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Environmental contamination caused by inorganic compounds is a major problem
affecting soils and surface water. Most remediation techniques are costly and generally
lead to incomplete removal and production of secondary waste. Nanotechnology, in this
scenario with the zero-valent iron nanoparticle, represents a new generation of
environmental remediation technologies. It is non-toxic, abundant, cheap, easy to
produce, and its production process is simple. However, in order to decrease the
aggregation tendency, the zero-iron nanoparticle is frequently coated with chemical
surfactants synthesized from petrochemical sources, which are persistent or partially
biodegradable. Biosurfactants (rhamnolipids), extracellular compounds produced by
microorganisms from hydrophilic and hydrophobic substrates can replace synthetic
surfactants. This study investigated the efficiency of a rhamnolipid biosurfactant on the
aggregation of nanoscale zer-valent iron (nZVI) and its efficiency in reducing nitrate in
simulated groundwater at pH 4.0. Two methods were tested: 1) adding the rhamnolipid
during chemical synthesis and 2) adding the rhamnolipid after chemical synthesis of nZVI.
Scanning electron microscopy field emission, X-ray diffractometry, Fourier transform
infrared spectroscopy, thermogravimetric analysis, Dynamic Light Scattering, and zeta
potential measurements were used to characterize bare nZVI and rhamnolipid-coated
nZVI. The effects of the type of nZVI and initial NO3 concentration were examined.
Nanoscale zer-valent iron with the addition of the rhamnolipid after synthesis achieved
the best removal rate of nitrate (about 78%), with an initial nitrate concentration of
25 mg L−1. The results suggest that nZVI functionalized with rhamnolipids is a
promising strategy for the in situ remediations of groundwater contaminated by NO3,
heavy metal, and inorganic carbon.
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INTRODUCTION

Due to the growing demand for food and the great use of fertilizers
to obtain it, the contamination of the soil and the aquifers has
demanded studies to overcome the problem. Fertilizers has caused
environmental pollution with threats to agricultural productivity,
food security, ecosystem health, human health, and economic
prosperity (Erisman et al., 2008; Klove et al., 2011; Zhang et al.,
2015; Hansen et al., 2017; Velis et al., 2017). The World Health
Organization and US Environmental Protection Agency have
established the maximum contaminant level for nitrate (NO3)
of 10 mg L−1 in drinking water (WHO, International Program
On Chemical Safety, 1996; EPA, 2002).

In recent years, nanoparticles have been used in
environmental remediation because of their great reduction
power and surface area. Nanoparticle zero-valent iron (nZVI)
has been extensively implemented for groundwater remediation
due to its low cost and the ability to reduce oxidized pollutants
(Crane and Scott, 2012; Yirsaw et al., 2015; Stefaniuk et al., 2016;
Magthalin et al., 2016). However, iron nanoparticles have some
drawbacks that need to be solved such as the issue of cluster
formation due to their interfacial energy and high surface
reactivity (Zhang, 2003; Zhao et al., 2016), as well as their
instability, which can be easily oxidized by water or oxygen in
their environment, forming a passive layer on their surface. To
diminish the tendency toward aggregation, nZVI is often coated
with surfactants (NSET, 2003; Crane and Scott, 2012), which play
major roles in improving particle mobility (Dutra, 2015),
lowering interfacial tension, and preventing the coalescence of
newly formed drops (Morsy, 2014). Xue et al. (2018) investigated
the performance of nanoscale nZVI coated with rhamnolipids
(RL) in the immobilization of cadmium and lead. They
demonstrated the effectiveness of nZVI in transforming labile
cadmium and lead into a stable fraction, with an increase of 56.40
and 43.10% in the maximum residual percentage of these metals
after 42 days of incubation, decreasing the mobility of the metals.
Nitrate may also be chemically reduced by nZVI (Huang et al.,
2011). The efficiency of nitrate removal by Fe0 is dependent on
the pH value, with rapid reduction generally occurring at pH
2–4.5 (Hausmann and Syldatk, 1998; Choe et al., 2004; Huang
and Zhang, 2004). nZVI is highly reactive in water, making it an
excellent electron acceptor (Sturm and Morgan, 1996). Sharma
et al. (2020) explored Fe3O4 nanoparticles prepared with a
coating of rhamnolipids. These materials show to be
monodispersed and stable in water under environmentally
relevant pH and ionic strength values. These nanoparticles
were used to remove dissolved inorganic carbons from water
and showed high sorption capacity at pH 6 and pH 8 in both
carbonate-free and in equilibrium with the atmosphere CO2

