LZ0), as
described in our previous work (Niina et al., 2017; Fuchigami
et al., 2020).

METHODS

Pseudo-AFM Image Generating Method
The collision detection method: The collision-detection method
is to generate a pseudo-AFM image for a given molecular
structure. It assumes a simple geometry of the probe tip; the
cone-shape with its terminus being a sphere (Figure 1B, lower).
Thus, the tip can be characterized by the two parameters, the tip
radius R and the apex angle θ. In this study, we fix the latter as
θ � 10 degree. For each pixel, we calculate the height of the
bottom of the sphere at which a steric collision between the
tip end and atoms in the molecular models occurs (Figure 1B).

The collision-detection method is available as a tool “afmize”
(http://doi.org/10.5281/zenode.3362044). The BioAFMviewer,
which provides the pseudo-AFM image via a similar method,
is also available (Amyot and Flechsig, 2020).

The smoothed method: While the collision detection method
offers perhaps the most straightforward way to generate a
pseudo-AFM image from a given structure model, the method
does not give a form differentiable with respect to atomic
coordinates of target molecules. This precludes its usage in the
flexible-fitting MD since MD simulations require the force
calculations that include the differentiation of the fitting score.
To this end, we previously proposed a differentiable proxy of the
collision detection method, which we call the smoothed method.
For a target biomolecule represented by its coordinate (xj, yj, zj)
and radius rj for the j-th particle (j � 1, . . . , N), we define the
smoothed height H(sim)

p at the p-th pixel (xp, yp) as

H(sim)
p � c log

⎧⎪⎨⎪⎩1 +∑N
j�1

exp⎡⎢⎢⎢⎣−(xj − xp)2 − (yj − yp)2
2σ2

⎤⎥⎥⎥⎦exp(zj + rj
c

)⎫⎪⎬⎪⎭. (1)

We assumed xy-plane as the AFM stage and thus that the
z-coordinate represents the height of the target molecule. This
function contains smoothing in xy-directions (characterized by
σ), as well as the smoothing in z-direction (characterized by c)
(Figure 1C).

Importantly, in the smoothed method expression, the tip
radius R does not appear directly. Instead, we previously
showed that the optimal value of σ well correlates with the tip
radius R. Thus, by changing σ, we can effectively generate pseudo-
AFM images of different R’s.

We note that a smaller c corresponds to a closer
approximation to the collision-detection method, but a too

FIGURE 1 | (A) Structure of a nucleosome used in this study. (B and C) Pseudo-AFM images of nucleosome (Scale bar: 5 nm) generated (B) by the collision
detection method and (C) by the smoothed method (upper) and schematic views of these methods (lower).
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small c leads to a sharp change in the force and thus to the
instability of MD simulations. In this study, we fix c � 0.1 nm.

The smoothed method is also available in “afmize” (http://doi.
org/10.5281/zenode.3362044).

Flexible-Fitting Molecular Dynamics
Simulation
Flexible-fitting MD simulations utilize the total potential energy
function, Vtotal � Vphys + VAFM. Here, Vphys represents the
physical interaction of the target molecules as well as their
interaction with the surface, the latter of which is modeled as
a simple Lennard-Jones potential along the z axis. The second
term is defined as VAFM(R) � κNkBT[1 − c.c.(R)], where kB is
the Boltzmann constant, T is the temperature (300 K in this
study), κ is a dimensionless parameter that controls the strength
of the bias (unity in this study), and R is the coordinate of a
simulated molecule. (Niina et al., 2020). The c.c.(R) is the
modified correlation coefficients between the pseudo-AFM
image H(sim)

p (R) of the simulating structure R and the real
experimental AFM image H(exp)

p , defined as

c.c.(R) � ∑p ∈ pixelsH
(exp)
p H(sim)

p (R)���������������∑p ∈ pixels(H(exp)
p )2

√ �����������������∑p ∈ pixels(H(sim)
p (R))2√ . (2)

See the reference (Niina et al., 2020) for more details.

Coarse-Grained Molecular Dynamics
Simulation
In this study, as the physical interaction part of Vphys, we used a
well-tested coarse-grained model for proteins and DNAs, which
have been extensively used in many recent studies, including
simulations for nucleosomes (Niina et al., 2017; Brandani et al.,
2018; Tan and Takada, 2020). Briefly, proteins are represented by
chains of beads, each of which represents an amino acid. For
DNAs, each nucleotide is approximated by three particles, each
representing sugar, phosphate, and base groups. We used the
energy function AICG2+ for proteins (Li et al., 2014), 3SPN.2C
for DNA (Freeman et al., 2014). Protein-DNA interactions are
modeled by the excluded volume term and the electrostatic
interaction (Fuchigami et al., 2020). See the reference
(Fuchigami et al., 2020) for more details.

