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Abstract

Biological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand
the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of
these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such
interacting subsystems. We base our work on a standard notion of causal effects and define a new concept called natural
causal effect. This new concept takes into account that when studying interactions in biological systems, one is often not
interested in the effect of perturbations that alter the dynamics. The interest is instead in how the causal connections
participate in the generation of the observed natural dynamics. We identify the constraints on the structure of the causal
connections that determine the existence of natural causal effects. In particular, we show that the influence of the causal
connections on the natural dynamics of the system often cannot be analyzed in terms of the causal effect of one subsystem
on another. Only when the causing subsystem is autonomous with respect to the rest can this interpretation be made. We
note that subsystems in the brain are often bidirectionally connected, which means that interactions rarely should be
quantified in terms of cause-and-effect. We furthermore introduce a framework for how natural causal effects can be
characterized when they exist. Our work also has important consequences for the interpretation of other approaches
commonly applied to study causality in the brain. Specifically, we discuss how the notion of natural causal effects can be
combined with Granger causality and Dynamic Causal Modeling (DCM). Our results are generic and the concept of natural
causal effects is relevant in all areas where the effects of interactions between subsystems are of interest.
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Introduction

Biological systems often consist of multiple interacting subsys-

tems. An important step in the analysis of such systems is to

uncover how the subsystems are functionally related and to study

the effects of functional interactions in the system. A prominent

example of a biological system with interacting subsystems is the

brain, having interconnected ‘units’ at many different levels of

description: e.g. neurons, microcircuits, and brain regions. It is the

current belief that much of what we associate with brain function

comes about through interactions between these different

subsystems, and to characterize these interactions and their effects

is one of the greatest challenges of the Neurosciences. Note that

this is not only an experimental challenge but also a conceptual

one. Indeed, even if given access to all the relevant variables in the

nervous system, it is far from obvious how to analyze how brain

activity relates to function.

In neurophysiology, the traditional approach to link brain

activity to function is to perturb the nervous system and observe

which variables change as a function of the perturbation. For

example, many cells in primary sensory cortices elicit spikes at a

rate that depends on a particular property of the stimulus (e.g.

[1,2]), and cells in the primary motor cortex tend to elicit spikes in

relation to sensory conditioned movements (e.g. [3]). This

approach is based on a conceptual cause-and-effect model: The

perturbation (e.g. sensory stimulus) is the cause and the response of

the nervous system (e.g. an increase in firing rate) the effect. There

are two aspects of this experimental situation that allow a cause-

and-effect interpretation: the perturbation is exogenous, or

external, to the system; and, the effect follows the cause only after

some temporal delay. That the perturbation is exogenous makes it

possible to disentangle spurious dependencies from those due to a

mechanistic (causal) coupling. The temporal delay between cause

and effect is in line with the intuitive notion that a cause must

precede its effect in time, and with our current understanding of

the underlying mechanisms (e.g. how light is transformed into

membrane currents and propagated through the visual system of

the brain). This cause-and-effect model has been successfully

applied to studies of response properties of single cells and brain

regions, as well as to the relation between isolated limb movements

and corresponding neuronal activity.

Perhaps inspired by the success of the cause-and-effect models

in sensory and motor neurophysiology, workers have more

recently started to look at interactions between different brain

regions using the same framework. That is, researchers try to

characterize the activity of one subsystem in terms of how it is

caused by the activities of other subsystems. Indeed, a lot of

theoretical and experimental work has been directed at investi-
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gating what has been called ‘direction of information flow’ (e.g.

[4]), ‘causal relations’ (e.g. [5]), ‘causal influences’ (e.g. [6]), or

‘effective connectivity’ (e.g. [7,8]), to just mention a few. A major

difference with respect to the type of studies mentioned above is

that the ‘cause’ is typically not a perturbation introduced by the

experimenter. Rather, the joint natural activity of the subsystems is

decomposed in causes and effects by statistical techniques. One

crucial implication of this difference is that direction of the ‘causal

flow’ is not restricted a priori: Contrary to the case of an externally

applied stimulus, where the causality (if any) must ‘flow’ from the

stimulus to the brain, in the case of two interacting brain systems it

is quite possible that there is ‘causal flow’ in both directions. We

will see that this bidirectionality has serious consequences for a

cause-and-effect interpretation of interactions in the natural brain

dynamics.

In this work we take a critical look at the cause-and-effect

framework and demonstrate some fundamental shortcomings

when this framework is used to study the natural dynamics of a

system. We base our work on a standard model of causality that

has emerged in the fields of statistics and artificial intelligence

during the last decades (e.g. [9,10]), synthesized in the framework

of interventional causality proposed by Pearl [10]. In this

framework external interventions (i.e. perturbations) of the system

play a major role, both in defining the existence of causal

connections between variables as well as in quantifying their

effects. In our work we focus on situations where the interest is in

characterizing the effects of natural interactions going on in a

system. In such situations external interventions can not be used to

quantify causal effects as they would typically disrupt the natural

dynamics (c.f. [11]). We will analyze the conditions under which

the natural interactions between subsystems can be interpreted

according to a cause-and-effect framework. That is, our work is

not about determining if a causal connection exists or not, but

rather how to interpret the effects of existing causal connections.

We derive conditions for when the interactions between two

subsystems can be interpreted in terms of one system causing the

other. The main requirement is that the causing subsystem acts as

an exogenous source of activity. In particular, we show that the

effects of interactions between mutually connected subsystems

typically cannot be interpreted in terms of the effects that the

individual subsystems exerts on the remaining ones. A conclusion

of our work is therefore that the cause-and-effect framework is of

limited use when characterizing the internal dynamics of the brain.

The analysis is general and our conclusions therefore have

important consequences for the interpretation of previous studies

using different measures of ‘causality’, including Granger causality

and Dynamic Causal Modeling.

Results

In this section we first argue that it is important to distinguish

between three different types of questions asked about causality

and we introduce some basic notions about causal graphs. We

then, in a number of subsections, develop what is needed to reach

the main goal of the paper: to state conditions for when the effects

of natural interactions between variables can be given a cause-and-

effect interpretation. To reach this goal, we first give a brief

overview of the interventional framework of causality. We then

introduce an important distinction between situations where the

main interest is the effect of external interventions and situations

where the main interest is the impact of the causal connections on

the dynamics happening naturally in the system. Next the

conditions for when the natural interactions can be given a

cause-and-effect interpretation are stated. Subsequently, we derive

the consequences of these conditions for the special case of

bivariate time series. We further suggest some novel approaches to

the analysis of causal effects. Then we show how our work

complements and extends two common approaches of ‘causality’

analysis: Granger Causality and Dynamic Causal Modeling

(DCM). Finally we apply the analysis of causal effects to a simple

model system to illustrate some of the theoretical points made.

In this work we are concerned with sets of variables and their

interactions. We assume that the state of the variables is uncertain

and that we have access to the (possibly time-dependent) joint

probability over the variables. This is to avoid issues related to

estimation from data. Our results are generic but it might be

instructive to think of the variables as corresponding to the states

of a set of neurons or other ‘units’ of the brain. We will further

assume that the variables interact directly with each other, that is,

that the variables are, or might be, causally connected. Note that

experimental data sometimes reflect non-causal variables such as

the blood oxygenation level depend (BOLD) signal and local field

potentials (LFPs), in which case some additional level of modeling

might be needed in order to make inferences about causality (c.f.

[12]).

Three questions about causality
To put our work in proper context and to facilitate a

comparison with existing approaches to causality it is helpful to

separate questions about causality into the following three types:

Q1: Is there a direct causal connection from Y to X?

(existence)

Q2: How is the causal connections from Y to X implemented?

(mechanism)

Q3: What is the causal effect of Y on X? (quantification)

(here X and Y are two generic, and possibly high-dimensional,

variables). We will show that it is important to keep these questions

separate, and that different approaches are typically required to

answer them. This might seem obvious, but in fact these three

questions are often mixed into a ‘causality analysis’, and tools

appropriate for the first two questions are often erroneously used

to address also the third.

The first question (Q1) addresses the existence of a direct causal

connection between two variables. A causal connection is a

directed binary relation that carries only qualitative information. If

the distribution of X is invariant to perturbations in Y there is no

causal connection from Y to X . The total set of causal connections

in a system is referred to as the causal structure. For a system

containing a set V of variables Vk, k~1,:::,n, the causal structure

can very conveniently be represented as a causal graph in which the

nodes correspond to the variables and directed edges point from

Vk to Vk’ if there is a direct causal connection from Vk to Vk’. For

example, Figure 1A, shows a causal graph where there are direct

causal connections from Z to Y , from Z to X , and from Y to X . If

the causal graph is without cycles (i.e. forming a directed acyclic

graph, DAG) then the joint probability over the variables can be

factorized according to the causal structure e.g. [10]. This is an

important and useful result that we will use below and that is used

extensively in the interventional framework of causality (see

below). In fact this factorization following the causal structure is

fundamental to relate the interventions to the joint probability (see

Supporting Information S1). The causal graph contains all

information needed to answer Q1. Unfortunately inferring the

causal graph from observed data (here, the joint distribution) is in

general not possible. A given joint distribution might be

compatible with different causal structures [10], in which cases

Limits of Causality Analysis
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these graphs are said to be observationally equivalent [13]. Further-

more, the difficulty to infer the causal graph increases if there are

hidden variables, i.e. variables that are not observed. The

traditional approach to Q1 is therefore to experimentally modify

(perturb) one variable and study the impact on the remaining ones.