systems. The nanoparticles are non-toxic, abundant,
inexpensive, and easy to produce (Zhang, 2003; Cook, 2009;
Keane, 2010). The core consists primarily of zero-valent iron,
whereas the mixed-valent oxide shell is formed as a result of the
oxidation of metallic iron (Cornell and Schwertmann, 2004; Li
et al., 2006; Crane and Scott, 2014). With rapid advances in
biotechnology and increased environmental awareness, synthetic
surfactants are increasingly being replaced with biologically

produced compounds (Banat et al., 2000; Gautam and Tyagi,
2006). The aim of green synthesis and the stabilization of metallic
nanomaterial is to decrease the use of chemical methods (Park
et al., 2011). Microbial biosurfactants are extracellular
compounds produced by microorganisms, such as bacteria,
yeast, and filamentous fungi, grown on hydrophobic/
hydrophilic carbon sources (Nitschke et al., 2005; Pirôllo et al.,
2008; Tese, 2011; Lovaglio et al., 2015). Biosurfactants are surface-
active molecules with both hydrophilic and hydrophobic
moieties, which enable these compounds to interact at
interfaces and reduce the surface tension of the medium
(Mishra et al., 2009; Fernandes, 2011; Tese, 2011).
Rhamnolipids used in this study are produced by the bacteria
Pseudomonas aeruginosa that have been intensively investigated
and extensively reviewed for various applications (Ochsner et al.,
1996; Maier and Soberón-Chávez, 2000; Nitschke et al., 2005;
Akiyode and Boateng, 2018; Moutinho et al., 2021; Varjani et al.,
2021; Magri and Abdel-Mawgoud, 2022). Rhamnolipids are
comprised of one or two molecules of rhamnose linked to one
or two molecules of β-hydroxydecanoic acid (Desai and Banat,
1997; Hausmann and Syldatk, 1998; Banat et al., 2000).
Rhamnolipids are promising candidates for the stabilization of
nanoparticles. These natural compounds have been used to
stabilize silver nanoparticles (Xie et al., 2006; Reddy et al.,
2009; Kiran et al., 2010; Kumar et al., 2010; Ravi Kumar et al.,
2010; Farias et al., 2014; Salazar-Bryam et al., 2021), nickel oxide
(Palanisamy, 2008; Palanisamy and Raichur, 2009), cadmium
sulfide (Singhal et al., 2010), iron oxide (Liao et al., 2010) and
palladium-doped nanoscale zer-valent iron particles (Basnet et al.,
2013; Bhattacharjee et al., 2016). To the best of our knowledge,
there are no reports in the literature of rhamnolipid-mediated
synthesis, stabilization, and application of nZVI for nitrate
reduction. Therefore, the aim of the present study was to report
evidence for the use of a low-cost rhamnolipid biosurfactant for the
stabilization of nZVI in an aqueous solution and its use for the
removal of nitrate from simulated groundwater.

MATERIALS AND METHODS

Materials
Ferric chloride (FeCl3 6H2O, 98%), Sodium borohydride (NaBH4,
97%), and Potassium bromide (KBr, 99%) were purchased from
Sigma-Aldrich Chemical Corporation Sodium hydroxide
(NaOH, 97%), ammonium chloride (NH4Cl, 99%), and
sodium nitrate (NaNO3, 99%) were purchased from Labsynth
and phosphoric acid (H3PO4, 95%) was purchased from J. T.
Baker, Acetone (Honeyell, 100%) and deionized water were used
for nZVI synthesis. For rhamnolipid production a Ca-free
mineral salt medium containing glycerol as a carbon source
was used (Müller et al., 2011). All of the components are of
analytical grade and used without further purification. Further
de-ionized water was used in all the experiments.