All the simulations were performed by CafeMol (Kenzaki
et al., 2011). Specifically, the current simulation setup is
provided as an example of the flexible-fitting MD simulation
in the CafeMol package.

RESULTS

Relationship Between the Tip Radius and
the Parameter σ
Before performing the flexible-fitting MD simulations, we
quantify the relation between the AFM probe tip radius in the
collision detection method and the σ parameter used in the

smoothed method. For ten distinct structures of nucleosomes
obtained by coarse-grained MD simulations, we first generated
pseudo-AFM images by the collision detection method with
various tip radii R’s, ranging between 0.1 and 3.0 nm (with
0.1 nm increment). For each R value, we searched the optimal
σ value with which the smoothed method gives the maximum
correlation coefficient (c.c.) with the image generated by the
collision detection method (Figure 2). We found that, on
average, the optimal σ value for each nucleosome structure
linearly increases with the tip radius R. In addition, the
optimal σ value depends, albeit modestly, on the nucleosome
structure. Especially, for larger tip radius, the optimal σ value
varies structure by structure more significantly (Figure 2). For
each tip radius R, we quantified the optimal σ value by its mean
〈σ(R)〉 and the standard deviation Δσ(R) of the ten samples
(Supplementary Table S1).

Using the Bayes’ theorem, we can estimate the probability
density to have the tip radius R for a given σ as,

P(R|σ) � P(σ|R)P(R)∑RP(σ|R)P(R)
(3)

where we assumed the discrete representation of the tip radius
(0.1 nm increment). Without any prior knowledge, we assume
P(R) is constant over the range between 0.1 and 3.0 nm. We also
assume that P(σ|R) is well approximated by the normal distribution
with the mean 〈σ (R)〉 and the standard deviation Δσ(R),
i.e., P(R|σ) � N(〈σ (R)〉,Δσ (R)2)/∑RN(〈σ (R)〉,Δσ (R)2) .
The resulting conditional probability density is given in
Supplementary Table S2.

Bayesian Statistical Inference of the Tip
Radius Using Flexible-FittingMDSimulation
To examine the Bayesian statistical inference of the tip radius
unambiguously, we need a test system for which we know the
“correct” tip radius. To this end, in this study, we performed the

FIGURE 2 | Relationship between a tip radius R in the collision detection
method and a parameter σ in the smoothed method. The results from ten
structures of nucleosome are shown in black lines, and the mean with the
standard deviation for each tip radius R are shown in red.
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so-called twin experiment. We first prepared a reference AFM
image of the nucleosome using the collision detection method
with the tip radius of 1.0 nm. This AFM image serves as the

“experimental AFM image” in this study. Thus, the “correct” tip
radius in this study is 1.0 nm.

For the experimental AFM image (Figure 3B), starting from a
different structure (Figure 3C), we performed 106-step flexible-
fitting MD simulations of the nucleosome system with various
values of σ ranging from 0.10 to 0.50 nm (with the 0.01 nm
increment) (exemplified in Figure 3A). We repeated the same
simulations ten times with different random numbers for each
value of σ. The time series of the c.c. between the experimental
and the simulated AFM images clearly show that the c.c.
stochastically increases as a function of time, reaching to a
plateau in all the simulations, successfully obtaining well-fitted
structures (Figure 3D). The averaged plateau value, however,
changes depending on the value of σ (Figure 3A).

To quantify the difference in the reached correlation
coefficient (c.c.), we then estimated the probability density
distributions of the c.c. for different σ values using the latter
half of the time series data, i.e., totally 5,000 snapshots
(representative cases shown in Figure 4). For example, a very
small σ, such as 0.10 nm, resulted in the distribution with low
c.c.’s, suggesting a clearly poor fitting. A rather large σ, such as
0.5 nm, also gave a poor fitting. In between the two limiting cases,
there exists an optimal value of σ. Our previous studies indicated
that the mean, or the median, of the c.c. distribution is not a good
indicator (Niina et al., 2020). Instead, we need to focus on the
upper tail of the distribution of c.c.. Among the nine cases in
Figure 4A (between 0.1 and 0.5 nm, with the 0.05 nm increment),
we found σ � 0.3 nm the optimal value.