For example, the graphs in Figure 1A and 1B are both consistent

with a statistical dependence between X and Y . If Z is not

observed, it is not possible to distinguish between ‘Y is causing X ’

and ‘Y is not causing X ’ without intervening (i.e. perturbing) the

system (see below). On the other hand, if Z is observed we see that

for the graph in Figure 1B, X and Y are conditionally

independent given Z, while for that in Figure 1A conditioning

on Z does not render X and Y independent. In these types of

causal structures Z is considered a confounder because, being a

common driver, it produces a statistical dependence between X
and Y even without the existence of any direct causal connection

between them.

Consider now the second question (Q2) about the mechanisms

implementing the causal connections. In the ideal case the answer

to this question would be given in terms of a biophysically realistic

model of the system under study. However, often one has to make

do with a phenomenological model that captures enough features

of both structure and dynamics to give an adequate description of

the system. That is, a model that is at some level functionally

equivalent to the real physical system. Such a functional model would

contain a formal description of how the variables in the system are

generated, and how each variable depends on the other ones. For

the causal graph of Figure 1A, the following formal equations

define a functional model:

Z~fZ(Uz)

Y~fY (Z,Uy)

X~fX (Z,Y ,Ux),

where the U -terms stand for random (non-observable) distur-

bances. We note that deriving a functional model from a detailed

biophysical model, without modifying the impact of the causal

interactions, might not be trivial. Nor is it trivial to go from

experimental observations to a functional model that allows causal

inference about the real physical system.

Since the model built to answer Q2 must already contain all the

needed information to draw the corresponding causal graph,

answering Q2 implies also answering Q1. In particular, any

variable inside the function fVk
is considered a parent of Vk (the set

of all parents is denoted pa(Vk)) and an arrow from it to Vk is

included in the graph. Since the functional model is supposed to

reflect the underlying mechanisms generating the variables, the

parents pa(Vk) are the minimal set of variables with a direct causal

connection to Vk. In such modeling approaches to causality it is

important to emphasize that all notions of causality refer to the

model and not to the system that is being modeled. In other words,

only if the model is a faithful description of the process generating

the variables can it be used as a model of real causal interactions.

In biology in general and in neuroscience in particular, the

variables of interest are often functions of time. In such cases the

functional model must be formulated in terms of dynamic

equations (typically as difference or differential equations) and

the variables represented in the causal graph will correspond to

particular discrete times. In fact, for differential equations (i.e.

representing a time-continuous dynamics), the causal graph

corresponds only to a discrete representation of the equations

(see [14] for a discussion of the correspondence between discrete

and continuous models).

Since the answer to Q2 contains a model consistent with the

mechanisms implementing the causal connections one may think

that this would also be enough to answer Q3, i.e. the causal effect

of Y on X . However, answering Q3 is not so straightforward. It is

clear that the causal graph (Q1) does not contain information

about the impact of the causal connections but only about their

existence. Similarly, from a set of dynamic equations the resulting

dynamics are only implicitly represented. This means that the

effects of the causal connections modeled by the equations can

typically not be read off directly from the equations. Rather, the

quantification of the causal effect has to be done by analyzing the

dynamics, either using observed data or, given the ‘correct’ model

that generated the data, using simulated data from the model or

analytical techniques. However, even if the required data are

available, one further needs to clearly define what is meant by the

causal effect that results from the causal connections. Therefore,

question Q3 has to be addressed separately and is typically not

reducible to answering Q2 or Q1.

In the rest of this work we will focus on this last question related

to the analysis and quantification of causal effects (Q3). Following

the distinction between the three questions about causality

discussed above we will be very precise with our terminology:

First, when talking about causal connections we will refer only to the

causal structure in the graph. That is, a causal connection from

variable Y to variable X exists if and only if it is possible to go

from Y to X following a path composed by arrows whose

direction is respected. In particular, a direct causal connection from Y
to X is equivalent to the existence of an arrow from Y to X . For

two sets of variables the causal connection between the sets exists if

it exists between at least a pair of variables. Second, when talking

about the causal effect from Y to X we will refer to the impact or

influence of the causal connections from Y to X . This impact

depends on the causal structure, on the actual mechanisms that

implement it, and is, as we will see, only appreciable in the

dynamics.

Causal effects in the framework of Pearl’s interventions
In this section we will define causal effects using the framework

of interventional causality developed by Judea Pearl and

coworkers (e.g. [10]). We note that this framework is closely

related to the potential outcomes approach to causality developed

by Donald Rubin and coworkers (e.g. [9]) and that the causal

effect used in that approach is fully compatible with the

corresponding entity in the interventional framework. The

Figure 1. Causal graphs illustrating the effect of interventions.
A: Graph showing a case where the statistical dependence between Y
and X is (partly) due to a causal interaction from Y to X . B: Graph
showing a case where the statistical dependence between Y and X is
induced solely by the confounding variable Z. C: Graph corresponding
to the intervention do(Y~y’) in the causal graph shown in A. D: Graph
corresponding to the intervention do(Y~y’) in the causal graph shown
in B.
doi:10.1371/journal.pone.0032466.g001
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definition of causal effects stated below can therefore be

considered a ‘standard’ definition.

The starting point of the interventional framework is the

realization that a causal connection between two variables can

typically only be identified by intervening. That is, by actively

perturbing one variable and studying the effect on the other. This is of course

what experimentalists typically would do to study cause-and-effect

relations. As a motivating example, consider paired recordings of

membrane potentials of two, possibly interconnected, excitatory

neurons (X and Y say). If we observe that membrane potential of

neuron X tends to depolarize briefly after neuron Y elicited an

action potential, we might be tempted to conclude that Y has

causal influence over X . However, the same phenomenon could

easily be accounted for by that X and Y are receiving common (or

at least highly correlated) inputs. The obvious thing to do in order

to distinguish these two scenarios is to intervene, i.e. to force Y to

emit an action potential (e.g. by injecting current into the cell). If

depolarizations of the membrane potential of X are consistently

found after such interventions, we are clearly much more entitled

to conclude that Y has a causal influence over X . Note that the

crucial aspect of the intervention is that it ‘forces’ one variable to

take a particular value (e.g. fire an action potential) independently

of the values of other variables in the system. It therefore ‘breaks’

interdependencies that are otherwise part of the system and hence

can be used to distinguish between causal and spurious

associations. The recent study by Ko et al. [15] is an excellent

example of how interventions can be used to determine the causal

structure between single neurons, and how this structure can

account for observed statistical dependencies.

One of the contributions of the interventional framework of

causality is that it formalizes the notion of an intervention and

develops rules for how interventions can be incorporated into

probability theory [10]. Symbolically an intervention is represent-

ed by the ‘do(:)’ operator. For example, setting one variable, Vk,

in the system to a particular value, v, is denoted do(Vk~v). These

interventions to a fixed value are commonly used in framework of

Pearl’s causality. Experimental interventions rarely can be exactly

controlled, but the important point is not that a variable can be

fixed to a given value but that the mechanisms generating this

variable are perturbed. We will see below that the variability in the

intervention can be captured introducing a probability distribution

of interventions P(do(Vk~v)). The effect of an intervention on the

joint distribution is most easily seen when the joint distribution is

factorized according to a causal graph. In this case the intervention

do(Vk~v) corresponds to deleting the term corresponding to Vk

in the factorization and setting Vk~v in all other terms depending

on Vk. This truncated factorization of the joint distribution is

referred to as the postinterventional distribution, that is, the distribution

resulting from an intervention. In Supporting Information S1 we

give a formal definition of the effect of an intervention and some

examples. Graphically, the effect of an intervention is particularly

illuminating: intervening in one variable corresponds to the

removal of all the arrows pointing to that variable in the causal

graph. This represents the crucial aspect of interventions

mentioned above: intervention ‘disconnects’ the intervened

variable from the rest of the system. Figure 1A and B illustrate

two different scenarios for how a statistical dependence between Y
and X could come about. If only Y and X are observed, these

scenarios are indistinguishable without intervening. The causal

graphs corresponding to the intervention do(Y~y’) are shown in

Figure 1C and D. It is clear that only the graph shown in Figure 1C

implies a statistical relation between Y and X illustrating how the

intervention helps to distinguish between causal and spurious (non-

causal) associations. Indeed, interventions can generally be used to

infer the existence of causal connections. Conditions and measures

to infer causal connectivity from interventions have been studied

for example in [16,17].

Given this calculus of interventions, the causal effect of the

intervention of a variable Y on a variable X is defined as the

postinterventional probability distribution p(xjdo(Y~y)) (see

Definition 3.2.1 in [10] and Supporting Information S1). This

definition understands the causal effect as a function from the

space of Y to the space of probability distributions of X . In

particular, for each intervention do(Y~y’), p(xjdo(Y~y’))
denotes the probability distribution of X given this intervention.

In Supporting Information S1 we show how p(xjdo(Y~y’)) can

be computed from a given factorization of the joint distribution of

X and Y . Note that this definition of causal effect is valid also if X
and Y are multivariate.