Production and Extraction of Rhamnolipids
The strain Pseudomonas aeruginosa LBI 2A1, was obtained in
previous work as a part of a doctoral thesis of Lovagio (Lovaglio,
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2011). It was maintained in Lysogenic Broth (LB) plus 20%
glycerol at −20°C. For pre-culture, the microorganism was
inoculated into 25 ml of LB, then transferred to 200 ml of LB
medium containing phosphate buffer solution (pH 6.8) and 1%
(w/v) of glycerin. The system was kept on a rotary shaker for 48 h
at 180 rpm and 32°C. The pre-inoculum culture (10% v/v) at an
optical density of 0.08 (OD580) was transferred to 400 ml of
production medium containing glycerol 2% (w/v). The pH of the
medium was adjusted to 7 by adding NaOH 1 mol L−1. The
culture was incubated on a rotatory shaker for 120 h at
200 rpm and 32°C. Cells were separated by centrifugation at
12,000 rpm for 30 min at 4°C, and the cell pellet was
discarded. To the supernatant was added 85% H3PO4 1:100
(v/v) to adjust of pH of about 2-3 and ethyl acetate 1:1,25 (v/
v) for extraction of rhamnolipids. The mixture was shaken for
15 min and allowed to settle down until the phase separation. The
inorganic phase was removed and the operation was repeated
once again with the organic phase and ethyl acetate 1:1,25 for
total extraction of rhamnolipids. After that, the organic phase
containing the biosurfactant was concentrated using a rotary
evaporator.

Surface Activity Measurements and
Structural Characterization of
Rhamnolipids
Surface tension was determined by the Du-Noüy ring method
with a Krüss K6 Tensiometer (Krüss, Hamburg, Germany).
Ultrapure water was measured to calibrate the tensiometer.
Experiments were performed at room temperature; all
measurements were made in triplicate.

Synthesis and Green Stabilization of nZVI
The synthesis was based on the borohydride reduction method
(Wang and Zhang, 1997. The synthesis of nZVI was conducted in
a beaker by adding sodium borohydride (6 mmol) dissolved in
2 ml of purified water to 40 ml ferric iron solution (4 mmol), for
the reduction of ferric iron to nZVI. The solution was vigorously
stirred with a magnetic bar at room temperature. The entire
process was carried out in an argon atmosphere. The reduction
reaction is as follows (Wang and Zhang, 1997):

Fe(H2O)63+ + 3BH4− + 3H2O → Fe0 + 3B(OH)3 + 10.5H2 (1)
A black precipitate formed instantly. After 20 min of reaction, the
solid was magnetically decanted and washed three times with
acetone.

Two stabilization methodologies of nZVI (Table 1) were
compared with the bare-nZVI: synthesis of nZVI with

rhamnolipids addition in ferric chloride solution (nZVI-A)
and nZVI stocked in rhamnolipids solution (n-ZVI-S). The
rhamnolipid solution used for nZVI-A and nZVI-S was above
250 mg L−1 (CMC, critical micellar concentration). The
separation of the generated iron particles was achieved with a
magnet, followed by washing with acetone at least three times.

Nanoparticle Characterization
Characterization of the crystalline phase was determined by X-ray
powder diffraction (XRD) using a Simiens D5005 diffractometer
with a Cu Kα radiation source. The samples were recorded at
5–80° of 2θ, with a step of 0.02°. The Crystallographic Search-
Match software was used to index the samples. Fourier transform
infrared (FTIR) spectroscopy was used to confirm the obtainment
of a rhamnolipid. Thermogravimetric analysis (TGA) was carried
out to determine the total amount of nZVI and mass of the
rhamnolipids, using the STA 409C/CD system from NETZSCH
Instruments. Samples (15 mg) were analyzed from room
temperature up to 700°C under 50 ml min−1 airflow with a
heating rate of 10°C.min−1. The shape and morphology of the
dried nanoparticles were determined using scanning electron
microscopy (SEM) model JEOL 7500F, with an acceleration of
2kV. The hydrodynamic diameter and zeta potential
measurements of the particles were evaluated by Dynamic Light
Scattering (DLS) and electrophoretic mobility using laser Doppler
electrophoresis in a Zeta Sizer NanoZS fromMalvern Instruments.