Looking into a finer scale (0.01 nm increment) shown in
Figure 4B, we found the highest c.c. value 0.989 at σ �
0.31 nm. From the values of conditional probability density
shown in Supplementary Table S2, it is found that the most
probable value of tip radius R is 1.2 nm, slightly larger than the
“correct” tip radius 1.0 nm. This difference between the correct
and the estimated tip radii is inevitable and acceptable because
AFM image is insensitive to sub-nanometer-order difference in
tip radius. Indeed, pseudo-AFM images generated using 1.0 nm-

FIGURE 3 | Flexible-fitting MD simulations. (A) Representative time
series of the correlation coefficient (c.c.) of pseudo-AFM image of the
simulated structure with the “experimental” AFM image. Shown here are
results from three different σ values, 0.1, 0.3, and 0.5 nm in blue, red,
and green, respectively. (B) The synthetic-AFM image used as an
“experimental” AFM image in the flexible-fitting. Scale bar: 5 nm. (C) The
nucleosome initial structure. (D) The simulated structure with the highest c.c..

FIGURE 4 | The probability density distributions of the correlation coefficient (c.c.) for representative σ values. (A) The overall distribution. The σ in nm unit are 0.1
(red solid), 0.15 (orange solid), 0.20 (green solid), 0.25 (blue solid), 0.30 (magenta solid), 0.35 (blue broken), 0.40 (green broken), 0.45 (orange broken), and 0.50 (red
broken). (B) A close-up view at a high c.c. range. The σ in nm unit are 0.30 (red), 0.31 (orange), 0.32 (green), 0.33 (blue), and 0.34 (magenta).
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radius tip shows a high c.c. of 0.99 or higher with the images
generated using tip with radii of 0.7, 0.8, 0.9, 1.1, 1.2, and 1.3 nm.

To test the statistical significance of the estimation of σ value,
we performed a simple bootstrap test. We first prepared all
patterns of combinations of five samples taken from ten
highest c.c. values obtained from ten flexible-fitting MD
simulations with the same σ value. The number of
combination patterns is 10C5 � 252. In each combination
pattern, the highest c.c. value in the five values was used as
the estimated value. In this way, 252 estimated highest c.c. values
were obtained for each of seven σ values,
σ � 0.28, 0. 29, 0.30, 0.31, 0.32, 0.33, and 0.34 nm. Then, we
performed all-to-all pairwise comparison of 252 estimated
highest c.c. values for σ � 0.31 nm with 252 estimates for the
other six σ values. The σ � 0.31 nm exhibited higher values
against for σ � 0.28, 0. 29, 0.30, 0.32, 0.33, and 0.34 nm with
the probabilities 0.956, 0.998, 0.723, 0.677, 0.986, and 0.957,
respectively. Thus, the σ value can be estimated as
0.31±0.01 nm. Note that the bootstrap test was performed with
five c.c. values, whereas the real estimate used ten c.c. values,
making the latter somewhat more reliable.

DISCUSSION

In this brief report, we investigated the statistical inference of the
AFM probe tip radius via flexible-fitting MD simulations. First,
we statistically characterized the relationship between the tip
radius appeared in the collision detection method and the σ value
used in the smoothed method. Then, with various σ values, we
repeated the flexible-fitting MD simulations to the pre-defined
AFM image of a nucleosome structure. Based on the upper tail
part of the probability density distribution of the correlation
coefficient, we found an optimal value of σ, as well as a well-fitted
structure, for the given AFM image. Combining it with the above-
mentioned relationship between the tip radius and the σ value, we
could infer the probe tip radius, with reasonable accuracy.

As shown in Figure 2, a good linear correlation is observed
between a tip radius R and a parameter σ. In this case, therefore,
the simple linear regression-based method could also work well to
infer a tip radius from a σ value.

One possible limitation in the current approach is in the
treatment of flexible regions of proteins. In the current test
system, the nucleosome contains the histone octamer, which
contain rather long disordered tails. Usually, the AFM
measurements do not clearly detect the configuration of the
histone tails. On the other hand, our collision detection
method and the smoothed method detect such flexible regions
in the same way as the well-folded regions. While fitting of the
well-folded regions is realized in the current simulations,

disordered tail configurations were not well fitted, which could
cause some discrepancy in the tip radius inference.

While the current approach can infer the tip radius with
reasonable accuracy, there can be room for improvement
especially in terms of the estimate efficiency. The current
approach needs to repeat the flexible-fitting MD with various
σ values. This is feasible for the inference of one parameter, and
can be accelerated by using an efficient search method, for
example, a two-stage searching method with coarse and fine
increments. But it is nearly impossible for the case of many
unknown parameters. In the context of AFMmeasurement, there
can be other relevant parameters, such as the apex angle of the
probe cone. For these cases, some improvement may be
necessary. Since inference of the experimental parameters in
the flexible-fitting MD is quite a computationally demanding
process, we may better perform similar inference within the rigid-
body fitting process. In addition, relationship between the tip
radius and the σ value might be somewhat system-dependent. It
would be confirmed by performing the same analysis using other
molecules.
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