This definition of causal effects is very general and in practice it is

often desirable to condense this family of probability distributions

(i.e. one distribution per intervention) to something lower-

dimensional. Often the field of study will suggest a suitable measure

of the causal effect. Consider the example of the two neurons

introduced above, and let do(Y~y’) denote the intervention

corresponding to making neuron Y emit an action potential. To not

introduce new notation we let X and Y stand for both the identity of

the neurons as well as their membrane potentials. Then a

reasonable measure of the causal effect of Y on X could be

E(X jdo(Y~y’)){E(X ): ð1Þ

That is, the difference between the expected values of the

postinterventional distribution p(X jdo(Y~y’)) and the marginal

distribution p(X ) (c.f. [18]). In other words, the causal effect

would be quantified as the mean depolarization induced in X
by an action potential in Y . Clearly this measure does not

capture all possible causal effects, for example, the variability

of the membrane potential could certainly be affected by the

intervention.

Intervening one variable is similar to conditioning on this

variable, this is illustrated both in the notation and also in the

effect of an intervention on the joint distribution. However, there

is a very important difference in that an intervention actually

changes the causal structure whereas conditioning does not. As

mentioned above, it is this aspect of the intervention that makes it

a key tool in causal analysis. Formally, this difference is expressed

in that p(X jdo(Y~y’)) in general differs from p(X jY~y’).
Consider for example the case when X is causing Y but not the

other way around, i.e. X?Y , then P(X jdo(Y~y’))~P(X )
whereas, in general, P(X jY~y’)=P(X ).

A very important and useful aspect of this definition of casual

effect is that if all the variables in the system are observed the

causal effect can be computed from the joint distribution over the

variables in the observed non-intervened system. That is, even if

the causal effect is formulated in terms of interventions, we might

not need to actually intervene in order to compute it. See

Supporting Information S1 for details of this procedure and S2 for

the calculation of causal effects in the graphs of Figure 1. On the

other hand, if there are hidden (non-observed) variables, physical

intervention is typically required to estimate the causal effect.

Requirements for a definition of causal effect between
neural systems

The definition of causal effects stated above is most useful when

studying the effect of one or a few singular events in a system, that

Limits of Causality Analysis
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is, events isolated in time that can be thought of in terms of

interventions. However, in neuroscience the interest is often in

functional relations between different subsystems over an extended

period of time (say, during one trial of some task). Furthermore,

the main interest is not in the effect of perturbations, but in the

interactions that are part of the brains natural dynamics. Consider

for example the operant conditioning experiment, a very common

paradigm in systems neuroscience. Here a subject is conditioned to

express a particular behavior contingent upon the sensory stimuli

received. Assume we record the simultaneous activity of many

different functional ‘units’. Then a satisfactory notion of causal

effect of one unit on another should quantify how much of the

task-related activity in one unit can be accounted for by the impact

of the causal connections from the other, and not the extent to

which it would be changed by an externally imposed intervention.

Of course, there are other cases where the effect of an intervention

is the main interest, such as for example in studies of deep brain

stimulation (e.g. [19]). In these cases the interventional framework

is readily applicable and we will consequently not consider these

cases further. We will instead focus on the analysis of natural brain

dynamics which is also where DCM and Granger causality

typically have been applied.

These considerations indicate some requirements for a defini-

tion of causal effects in the context of natural brain dynamics.

First, causal effects should be assessed in relation to the dynamics

of the neuronal activity. From a modeling point-of-view this

implies that the casal effect can typically not be identified with

parameters in the model. Second, the causal effects should

characterize the natural dynamics, and not the dynamics that

would result from an external intervention. This is because we

want to learn the impact of the causal connections over the

unaltered brain activity.

We will refer to causal effects that fulfill these requirements as

natural causal effects between dynamics. We will now see that it is

possible to derive a definition of natural causal effects between

dynamics from the interventional definition of causal effects. We

start by examining when natural causal effects between variables

exist and in the following section we consider natural causal effects

between dynamics.

Natural causal effects
As explained above, a standard way to define causal effects is in

terms of interventions. Yet, many of the most pertinent questions

in neuroscience cannot be formulated in terms of interventions in

a straightforward way. Indeed, workers are often interested in the

‘the influence one neural system exerts over another’ in the

unperturbed (natural) state [8]. In this section we will state the

conditions for when the impact of causal connections from one

subsystem to another (as quantified by the conditional probability

distribution) can be given such a cause-and-effect interpretation.

We first consider the causal effect of one isolated intervention.

For a given value y of the random variable Y , we define the natural

causal effect of y on the random variable X to be p(xjY~y) if and only if

p(xjY~y)~p(xjdo(Y~y)): ð2Þ

In words, if and only if conditioning on y is identical to intervening

to Y~y, the influence of y on X is a causal effect that we call a

natural causal effect. Since the observed conditional distribution is

equal to the postinterventional distribution given Y~y, we

interpret this as the intervention naturally occurring in the system.

Note that this definition implies that if Eq. 2 does not hold, then

the natural causal effect of y on X does not exist.

Next we formulate the natural causal effect between two (sets of)

random variables. The natural causal effect of Y on X is given by

p(xjY~y)p(Y~y) ð3Þ

if and only if Eq. 2 holds for each value of Y . Note that Eq. 3 is a

factorization of the joint distribution of X and Y . Indeed we have

p(X~x,Y~y)~p(xjY~y)p(Y~y): ð4Þ

This means that if Eq. 2 holds for each value of Y then the natural

causal effect of Y on X is given by the joint distribution of X and

Y . At first glance it might seem strange that the factor p(Y~y)
appears in the definition of the natural causal effect (Eq. 3). After

all, the effects of the causal interactions are ‘felt’ only by X , and we

think of Y as being the cause. However, it is clear that the

conditional distributions p(xjY~y) will in general depend on y
which means that to account for the causal effects of Y on X we

need to consider all the different values of Y according to the

distribution with which they are observed. This means that we

must consider how often the different single natural interventions

Y~y happen, that is, we need to include p(Y~y) in the

definition.

An important characteristic of natural causal effects is that the

interventions they represent are not chosen by an experimenter (or

policy maker) but are ‘chosen’ by the dynamics of the system itself.

This means that we can think of the natural causal effect of Y on

X as the joint effect of all possible interventions p(xjdo(Y~y))
with the additional constraint that the distribution of the

interventions is given by

p(do(Y~y))~p(Y~y): ð5Þ

We can thus separate the definition of the natural causal effect

from variable Y to X into two different criteria. The first one is a

criterion of existence of natural causal effects of y on X (Eq. 2), which

determines when interventions occur naturally in the system. The

second one, is a criterion of maintenance of the natural joint distribution

(Eq. 5), which interprets the observed marginal distribution of the

intervened variable as a distribution of interventions, so that the

natural joint distribution is preserved (Eq. 4).

We now turn to the conditions on the causal structure under

which natural causal effects exist. This means that we need to

identify the conditions for which

p(xjY~y)~p(xjdo(Y~y)), Vy: ð6Þ

In the interventional framework, this condition on the causal effect

on X of intervening Y is called not confounded (Ch. 6 in[10]).

Importantly, the fulfillment or not of this condition is determined

only by the causal structure. In particular, in Supporting

Information S1 we demonstrate that Eq. 6 holds if the following

two conditions are fulfilled: First, that there are no causal

connections in the opposite direction (i.e. from X to Y ). Second,

that there is no common driver of X and Y . These two conditions

assure that the dependence reflected in the conditional probability

p(xjY~y) is specific for the causal flow from Y to X . Notice

though, that the presence of mediating variables is allowed, that is,

a natural causal effect can be due to indirect causal connections.
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See Figure 2A for an illustration of a causal graph supporting

natural causal effects that are partly indirect.

We emphasize that if Eq. 6 does not hold then the impact on X

of the causal connections from Y to X cannot be given a cause-

and-effect interpretation. An example of this is given in Figure 2B

where Z is a common driver of both X and Y which therefore

precludes a cause-and-effect interpretation of the joint distribution

of X and Y . In this case we can still calculate the causal effect of

an intervention, p(xjdo(Y~y)), according to

p(xjdo(Y~y))~
X

z

p(xjY~y,Z~z)p(Z~z), ð7Þ

see Supporting Information S1 for a detailed calculation. It might

seem contradictory that on the one hand side, the impact of the

causal connections from Y to X does not result in a natural causal

effect and on the other hand side we can still compute the causal

effect of y on X using the above formula. The key here is what we

add by the modifier ‘natural’. To illustrate this, consider what

would happen if we were to reconstruct the joint distribution of X

and Y from the marginal distribution of Y and the distribution of

the interventions given in Eq. 7. That is, consider the joint

distribution

p�(x,y) ¼D p(xjdo(Y~y))p(Y~y),

with the additional constraint that we choose the distribution of

interventions according to Eq. 5. Now given the formula in Eq. 7

we see that p�(x,y)=p(x,y) (unless, of course, if p(Z)~p(ZjY ),
but this condition is not compatible with Figure 2B, that is, with Z

being a common driver). This means that even if we make sure

that the marginal distribution of Y is the correct one, we cannot

reconstruct the observed natural joint distribution and hence the

natural ’dynamics’ of the variables in the system. In other words,

the interventions change the system and the causal effect is with

respect to this changed system. As mentioned above, sometimes

this is indeed what is desired but in most cases where causality

analysis is applied to the neurosciences the aim is to characterize

what we have called the natural causal effect.