Nitrate Reduction Tests
Batch experiments were conducted using 1 L bottles at room
temperature under light-excluding conditions. To create an
anaerobic environment, the deionized water used for the
preparation of the nitrate solution was boiled and the bottles
were then purged with nitrogen gas to remove dissolved oxygen.
Each bottle was filled with 1 L of initial NaNO3 concentrations
(C0) of about 25, 50, and 100 mg L−1 NO3. At the onset of the
experiment, the pH was adjusted to 4 using HCl 1 mol L−1 and 5 g
of nZVI-S, nZVI-A, or bare nZVI were added to each bottle.
Control experiments without the addition of nZVI nanoparticles
were carried out in parallel. Samples (10ml) were withdrawn every
15min for 2 h. All experiments were performed in triplicate. The
removal efficiency was calculated according to Eq. 2

removal efficiency% � (C0 − Cf)
C0

× 100 (2)

in which C0 is the initial NO3 concentration and Cf is the final
NO3 concentration. Nitrate and ammonium were quantified with
a Thermo Scientific™ Orion™ nitrate electrode and ammonia
electrode, respectively. A kinetic model for nitrate reduction by
nZVI can be described by pseudo-first-order reaction kinetics (kobs).
According to this model, the reaction rate is proportional to the
nitrate concentration, as given in the following Eq. 3:

ln(C

C0
) � −kobs (3)

in which C0 is the initial NO3 concentration and C is the NO3

concentration at time t.

TABLE 1 | nZVI stabilization method.

Sample RL

bare-nZVI Without rhamnolipids
nZVI-A Rhamnolipids addition in ferric chloride solution
nZVI-S Stocked in rhamnolipids solution
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RESULTS AND DISCUSSION

Rhamnolipid Production
The biosurfactant from P. aeruginosa LBI 2A1 was cultivated in a
low-cost medium and formulated using an agro-industrial
substrate based on 2% (w/v) glycerol as a carbon source. The
biosurfactant was produced for 120 h at 32°C. The CMC of the
crude biosurfactant was evaluated by the Du-Noüy ring method
and its value was determined at 250 mg L−1. Although other
authors have obtained 40.7 g/L, using soybean oil and
ammonium nitrate (Sun et al., 2021), the use of a hydrophobic
carbon source is observed, which for the strain used in this article,
we have already reached up to 70.9 g/L using sunflower oil as
carbon source (data not shown). This work concern to use of a by-
product of the Biodiesel industry, such as glycerol. The FTIR
analysis of the pure rhamnolipid is shown in Figure 1. The double
bands at 2,922 and 2,854 cm−1 are assigned to C-H stretching
vibrations of aliphatic groups. The band at 1,735 cm−1

corresponds to C=O stretching bonds of ester and carboxylic
acid groups. The bands between 1,230 and 1,450 cm−1 are typical
of C-H and O-H vibrations of carbohydrates, i.e., rhamnose units
(Leitermann et al., 2008).

Characterization of nZVI
The diffractograms of the synthesized samples are shown in
Figure 2. After synthesized, the samples were evaluated
immediately and submitted to XRD analysis after 30 days.
The bare nZVI sample was indexed as metallic iron (PDF
87-7194), the peaks of which correspond to (1 1 0) and (2 0 0)
crystalline planes. After 30 days, it was observed the decreasing
of the (1 1 0) crystalline iron plane and the arising of the (3 1 1)
plane from the magnetite phase (PDF 74–419) indicates
sample oxidation. The diffractogram of the nZVI-A sample
revealed the presence of different crystalline phases. Besides
metallic iron, magnetite (3 1 1) was also observed. Oxidation
was also observed after 30 days, in which the characteristic

peaks of metallic iron disappeared, and the sample was indexed
as a mixture of magnetite and lepidocrocite (PDF 8–98)
phases. On the contrary, the nZVI-S sample had better
stabilization by rhamnolipids, and the metallic iron phase
was present on freshly synthesized and 30-day old samples.
Therefore, adding the metallic iron nanoparticles to the
rhamnolipids solution results in a more effective surface
functionalization protocol against oxidation. Scherrer’s
equation was used to calculate the average crystallite

FIGURE 1 | FTIR spectrum of rhamnolipids.

FIGURE 2 | X-ray diffraction peaks associated with nZVI particles were
recorded: freshly synthesized samples (lighter colour) and 30-day old samples
(darker colour). The Pattern Diffraction File (PDF) of metallic iron (PDF 87-
7194), lepidocrocite (PDF 8-98) and, magnetite (PDF 74-419) were
displayed as well.
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diameter (DXRD). Table 2 corroborates the SEM data,
demonstrating the nanometric size. The desired crystallinity
phase was obtained. The estimated DXRD of the nanoparticles
shows different sizes among the methods used. The DXRD

increased as follows: nZVI-A< nZVI-S< nZVI.
The surface features of the nanoparticles were evaluated

through zeta potential measurements. A zeta potential greater
than ±30 mV indicates reasonably stable nanoparticles with
low aggregation capacity due to charge equilibrium (Lowry
et al., 2016; Hunter, 1988). Figure 3 shows different isoelectric
points according to the method used to functionalize the
surface nanoparticles. The bare nZVI and nZVI-A samples
exhibited the same profile curve with an isoelectric point
(point of zero charge) (pHpzc) at 7.8, which is compatible
with the range of values found in the literature (7.5–8.9) (Su
et al., 2011; Markova et al., 2014; Wen et al., 2014; Arancibia-
Miranda et al., 2016; Habish et al., 2017). However, a shift was
observed for nZVI-S, with a reduction in pHpzc to 6, which
shows that the nZVI-S sample had more adequate coating
when the iron nanoparticle was functionalized after synthesis
due to the similarity between the rhamnolipid pKa and pHpzc
values. The pKa of the rhamnolipid is 5.6 (Sousa et al., 2014),
while the observed pHpzc was 6, demonstrating that the
surface corresponds to the rhamnolipid rather than the
nanoparticles. Regarding colloidal stability, pH 4 was
chosen to evaluate the zeta potential, once this is the point
which materials will be applied. The results show that the bare

nZVI sample had the highest value (37.2 mV), followed by
nZVI-A (35.1 mV) and nZVI-S (6.3 mV). Although the nZVI-S
sample had the lowest zeta potential value, the coating of themagnetic
core by the rhamnolipids conferred steric stability to the compound.

The average diameter size of nZVI is shown in Figure 4.
The bare nZVI had a shortened peak with a large base and an
average diameter of 50 nm, while the average diameter of the
nZVI-A and nZVI-S samples was approximately 60 and
42 nm, respectively. The larger average diameter for nZVI-
A could be related to the addition of the rhamnolipid, as this
biosurfactant has acid pH, which, in this situation, led to the
formation of large aggregates, as observed by Dahrazma, et al.
(2008) and Ishigami, et al. (1987). The formation of these
aggregates is evidenced in the DLS analysis and SEM images
(Figure 5).

Figure 5 displays the SEM images of bare nZVI, nZVI-A and
nZVI-S. Bare nZVI was agglomerated in large clusters
(Figure 5A). The morphology of nZVI differed depending on
the time of the addition of rhamnolipids. As shown in Figure 5B,
nZVI-S had less dispersed and smaller nanoparticles, whereas
those of nZVI-A tended to be more agglomerated and

FIGURE 3 | Zeta potential and pzc of nZVI.

FIGURE 4 | Average particle diameter size distribution of nZVI particles.

TABLE 2 | Average crystallite diameter according to Scherrer’s equation. *
Crystallographic plane (1 1 0) and ** (3 1 1).

Sample Crystallite diameter (nm)

nZVI-S 7.88 *
nZVI-S 30 d 7.16 *
nZVI-A 6.52 **
nZVI-A 30 d 4.77 *
nZVI 9.05 *
nZVI 30 d 11.3 **
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consequently slightly larger (Figure 5C). This pattern was
confirmed by the DLS analysis.

The thermal behavior of samples was investigated by TGA
and DTG. The results are shown in Figure 6.