Apart from causal effects of the form p(xjdo(Y~y)), one could

argue that for cases like the one in Figure 2B, it would be relevant

to consider conditional causal effects p(xjZ~z,do(Y~y)). That is,

given that Z is a confounder, a way to get rid of its influence is to

examine the causal effect for each observed value of Z separately.

In analogy with the definition of natural causal effect above we

define the conditional natural causal effect of Y on X given Z~z to be

p(xjY~y,Z~z)p(Y~yjZ~z) ð8Þ

if and only if

p(xjZ~z,Y~y)~p(xjZ~z,do(Y~y)), Vy: ð9Þ

Eq. 9 is analogous to Eq. 2 and constitutes a criterion for the

existence of the conditional natural causal effects. Furthermore, in

Eq. 8 p(Y~yjZ~z) should be interpreted as p(Y~y) in Eq. 5,

being the distribution of the interventions related to the criterion of

maintenance of the natural joint distribution. It is important to

note the different nature of this causal effect with respect to the

unconditional one. In effect, for each value of the conditioned

variable Z there is a (potentially) different natural causal effect of

Y on X . That is, in this case it does not make sense to talk about

the causal effect of Y on X , instead the causal effect is of Y on X
for Z~z. In contrast to the criterion of Eq. 2 this criterion (i.e. Eq.

9) is fulfilled in the causal graph of Figure 2B (see Supporting

Information S1 for the details). We will further address the

interpretation of unconditional and conditional natural causal

effects in a subsequent section below. In Supporting Information

S1 we show the conditions under which Eq. 9 holds. Like for the

unconditional case one of the requirements is that there are no

causal connections in the opposite direction (i.e. from X to Y ).

The other condition is analogous to the lack of common drivers in

the unconditional case. In particular, the influence of any possible

common driver should be blocked by the conditioning on the

variables in Z, or in technical language, Z satisfies the back-door

criterion relative to Y and X (see Definition 3.3.1 in [10]).

We have defined the natural causal effect from one (set of)

variables to another as their joint distribution. In practice it will

often be more convenient to characterize the natural causal effect

with a lower-dimensional measure. Below we will indicate some

possible such measures. However, note that the emphasis in this

work is not so much in applying this framework to data but to

show under which conditions the interactions between subsystems

can be given a cause-and-effect interpretation.

Natural causal effects between brain dynamics
Introducing natural causal effects above we considered X and Y to

be univariate or multivariate random variables. In the case of studying

the interactions between different subsystems of the brain we are led to

consider natural causal effects between time series. We assume that

the variables in the time series are causal, that is, the variables in one

time series can potentially have direct causal influence over variables

in the other. Since we are modeling a system (e.g. the brain) without

instantaneous causality, we will not include instantaneous causality in

the models below. (Note that in applications it might be important to

have a high enough sampling rate to avoid ‘instantaneous causality’.)

Given two subsystems X and Y with time changing activities we let

fXg~f. . . ,X{2,X{1,X0,X1, . . . ,Xt, . . .g and fYg~f. . . ,Y{2,
Y{1,Y0,Y1, . . . ,Yt, . . .g denote two time series corresponding to

the activities of X and Y. That is, relative to some temporal reference

frame, Xt is the random variable that models the activity in X at

time t.
When asking ‘causality questions’ about time series it is

important to be specific about exactly what is the type of causal

effect of interest. In particular, one could be interested in causal

effects at different scales. For example, the interest could be in the

causal effect of fYg on fXg, which would then be viewed as the

impact of the totality of the causal connections from Y to X .

Indeed, this seem to be the causal effect that has received most

interest in neuroscience (e.g. [8]). Alternatively the interest could

be in the causal effect at a particular point in time, e.g. we could

ask about the causal effect of Yt on Xtz1. Of course, these two

Figure 2. Natural causal effects. Examples of causal graphs
illustrating when the effect of the influence of Y on X can be
interpreted as a natural causal effect (A) and when it cannot (B).
doi:10.1371/journal.pone.0032466.g002
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types of causal effects at different levels of descriptions are related,

but are not equivalent and reflect different aspects of the impact of

the causal connections between the subsystems.

We will use the framework of causal graphs to represent the

causal structure of the dynamics of the subsystems. Since we

assume that there is no instantaneous causality, Xt cannot interact

directly with Yt (and vice versa). We use

X i ¼D fXi,Xi{1,Xi{2, . . .g

to denote the past of fXg, relative to time i. Furthermore, for

simplicity we only represent direct causal connections of order 1 in

the causal graph (i.e. from t to tz1), but our results are generic.

The subsystems can be represented at different scales, according

to the type of causal effect one is interested in. We will consider the

case of two subsystems with unidirectional causal connections from

Y to X (Figure 3A–C), or alternatively with bidirectional causal

connections (Figure 3D–F).

The microscopic representation of the causal structure displays

explicitly all the variables and their causal connections (Figures 3A,D).

At this microscopic level the graph is always a directed acyclic graph

(DAG), given the above assumption of no instantaneous interactions.

The microscopic level is required to examine types of causal effects

that consider some particular intervals of the time series, e.g.

p(xizk,:::,xijdo(Yjzk’~yjzk’,:::,Yj~yj)). If instead we consider the

time series fXg and fYg in their totality we get the macroscopic causal

graph shown in Figure 3C,F. The macroscopic representation is

useful because of its simplicity, with only one node per system, and it

has been often used in the literature e.g. [20–22]. Note that at the

macroscopic level a microscopic DAG can become cyclic (Figure 3F).

At the macroscopic level the only causal effect to consider is

p(fxgjdo(fYg~fyg)). As one intermediate possibility we could

consider a mesoscopic representation (Figure 3B,E). Here the ‘past’ of

the two time series at some point in time (referred to by X i and Y i,

respectively) is only implicitly represented, whereas the ‘future’ (Xiz1

and Yiz1) is explicit. The causal effects related to this representation

are of the type p(xiz1jdo(Y i~yi)), and the conditional causal effects

p(xiz1jX i~xi,do(Y i~yi)). As we will see below, this is the

representation that best accommodates Granger causality.

Different levels of representation may be used depending on the

type of causal effects to be studied. However, it is important to

emphasize that the conditions for the existence of natural causal

effects give consistent results independently of the scale of the

representation. For example, whether the natural causal effects

p(fxgjdo(fYg~fyg)) exist or not can be checked using the

microscopic causal graph. This is because the representations at

the different levels are consistent, so that an arrow in the

macroscopic graph from fYg to fXg exists only if any directed

causal connection from Yk to Xk’ exists. This consistency reflects

that at the macroscopic level the time series are conceived, not just

as a set of random variables, but as representative of the dynamics

of the subsystems. While at the microscopic level the status of the

relation of a variable Yk with another Yk’ may seem equivalent to

the one with Xk’’, being this relation determined by the causal

connections, the consideration of the time series as an entity breaks

this equivalence, because the variables Yk and Yk’ can be merged

as part of the time series fYg, while Yk and Xk’’ are not

considered together at the macroscopic level.

At the macroscopic level, the natural causal effect from time

series fYg to fXg is, in analogy with Eq. 3, given by

p(fxg,fyg)~p(fxgjfYg~fyg)p(fYg~fyg)
~p(fxgjdo(fYg~fyg))p(do(fYg~fyg)),

ð10Þ

and can be seen as reflecting the total influence of the dynamics of

the subsystem Y to the dynamics of X . However, as we mentioned

above, this high-dimensional causal effect is not the only type of

causal effects that can result from the causal connections from Y to

X . Other types of causal effects related to distributions of lower

dimension, like the ones mentioned above, also reflect some

aspects of the impact of the causal connections. This diversity of

types of causal effects indicates that the causal structure should be

seen as a medium that channels different types of natural causal

effects. The idea of quantifying causal effects with a single measure

of strength is an oversimplification, and although in some

circumstances focusing on one of these types of natural causal

effects may suffice to characterize the dynamics, in general they

provide us complementary information.

The causal graphs at different scales can be related to different

types of models. Macroscopic causal graphs have been used to

represent structural equation models (SEM), where time is

ignored. This type of models have been described in detail in

the interventional framework of causality (see Chapter 5 in [10]),

but there is no fundamental limitation of this framework to

functional models that do not take time into account. In fact,

sequential time interventions have also been studied (e. g. [23])

and recently the relation between interventions and Granger

causality in time series was considered [24]. See also the so-called

Dynamic structural causal modeling in [14]. Once time is

explicitly represented like in the microscopic scale, the acyclic

structure of the graph is not incompatible with the representation

of feedback loops between the subsystems.

Figure 3. Graphical representation of causal connections for subsystems changing in time. Causal graphs represent two subsystems with
unidirectional causal connections from Y to X (A–C), or bidirectional causal connections (D–F). From left to right the scale of the graphs changes
from a microscopic level, representing the dynamic, to a macroscopic one, in which each subsystem is represented by a single node.
doi:10.1371/journal.pone.0032466.g003

Limits of Causality Analysis

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e32466



The constraints of the causal structure on the existence
and characterization of natural causal effects between
dynamics

Here we will consider in more detail when natural causal effects

exist and can be characterized, and thus when the question "What

is the causal effect of the subsystem Y on the subsystem X?" is

meaningful. For simplicity we will restrict ourselves to the bivariate

case illustrated in Figure 3.