It is possible to identify two different regions in the TGA curve for
bare-nZVI. The first region between 50 and 120°C, corresponds to a
weight loss, due to the removal of physically bounded water and
acetone from synthesis (Habish et al., 2017). The region near 189°C

FIGURE 5 | SEM images of (A) bare-nZVI (B) nZVI-A (C) nZVI-S.

FIGURE 6 | TGA and DTA curves for (A) bare-nZVI, (B) nZVI-A and (C)
nZVI- S.

TABLE 3 | Regions of weight loss and gain (%) of nZVI-A and nZVI-S samples.

Region Temperature °C Weight nZVI-A (%) nZVI-S

I 50–230 Loss 8 9%
II 230–480 Loss 5 5%
III 480–700 Gain 1 0.5%
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shows a slight change in the baseline without a peak and the DTA
curve shows an exothermic peak, indicating the dehydration of the
sample. In the second region, over 400°C, the gain mass is
continuous at approximately 3%, the DTA curve presents an
exothermic peak indicating oxidation on the bulk of the
nanoparticle (Földvári, 2011). For the nZVI-A and nZVI-S
samples, the TGA curve show three regions and the weight
percentages are shown in Table 3.

The first region of weight loss, comprising between 40 and
230°C, corresponds to the removal of residual water and
acetone from synthesis (Habish et al., 2017). In this range,

the DTA curve indicates an endothermic peak at 100°C, which
corresponds to a dehydration reaction. The second region of
weight loss occurs with a slight change in the baseline without
a peak between 230 and 480°C, due to decomposition and
elimination of organic backbone from rhamnolipids (Pui
et al., 2013). The third region, over 480°C, is characterized
by a slight gain of weight due to the oxidation of the nZVI. The
DTA curve of nZVI-A and nZVI-S samples shows
endothermic peaks. The DTA curve shows exothermic
signals at 230 and 480°C which is in agreement with to
weight loss phenomena. Over 480°C the DTA curve also

FIGURE 7 | Effect of time and initial nitrates concentration on nitrates reduction using nZVI at pH 4 (A) 25 mg/L NO3 (B) 50 mg/L NO3 (C) 100 mg/L NO3 and effect
of time and initial nitrates concentration on ammonia concentration using nZVI at pH 4 (D) 25 mg/L NO3 (E) 50 mg/L NO3 (F) 100 mg/L NO3.
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show exothermic characteristic, that is associated with weight
gain associated with the oxidation of the nZVI particles.

Nitrate Reduction by nZVI Under Low pH
Conditions
Fe0 is thermodynamically unstable in water. Dissolved oxygen
is an oxidant and causes rapid corrosion of iron [Eq. 4]. On
the other hand, under anaerobic conditions, water serves as
the oxidant and corrosion takes place, producing hydrogen
gas and hydroxide ions [Eq. 5]. The corrosion process results
in an increase in pH media. Under acidic and anoxic
conditions, the corrosion rate of iron is faster than iron
corrosion by water [Eq. 6].

2Fe0 + O2+2H2O → 2Fe2++4OH− (4)
Fe0+2H2O → Fe2+ +H22OH

− (5)
Fe0+2H+ → Fe2+ +H2 (6)

Several pathways of nitrate reduction by nZVI have been
proposed, such as the following equations.

4Fe0+NO−
3+7H2O → NH+

4+4Fe2++10OH− (7)
5Fe0+2NO−

3+6H2O → N+
2+5Fe2++12OH− (8)

Figure 7 compares the nitrate reduction rates achieved with
bare nZVI, nZVI-S and, nZVI-A samples. The nitrate
reduction was observed in the first 15 min; thereafter, the
reaction remained nearly constant. The nZVI-S
nanoparticles exhibited a higher kinetic constant than bare
ZVI and nZVI-A, respectively, as shown in Table 4. In the first
15 min of the reaction, nZVI-S achieved nitrate efficiency
removal of 78.62%, 77.65% and 68.89% for 25, 50, and
100 mg L−1 of NO3 solution, respectively. The nitrate
removal with nZVI-A was comprised between 20.18 and
12.45%, while the bare nZVI were approximately 47, 57%,
and 43.54%. The control group test shows no nitrate reduction
in presence of the biosurfactant.

To quantify the reaction rate, a pseudo-first-order reaction
model (Eq. 3) was used to fit the kinetic data (Johnson et al.,
1996). A high initial reduction rate was found when the initial
concentration of nitrate was low. The observed surface reaction
rate constant (kobs) (Table 4) for nZVI-S increased from 0.078 to
0.107 min−1 at a 15-min reaction time when the initial nitrate
concentration was decreased from 100 to 25 mg L−1. For bare
nZVI and nZVI-A, the kobs remained nearly constant, with
values of 0.043 and 0.015, respectively, when the initial

concentration was 25 mg L−1. The reaction did not slow down
because of insufficient iron, since iron was added in
stoichiometric excess in all experiments. The amount of nZVI
(5 g) was not enough to react with the initial nitrate concentration
according to the chemical reactions described above (Eqs 5, 6).
Hausmann and Syldatk (1998), found complete nitrate reduction
when the Fe0 concentration was increased to 10 g L−1.

Figures 7A–D demonstrates that the nitrate removal rate
diminished substantially over time. Hydroxide ions were
formed as nitrate was reduced. Since no additional acid was
added, the OH− accumulated, thus reducing the nitrate
removal reaction (Hausmann and Syldatk, 1998; Liu et al.,
2014). This behavior is consistent with the results presented in
Figure 3, indicating that there was a surface modification on
the nanoparticle. The concentration of ammonia did not
increase with an increase in the initial concentration of
nitrate (Figures 7D–F). Approximately 45% of nitrate was
transformed into ammonia using 5 g of nZVI, showing that
nZVI-S followed reaction Eqs 5, 6, whereas bare nZVI and
nZVI-A did not transform nitrate into ammonia, probably
following only Eq. 6.

CONCLUSION

The present study presents the potential of using the rhamnolipid
biosurfactant, obtained in a sustainable way (use of glycerol as a
carbon source), in the preparation of nZVI as a stabilizer,
increasing its stability and performance in terms of NO3

removal. Rhamnolipids are a promising alternative to synthetic
surfactants for the synthesis and surface functionalization of zero
valence iron nanoparticles. With the success achieved in this
application, one more use of the rhamnolipid produced by P.
aeruginosa LBI 2A1 is potentiated. The nanoparticles prepared
with the rhamnolipid coating remained stable for 1 month, thus
showing the efficiency of the process. The XRD analysis showed
that the Fe0 intensity decreased gradually over time for both bare
nZVI and nZVI-A, whereas a better response was found for
nZVI-S, with the rhamnolipid concentration above the CMC.
Compared to bare nZVI particles, nZVI-A and nZVI-S were
stable in an aqueous solution and not easily oxidized and/or
aggregated. Based on the efficient removal capacity and the
observed first-order coefficient (kobs), NO3 removal by the
different prepared materials followed the order of nZVI-S >
bare nZVI > nZVI-A. In the presence of bare nZVI, most of
the NO3 was not converted into NH4. For successful long-term
groundwater field treatments using nZVI coated with
rhamnolipids, a more detailed study of the chemical

TABLE 4 | Observed pseudo-first-order rate coefficient of nitrate reduction with nZVI.

NO3 (mg
L−1)

Bare-nZVI nZVI-S nZVI-A

Efficiency removal (%) kobs Efficiency removal (%) kobs Efficiency removal (%) kobs

25 47.57 0.043 78.62 0.107 20.18 0.015
50 43.54 0.038 77.65 0.101 12.45 0.009
100 46.29 0.041 68.89 0.078 13.62 0.010
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processing as well as the application of nanoparticles in situ
should be carried out since the focus of this study was to verify the
potential of nanoparticles obtained in the removal of nitrate from
the aqueous medium. The results presented lead to the conclusion
that the application of rhamnolipids as a coating for zero iron
nanoparticles has potential and adds to those existing in the
literature for use in the removal of metals such as cadmium and
lead, since there is no mention of the use of rhamnolipids in the
stabilization of zero iron nanoparticles to remove NO3 from
groundwater.
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