Consider first the case of unidirectional causal connections from

Y to X in Figure 3A–C. For any type of causal effect that involves

an intervention of some variables of the time series fYg, generally

p(xizk,:::,xijdo(Yjzk’~yjzk’,:::,Yj~yj)), we need to examine if

they are common drivers between Xizk,:::,Xi and Yjzk’,:::,Yj .

Due to the unidirectional causal connections all the common

drivers are contained in fYg. This means that any conditional

causal effect p(xizk,:::,xijY j~yj ,do(Yjzk’~yjzk’,:::,Yj~yj)) is a

natural causal effect. Furthermore, the criterion of existence is also

fulfilled for p(xiz1jdo(Y i~yi)) and p(fxgjdo(fYg~fyg)) (See

Supporting Information S1). In all these cases one can select the

marginal distribution of interventions in agreement with the

natural distribution according to Eq. 5 and thus preserve the

natural joint distribution (Eq. 4). This implies that in the case of

unidirectional causality it is possible to quantify the impact of the

casual connections in terms of the causal effect of Y on X . In the

next section we will indicate how this can be done.

Consider now the case of bidirectional causal connections in

Figure 3D–F. At the microscopic level we see that for Xjz1 and

each variable Yj{k, k§0, the variables Xj{k{k’, k’§1 constitute

common drivers (direct or indirect). This is also reflected in the

mesoscopic time scale, where X i is a common driver of Xiz1 and

Y i and there is a loop between X i and Y i. Therefore, the criterion

of existence of the natural causal effects is not fulfilled in the case of

bidirectional causality.

By contrast, the criterion of existence is fulfilled for the conditional

natural causal effects, for example p(xiz1jX i~xi,do(Y i~yi)) that

we mentioned when we introduced the mesoscopic level. In this case

all the possible common drivers, contained in X i, are conditioned.

Therefore we can say that there are conditional natural causal effects

from Y i to Xiz1 given X i even in the case of bidirectional causality.

However, to determine if this type of conditional causal effects can be

used to characterize the impact of the causal connections from Y to

X , we still have to consider the preservation of the joint conditional

distribution (Eq. 8). In analogy to Eq. 5, to preserve the natural

dynamics we need to select the interventions according to

p(do(Y i~yi)jX i~xi)~p(Y i~yijX i~xi): ð11Þ

That is, we have to choose the interventions conditionally upon

X i, but this is clearly contradictory to the idea of defining a causal

effect from Y to X . Since X i conditions the interventions, we

cannot interpret the causal effect as representative of the impact of

the causal connections from one subsystem to the other. This is

because we do not simply consider the conditional effect of a set of

variables Y i in a variable Xiz1 given a another set of variables X i.

The variables Xiz1 and X i are related since we consider them as

part of a single entity, namely the time series fXg. The conditional

natural causal effects p(xiz1jX i~xi,do(Y i~Y i)) with a distribu-

tion according to Eq. 11 occur given how the causal connections

generate the observed dynamics, but these conditional causal

effects cannot be understood as being from one subsystem to the

other. In particular, the distribution of the natural interventions is

also determined by the causal connections from X to Y.

Altogether, in the case of bidirectional causality, none of the

candidate causal effects considered fulfills the criteria for the

existence of natural causal effects and the maintenance of the joint

distribution. For bidirectional causality the causal effects like

p(xiz1jdo(Y i)~yi) and p(fxgjdo(fYg~fyg)) do not exist as

natural causal effects, while conditional causal effects like

p(xiz1jX i~xi,do(Y i)~yi) take place in the system, but cannot

be understood as causal effects between the subsystems.

We emphasize that what prevents the interpretation of the

conditional natural causal effects discussed above as a causal effect

between the subsystems is to some extent the point-of-view of the

interpreter. What our analysis show is that problems of

interpretation arises when grouping variables together as when

considering fXg as standing for the activity of a particular

subsystem. At the microscopic level, keeping time locality, one can

analyze these conditional natural causal effects. For example,

p(xiz1jXi~x,do(Yi~y)) can be viewed the natural causal effect

of Yi~y on Xiz1 given Xi~x. That is, relative to a particular

time instant, we can meaningfully talk about conditional natural

causal effects. However, note that since Yi does not represent the

dynamics of Y, this natural causal effect cannot be considered the

effect of Y on X .

That we cannot in general answer what is the causal effect of a

brain subsystem on another while processing some stimulus or

performing some neural computation may seem surprising.

However, the definition of the natural causal effects (Eq. 3) was

derived precisely to be consistent with what should be expected

from a definition of causal effect to be used to analyze the natural

activity of brain dynamics. We will now give some arguments to

indicate that the restrictions imposed by the causal structure are in

fact intuitive.

In Figure 3 we showed that, while at the microscopic scale a

DAG is obtained as long as instantaneous interactions are

excluded, at the mesoscopic and macroscopic scales the existence

of bidirectional causality leads to a cyclic graph (Figure 3E–F).

This means that X i and Y i are mutually determined. This mutual

determination can be understood as the impossibility to write a set

of equations such that the dynamics of Y can be determined

previously without simultaneously determining the dynamics of X .

At the microscopic scale, for bidirectional causality (Figure 3D),

one can consider a path from some node Yi{r, rw0, to Xiz1

which is directed and thus follows the causal flow, but contains

both arrows Yi{k?Xi{kz1 and Xi{k’?Yi{k’z1. In this case it is

not possible to disentangle in the natural dynamics the causal effect

in the opposite directions: when considering the causal effect from

Y to X , assuming k’wk, it is not clear to which degree the

influence of Y on X is intrinsic to Y or due to the previous

influence of X on Y.

That is, in the case of a bidirectional coupling, X and Y form a

unique bivariate system in which the contribution of one system to

the dynamics of the other cannot be meaningfully quantified.

Therefore it does not make sense to ask for the causal effect from

one subsystem to the other, but to examine how the causal

connections participate in the generation of the joint dynamics. A

simple neural example illustrating this view would be the

processing of a visual stimulus in the primary visual cortex (V1).

For example, responses of V1 cells are influenced by the spatial

context of the the stimulus due to the feedback projection from

cortical area MT (V5), where receptive fields are much larger than

in V1. This means that there is a feedback modulation from a

higher level in the visual pathway, which activity depends itself on

the processing in V1 [25]. In this case what is important is to

understand how the causal structure, and in particular the

existence of the feedback causal connections, are necessary to
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generate the regime of the responses and to obtain some

characteristics of the neurons’ responses that are functionally

relevant, like the influence of stimulus context.

The analysis of causal effects
We have complemented the definition of causal effects from the

interventional framework with two criteria that reflect the

requirements specific for studying causality between subsystems

of the brain during their natural activity. In this section we

consider how to quantify the natural causal effects between

dynamics and more generally any causal effect related to a change

in the dynamics. The measures introduced below should be

considered devices for further analysis and characterization of

natural causal effects and not necessarily as tools for data analysis.

We start by considering how to quantify single causal effects of a

given type, for example p(xjdo(Y~y)) for a fixed intervention

Y~y. Assume that we check in a causal structure that this type of

natural causal effects exists. To quantify this causal effect we need

a reference distribution to which the post-intervention distribution

can be compared. The appropriate reference distribution will

typically be dictated by the context. For example, in Eq. 1 the

reference was the marginal distribution p(x), which is just the

average over all interventions. Alternatively, one can consider the

same intervention Y~y but for a different configuration of the

system, in which some causal mechanisms are assumed to have

changed. In this latter case we denote the reference distribution

p�(xjdo(Y~y)). Notice that even when a type of natural causal

effects exists and thus the impact of the causal connection from Y
to X can be interpreted in terms of cause-and-effects, one typically

cannot quantify the causal effects in absolute terms. Only in some

special cases, when the reference distribution can be associated

with the absence of causal interactions, can the causal effect be

interpreted in absolute terms. In this case, and only in this case,

can we talk of the strength of the causal effect. In the general case,

the measures we consider here reflect relative differences of the

causal effects.

Our analysis of natural causal effects relies on the comparison of

probability distributions but we emphasize that the first step in the

analysis must be to make sure that the type of natural causal effects

studied actually exists in the system. To compare two probability

distributions associated with natural causal effects one can use

different measures, as for example the expected values as in Eq. 1.

Here we will use Kullback-Leibler divergences (see Methods) since

these are sensitive to all the moments of the distributions and also

because this allows for a more direct comparison with a general

measure of Granger causality, the transfer entropy (see below). For

example, in the case that the same intervention for another

configuration is used as a reference we can use:

KL(p�(xjY~y); p(xjY~y))~

P
x

p�(xjY~y) log
p�(xjY~y)

p(xjY~y)
:

ð12Þ

Here we have assumed that the domain of X is the same in the two

configurations. When this is not the case, Jensen-Shannon

Divergence should be used instead (see Methods). The Kullback-

Leibler divergence KL(p(x); q(x)) is an asymmetric measure that

quantifies how different q(x) is from p(x). If p�(xjY~y)
corresponds to the reference distribution associated with no causal

interactions, the particular form of Eq. 12 enables an absolute

comparison of natural casual effects for different configurations.

Note, however, that we are not interested in characterizing a

particular measure but in examining the principles of the analysis

of natural causal effects. The particular measure selected for

application to data should also depend on other issues such as the

balance between the degree of sensitivity to differences between

the distributions (i. e. linear vs. nonlinear measures), and the

difficulty to estimate the measures from limited amount of data.

We now consider how to quantify the natural causal effects in a

system, when different causal effects of the same type have to be

taken into account. As discussed previously, the impact of causal

connections does not depend on single interventions, but on all the

different natural causal effects of the same type occurring in the

dynamics with a given probability distribution. How to proceed to

compare these different natural causal effects depends on the

purpose of the analysis. For example, one may be interested in

quantifying the average difference of the natural causal effects for

two different configurations. In this case one can use the

probability of the natural intervention (Eq. 5) to average Eq. 12.

That is, one could use

E½KL(p�(xjY~y); p(xjY~y))�~
P

y

p�(y)
P
x

p�(xjY~y) log
p�(xjY~y)

p(xjY~y)
:

ð13Þ

This analysis can be done indistinctively of which type of

natural causal effects is analyzed. For processes one can substitute

p(xjdo(Y~y)) by for example p(xiz1jdo(Y i~yi)) in Eqs. 12 and

13. Again the requirement for these measures to be interpreted as

quantifying the natural causal effects between the processes is that

the criteria discussed above are fulfilled.

How Dynamic Causal Modeling and Granger causality
answer the questions about causality

We will now review how the three different questions about

causality introduced above are addressed by DCM and Granger

causality, the two main approaches that are commonly applied to

study causality between the brain systems. Although this section is

not strictly a ‘Results’ section, casting DCM and Granger

Causality in terms of the framework we propose will make it

possible to see (in the next section) how our work extends and

complements these approaches. Before examining DCM and

Granger causality separately, we should note that both have in

common that they rely on the statistical analysis of observational

data. Both are thus ultimately limited by the existence of

observationally equivalent causal structures with regard to the

inference of the causal connections (question Q1 about existence).

Here we will not consider these limitations further but instead

focus on how DCM and Granger causality address question Q3

about the quantification of causal effects. We will focus on the

essential aspects of these approaches as formulated by [26] and

[27], respectively.

Dynamic Causal Modeling is based on modeling the observed

data, and from our perspective it can be considered an approach

to answering Q2. Since DCM explicitly considers the dynamics, in

contrast to previous modeling approaches such as SEM, it

represents an important step towards obtaining a model that can

faithfully reflect the causal structure and the dynamics of the real

system. Similarly, since it considers a forward model that maps

hidden states to observed quantities it also is an improvement with

respect to the approaches based on the parametric autoregressive

model formulation of Granger causality [28]. In DCMs the state

equations are causal in the sense that the rate of change of the

variables generally depends on the state of the system. This means
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that a causal structure at the macroscopic scale can be constructed

from the state equations. The form of the state equations in DCM

makes an interventional interpretation of the model possible due to

the asymmetry between the left- and right-hand terms in the

equations [14]. Nonetheless, the correspondence of the inherent

causal relationships in the model to the causal structure of the real

system depends critically on how accurate the state equations

model the underlying neuronal activity. With regard to Q1 it

remains as an open question how realistic a model should be so

that the causal structure of the system can be inferred correctly.

Furthermore, in practice, since typically only few subsystems are

modeled, latent variables are certainly present and could introduce

‘‘spurious causality’’, for example making two subsystem appear

causally related whereas in fact they are not (see [29] and [14] for

discussion of the missing region problem in the concrete context of

fMRI analysis). This is the ultimate limitation when inferring

causality without intervening mentioned above.

We are here mainly interested in how DCM addresses question

Q3 about the causal effects. Effective connectivity is generally

understood as the influence one region exerts over another [8]. In

practice though, this abstract definition is made concrete

considering that the effective connectivity is associated with the

coupling parameters between variables representing different

brain regions in the state equations [26]. For example, for two

different conditions, a model is fitted and the gain of the coupling

parameter that models the connectivity from region Y to region X
is reported. Therefore, the strength of the causal connection is

analyzed in terms of the coupling parameters in the model. There

is no explicit definition of the causal effect. The change in the

coupling parameter is discussed in terms of adaptation or stimulus

modulation of the connectivity, thus focusing on the mechanistic

change, without considering its impact in the dynamics. In some

simple cases, such as when the state dynamics are linear, one can

infer interventional causal effects from the model parameters [14].

However, it is important to emphasize that a functional (or

biophysical) model (dynamic or not) of the real system does not

alleviate the restrictions with respect to natural causal effect

imposed by the causal structure. In other words, if a particular

causal structure is incompatible with a natural causal effect from Y
to X the values of parameters describing the coupling from Y to X
can not be interpreted as reflecting the causal effect of Y on X in

the natural dynamics, even if they are informative about what

would be the causal effect of an external intervention of Y on X .

The approach of Granger causality is significantly different from

the one of DCM. Many years ago Sir Clive Granger suggested a

criterion for testing for causality between time series [28]. In the

bivariate case, this criterion says that there are no causal

connections from process Y to process X if and only if

p(xiz1jX i~xi)~p(xiz1jX i~xi,Y i~yi), ð14Þ

where X i, Y i refer to the whole past of X and Y, respectively. In

words, Y is causing X if the future of X given the past of X is not

independent of the past of Y. Therefore the criterion of Granger

causality tests for a conditional independence, which corresponds

to the type of constraints we mentioned above that the causal

structure imposes on the statistical dependencies. Given that these

constraints are generally not enough to infer the causal structure

the criterion of Granger causality is only applicable under some

assumptions. We will called these assumptions complete observability.

What is assumed is that there is no hidden process which is a

common driver of X and Y. This assumption is related to the

fundamental limitations of causality inference from observational

data and is common to DCM. Furthermore it is assumed that we

have access to the relevant processes between which the causal

connections exist, so that the probability distributions are

estimated for variables directly corresponding to these processes.

This assumption avoids the use of a forward model that maps

hidden states to observed quantities. This second assumption is

specific of Granger causality in contrast to DCM where such a

forward model is explicitly included.

In the original formulation, Granger used the mean of the

distributions to test the above equality, but it was clear to him that

other measures could be used as well [27]. The most general test of

the equality of the two probability distributions in Equation 14

uses the Kullback-Leibler divergence (See Methods). The resulting

measure has been introduced several times in the past and in

different contexts [30–32]. Most recently, the same measure was

re-introduced under the name ‘transfer entropy’ [33] and due to

its recent popularity, we will use this name in the sequel. See e.g.

[14,34] for a more detailed description of how different

formulations of Granger causality appeared in different fields

and for different types of processes. In particular we can formulate

Granger’s causality criterion (Eq. 14) as a comparison between

p(xiz1jX i~xi,Y i~yi) and p(xiz1jX i~xi) using the KL diver-

gence. The transfer entropy from Y to X is:

TY?X ¼D
P
xiyi

p(xi,yi)
P
xiz1

p(xiz1jxi,yi) log
p(xiz1jxi,yi)

p(xiz1jxi)
: ð15Þ

Note that due to a basic property of the KL-divergence the

transfer entropy is zero if and only if the criterion of Eq. 14 is

fulfilled.

We now consider how Granger causality analysis addresses the

different questions about causality. Since it provides a criterion to

infer the existence of the causal connections it focuses on

answering Q1. However, notice that the Granger causality

criterion is not designed to infer a causal graph that considers

explicitly the temporal dynamics (the microscopic scale in

Figure 3). The Granger causality criterion only intends to infer if

there is any causal connection from Y to X , that is, allows us to

construct the macroscopic causal graph.

Granger causality is based on a criterion for causal inference

and thus in its more general nonparametric formulation does not

involve modeling, so that question Q2 is not addressed. The

transfer entropy constitutes the most general measure to test for

the criterion of Granger causality. This means that theoretically a

nonzero TY?X implies the existence of some causal connection

from Y to X , thus answering Q1 (if the assumption of observability

are fulfilled). In practice, one needs a way to assess the significance

of the nonzero value and in general bootstrapping or surrogates

are needed (e. g. [5,35,36]). If instead of transfer entropy the

parametric formulation using linear autoregressive models is

applied, one could consider that question Q2 is also addressed

but this means assuming that the autoregressive model is realistic

enough to reflect the causal mechanisms.

Regarding Q3, the same statistic used to test for causality is

commonly used to quantify the strength of the causal connections.

For example, Granger (1963) [37] refers to the Granger causality

measure for linear Gaussian processes as the strength of the causality

from Y to X . This idea of strength suggests that, apart from

assessing the significance of a nonzero value, one should use the

value of the statistic for quantification. As for DCM, there is no

explicit definition of what the causal effects are. However, in

Granger causality, the causal effect is quantified taking into
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account the dynamics of the processes, instead of examining the

changes of single coupling parameters. The emphasis is put on the

impact of the causal connections on the dynamics of the processes,

so that the causal effects are implicitly conceived as a result of how

the causal connections participate in the generation of such

dynamics.

Our definition of natural causal effects between processes is closer

to this implicit notion of causal effects used in Granger causality,

since it also considers the impact of the causal connections on the

dynamics, in contrast to DCM that compares coupling parameters

of the model. However, we also argued that this impact cannot be

captured with a single measure of strength. Oppositely, the causal

structure results in different types of natural causal effects going on

in the dynamics, which are associated with different aspects of how

the dynamics arise from the causal structure.

Furthermore, the constraints for the existence of natural causal

effects, that for example determine that natural causal effects

between processes do not occur in bidirectionally coupled bivariate

systems, are contradictory with the common practice of comparing

the causal effect in both directions e.g. [6,38–42] when applying the

Granger causality analysis. It can be shown that this contradiction is

due to a misuse of Granger causality measures and in particular of

transfer entropy as measures of causal strength [43]. A detailed

description of why transfer entropy cannot be generally used for the

quantification of causal effects and under which conditions it has a

meaningful interpretation in terms of natural causal effects is left for

a future contribution. We will next discuss to which degree the

analysis of causal effects we propose should be considered as

complementary or substitutive of DCM and Granger causality.

How to combine the analysis of natural causal effects
with Dynamic Causal Modeling and Granger causality

The approach we proposed for the quantification of natural

causal effects should be used instead of Granger causality measures

to address the question of quantification (Q3). This means that the

transfer entropy should be only used as a statistic to test the

existence of the causal interactions based on the general criterion

of Granger causality (Eq. 14). Even for inference one should be

aware of the strong limitations imposed by the assumption of

complete observability. In the interventional framework the

limitations of Granger causality and thus transfer entropy to infer

the causal structure without complete observability are well

known. Alternative measures of information flow have been

proposed [17] and compared to transfer entropy [43].

Although the value of the transfer entropy cannot be used as a

measure of strength of the causal effects under some conditions

that depend on the causal structure it quantifies the information

transfer from one process to another [43], while more generally it

can still be used to characterize the temporal statistical

dependencies in the signals. Bressler and Seth (2010) [44]

distinguished between effective connectivity [8] and a different concept

of causal connectivity. While the effective connectivity is expected to

reflect the causal influence one brain area exerts on another, causal

connectivity is considered more pragmatically as a description of

directed dynamical interdependencies present in the recorded

signals. Although using the term causal can be misleading in this

context, the transfer entropy, considered strictly as a statistical

measure, has a rigorous meaning in terms of information loss [45]

and can capture aspects of the dynamics which may be less

reflected in symmetric measures (like coherence or symmetric

mutual information). Therefore, the type of analysis related to Eqs.

12 and 13 should substitute Granger causality to analyze causal

effects in the natural dynamics, but it is complementary to the use

of transfer entropy as a measure of information loss.

Our approach is also complementary to Dynamic Causal

Modeling: it can be used to examine the dynamic impact of the

changes across conditions of the coupling parameters associated

with effective connectivity. In particular, the only thing specific for

the analysis of natural causal effects in Eq. 12 is the selection of

probability distributions that are associated with natural causal

effects. Alternatively, one can relate the two compared configu-

rations to a change in a coupling parameter. The comparison of a

particular probability distribution across configurations (not

necessarily associated with natural causal effects) shows the impact

of this change on a particular aspect of the dynamics. For example,

one can compare p(xi) when a coupling parameter associated with

the strength of the causal connection from Y to X changes:

KL(p�(xi); p(xi))~
X

xi

p�(xi) log
p�(xi)

p(xi)
: ð16Þ

This change of a coupling parameter can be seen exactly as a

punctual intervention. Although in causal graphs associated with

the state equations of a DCM model, the coupling parameters do

not appear as nodes, if two alternative models are compared they

can be merged in a single model where the parameter can be seen

as a binary variable, so that choosing one or the other model is

equivalent to intervening this variable to one of the values.

Therefore the comparison of a particular type of probability

distributions like in Eq. 16 quantifies the causal effect of the

change in the coupling parameter. This type of causal effect is not

a natural causal effect from one brain subsystem to another that

occur as part of the generation of the dynamics; it is the causal

effect that a change in the mechanisms has on some aspects of the

dynamics related to the probability distributions chosen. Also here

there is flexibility to examine different aspects of the dynamics

selecting different probability distributions, for example p(xi), or

p(xiz1jX i~xi), in the same way that the natural causal effects

from Y to X are studied examining different distributions like

p(xiz1jY i~yi) or p(fxgjfYg~fyg). This type of analysis

complements the direct comparison of the coupling parameters

(effective connectivity) because it is not obvious without actually

examining the distributions to derive how a change in the

parameters affects the dynamics.

DCM addresses question Q2 about the mechanisms aiming to

provide a realistic model of how the dynamics are generated. In

this regard, the analysis of the causal effects considered above

cannot substitute the DCM approach. However, considering that

only in some cases the natural causal effects between brain regions

exist helps to bound the meaning of effective connectivity,

generally understood as the influence one region exert on another.

The coupling parameters can be related to causal effects of

external interventions [14] but do not quantify natural causal

effects occurring in the recorded dynamics. Furthermore, the

analysis we suggested above can straightforwardly be extended to

examine the causal effect of a change in a coupling parameter on

some aspects of the dynamics, something which is not easy to

evaluate from the comparison of the coupling parameters across

conditions. We will illustrate this point further when analyzing

causal effects in an example system below.

Testing for causality and analyzing causal effects in a
simple model

We now examine a model system to illustrate the distinction

between the inference of causality and the analysis of the causal

effects. Here we focus on a simple example of a stationary Markov
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binary process. In Supporting Information S1 we study the case of

linear Gaussian stationary stochastic processes. We note that in

these examples all the measures used are calculated analytically

(see Methods) to isolate the fundamental properties of the

measures from issues related to estimation from data. We consider

the transfer entropy TY?X and two measures related to Eqs. 13

and 16, respectively. In particular, instead of the Kullback-Leibler

divergence used in these equations we calculate the Jensen-

Shannon Divergence (JSD) (see Methods), since it is well defined

for probabilities with different domains, as the ones resulting from

the Markov process explained below.

So consider a stationary bivariate Markov binary process of

order 1. Both X and Y take only values 0 and 1. The process is

completely determined by the transition probabilities and by the

condition of stationarity:

p(xiz1,yiz1)~
X

xi ,yi

p(xiz1,yiz1jxi,yi)p(xi,yi): ð17Þ

Furthermore, we assume that only unidirectional causal connections

from Y to X exist. Accordingly, the transition probabilities can be

separated as the product p(xiz1,yiz1jxi,yi)~p(xiz1jxi,yi)
p(yiz1jyi). In particular, we let the transition probabilities for Y
be p(Yiz1~yjYi~y)~d , that is, d is the probability that the same

value is taken at subsequent steps. The transition probabilities for X
are such that p(Xiz1~yjYi~y)~

1zg

2
, independently of the

value of Xi. Therefore g determines the strength of the connection

from Yi to Xiz1, and there is a causal connection from Y to X for

gw0. For g~0, Xiz1 takes value 0 or 1 with equal probability and

independently of Xi and Yi. In the case d~0, when Y
deterministically alternates between 0 and 1, this example

corresponds to one already discussed in Kaiser and Schreiber

(2002) [46]. Here we present results for nonzero values of d with

different degree of stochasticity. We calculate the measures using 3
time lags for the past X i and Y i, since this is enough for

convergence and for higher lags the values obtained do not differ

significantly. In fact, given that causal connections are only of order

1, one time lag is enough when conditioning on Yi. However, since

in the transfer entropy (Eq. 15) the conditional entropy H(Xiz1jX i)

appears, where there is no conditioning on Yi, one has to consider

all the information about Yi that exists in the past X i.

First we examine how the transfer entropy TY?X depends on g
and d (Figure 4A). Supporting its use for the inference of causality

from Y to X , the transfer entropy TY?X is zero if and only if g~0.

In the opposite direction TX?Y is always zero for this example

(results not shown). In the Granger causality approach the transfer

entropy is used also as a measure of the strength of the causal

connection. From the Figure it is clear that the relation between

the coupling parameter g and TY?X depends strongly on d. In

fact, for low values of d , TY?X is nonmonotonic with g. In words,

the Granger causality measure is nonmonotonic with the

parameter that determines the strength of the connection. This

can be understood taking into account that transfer entropy

quantifies the extra reduction of uncertainty that results from

considering the past of Y after considering the past of X . For low d
the dynamics of Y are almost deterministic, and thus when g
increases the dynamics of X become also more and more

deterministic. For such, almost deterministic, dynamics the

remaining uncertainty of Xiz1 after conditioning on X i is already

very small, and thus the extra reduction given Y i decreases with

high g. In fact, for the extreme values d~0,1 (Y completely

deterministic), the nonmonotonicity leads to TY?X~0 for g~1 -

see Figure 1 in Kaiser and Schreiber (2002) [46]. In such extreme

cases transfer entropy cannot be used even to infer causal

interactions. In fact, this limitation of transfer entropy in the

inference of causality for strongly synchronized systems is well

known e.g. [17,47,48].

In Figure 4B we show the Jensen-Shannon Divergence (JSD) for

distributions of the type p(xiz1jY i~yi). Since there is only

unidirectional causality from Y to X this distribution fulfills the

criterion of existence for natural causal effects (Eq. 2), and thus the

JSD can be used to quantify the changes in the natural causal effects

from Y to X when g changes. This corresponds to the type of

analysis described in relation to Eq. 13. Here the different

configurations are identified by the value of g. In particular we

take the distribution p(xiz1jY i~yi) obtained for g~0, for which

there is no causal connection, as a reference to compare the natural

causal effects to. Notice that for this Markov process, since by

construction there is no causal connection from X i to Xiz1, we have

that p(xiz1jY i~yi)~p(xiz1jX i~xi,Y i~yi). This means that the

Figure 4. Causality analysis in a binary Markov process. Information theoretic measures used for the inference of causality and the analysis of
causal effects calculated for a bivariate binary stationary Markov process of order 1. See the text for a description of the process. The measures are
calculated analytically using 3 time lags to account for the past X i and Y i . The results are shown for d~1=2 (blue), d~1=15 (green), and d~1=100
(red), where d is the probability that Yiz1~Yi . A: Transfer entropy TY?X (Eq. 15). B: Jensen-Shannon divergence JSD(p�(xiz1jyi),p(xiz1jyi)) (Eq. 21).
C: Jensen-Shannon divergence JSD(p�(xi),p(xi)).
doi:10.1371/journal.pone.0032466.g004
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natural causal effects p(xiz1jY i~yi) correspond to the distribution

appearing in the numerator of the logarithm in the definition of the

transfer entropy (Eq. 15). What is different with respect to the

transfer entropy is the probability distribution used as a reference for

comparison. Now the natural causal effects are compared across

configurations. We see that the changes in the natural causal effect

p(xiz1jY i~yi) monotonically increase with g and are independent

of d . The independence of d results from the particular generation

of the process, since p(Yi~0)~p(Yi~1)~
1

2
independently of d

and since the causal interactions are of order 1 we have that

p(xiz1jY i~yi)~p(xiz1jYi~yi). The monotonic divergence with

respect to the distribution obtained for g~0 demonstrating that in

this case there is a monotonic relation between g (the strength of the

connection), and the impact of the causal connection (the natural

causal effects). This should be contrasted to the results using transfer

entropy described above.

In Figure 4C we show the Jensen-Shannon divergences for

distributions of the type p(xi) (Eq. 16). In contrast to the

probability distributions p(xiz1jY i~yi), these distributions do

not represent a natural causal effect that occurs in the dynamics.

However, since the change of g can be seen in itself as an external

intervention of the system, we can compare p(xi) in dependence

on g as a way to quantify the causal effect of this change in the

model. As before we take as a reference the distribution obtained

for g~0. For d=1=2, JSD(p�(xi),p(xi)) increases monotonically

with g indicating that an increase in the strength of the connection

renders the distributions more different. However, for d~1=2 a

constant zero value is obtained. Importantly, this should not be

seen as a limitation of JSD(p�(xi); p(xi)) to quantify the causal

effect, on the contrary it indicates that, with respect to the

distribution p(xi), the changes in the effective connectivity (g) have

no effect for d~1=2. This illustrates how focusing on the value of

a coupling parameter may be insufficient in order to describe the

impact that a change has in a particular aspect of the dynamics.

Discussion

In this work we have analyzed the applicability of the cause-

and-effect framework to the study of natural dynamics of systems

consisting of interacting subsystems. Our main result is that it is

generally not possible to characterize the effects of the interactions

for each subsystem separately. That is, the effect of causal

interactions can typically not be described in terms of the effect of

one subsystem over another. Rather, the interactions unifies the

subsystems and creates a dynamics that transcends the limits posed

by the individual systems. This result is generic in the sense that it

only depends on the causal structure (i.e. on the topology of the

causal connections) and not on the details of the system under

study. Our work suggests that analyzing the effect of interactions in

the natural dynamics in terms of cause-and-effect is of limited use,

in particular in systems where the functional units tend to be

heavily interconnected, such as the brain. We emphasize that our

contribution should not be seen as a new method to substitute

other approaches to causal analysis. The conditions of existence of

natural causal effects indicate that inference of causal connections

and analysis of causal influences should be considered different

types of analysis with different requirements. When natural causal

effects do not exist, they can not be quantified, no matter what

measure is used. Our analysis therefore has important implications

for all approaches aiming at characterizing the effects of causal

interactions in the unperturbed system. We will now discuss our

work in more detail and relate it to some previous work in the

literature.

It might be helpful to first interpret our main result in the light

of the three questions about causality introduced above. First, the

existence of a causal connection from Y to X can always be

probed. This is possible even if there are causal connections also

from X to Y. The ‘traditional’ way to do this is through

interventions, that is by actively perturbing the Y system. We

pointed out that, under certain assumptions, Granger causality

and DCM can be used to infer existence of causal connections

from observational data. Second, the mechanisms by which these

causal connections are instantiated can always be probed (at least

in principle) by modeling the systems at the appropriate level. We

note that interventions could play an important role also in this

case. Indeed to constrain and corroborate the models, interven-

tions might be very useful. Third, and this is our main result, the

effect of the interactions naturally happening in the system can

typically not be described as the effect of Y over X (or vice versa).

Here, and this is a central point, interventions cannot be used (not

even in principle) to quantify the effect of Y on X in the natural

dynamics, unless they quantify a natural causal effect. Moreover,

in this case our work shows the importance of using interventions

that mimic the natural dynamics as closely as possible. Our results

demonstrate that the quantification of causal interactions is a

question separate from the other two questions and that it might

not always be well defined.

Central to our results is the notion of a natural causal effect. This

should be considered an adaptation of the interventional

framework of causality [10] to the context of dynamically

interacting subsystems. Whereas most work in the interventional

framework focuses on causal effects resulting from external

interventions, to study the unperturbed system we need a notion

of causal effects from one subsystem to another related to the

natural dynamics. A natural causal effect can be seen as a result of

a naturally occurring intervention. In general, in the natural

dynamics, different natural interventions of the same type occur

with different probability. This led us to define the natural causal

effect between variables as the observed joint distribution, and to

consider a distribution of natural interventions determined by the

marginal distribution of the intervened variable. Furthermore, we

pointed out that there is no unique type of natural causal effect

that can be used to study the impact of the causal connections

between subsystems. Rather the causal structure constitutes a

medium in which multiple types of natural causal effects arise.

The existence of natural causal effects and the maintenance of

the natural joint distribution determine when the question about

what is the causal effect from one subsystem to another in the

natural dynamics is well-defined. This is in contrast to the question

about the causal effect of an external intervention of one subsystem

on another, which is not constrained by these criteria. We

examined when these criteria are fulfilled in the case of two

subsystems. We showed that natural causal effects from Y to X are

well-defined if unidirectional causal connections from Y to X exist,

but not in the case of bidirectional causality. Furthermore, our

results indicate that some types of conditional natural causal effects

exist even if the impact of the causal connections between the

subsystems Y and X cannot be mutually disentangled. This is

because they are defined based on an explicit consideration of time

locality and are not compatible with the view of subsystems as

macroscopic entities. In general the fulfillment of the criterion of

existence depends on the causal structure (see Supporting

Information S1). This means that only under quite restrictive

conditions the natural causal effects exist and can be used to

characterize the impact of the causal connections from one to

another subsystem in the natural dynamics. A detailed analysis of

multivariate systems remains for a future contribution but it is
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clear that the existence of natural causal effects will be even more

limited in the case of more than two interacting systems. Notice

that this limitation is of a fundamental nature, since it refers to the

existence of the natural causal effects in the natural dynamics. This

is in contrast to other limitations which are more of a practical

nature, like the existence of hidden states for the inference

causality [10], or computational time for model comparison [49].

We considered how the most used approaches to study causality

in the brain address the three questions about causality and how

compatible they are with the concept of natural causal effects.

Granger causality should be seen as a criterion to infer the

existence of causal connections between processes that is valid

under the quite strong conditions of complete observability.

However, Granger causality measures, including transfer entropy,

cannot be used in general to quantify causal effects. The existence

of a particular type of natural causal effects depends on the causal

structure, and only when the causal effect exists a measure of its

strength can be meaningful. Even when a type of natural causal

effects exists and can be used for the characterization of the impact

of the causal connection from Y to X it only makes sense to

consider the strength of the causal effects when one can compare

to a configuration that corresponds to the case of no causality from

Y to X .

We also introduced the idea of analyzing natural causal effects

by comparing them across different configurations, i.e. different

regimes of the same system (model). This approach was illustrated

in a simple example system where the measures could be

calculated analytically. Importantly, this type of comparison is

not only useful to compare natural causal effects. When the

different configurations are related to a change in the causal

mechanism, comparing a particular type of probability distribu-

tion allows us to examine the impact of this change on the aspect

of the dynamics captured by the probability distribution.

Accordingly, the analysis of causal effects, which necessarily

requires considering the dynamics of the system, complements the

usual way in which Dynamic Causal Modeling is used to examine

changes in the coupling parameters. The impact of these changes

for some aspect of the dynamics is not easy to predict just from the

form of the model, as was shown in the example.

The distinction between on the one hand the inference of causal

connections and the modeling of causal mechanisms and on the

other hand the analysis of causal effects is tightly related to the

distinction between model fitting and model analysis. For example,

in DCM it is common practice to fit a model for different

configurations (that can correspond to different experimental

settings related to different tasks) and then examine the gain in

some coupling parameters associated with effective connectivity.

Although this structural comparison is a first step for model

comparison, this comparison should also involve comparing the

dynamics that result from them. When meaningful given the

causal structure, one can analyze the natural causal effects from

one subsystem to another. More generally, even when it is not

possible to disentangle the impact of the causal connections from

Y to X from the ones in the opposite direction and thus the

subsystems are not separable, still the causal connections

determine the generation of the joint dynamics. This means that

in general the analysis of the impact of the causal connections

cannot be formulated only in terms of causal effects from one part

of the system on another, but examining the emergence of some

properties of the dynamics. For example, it is well known that

causal connections between two intrinsically non-oscillatory units

can make them oscillate synchronously (e.g. [50]). That is,

increasing the coupling leads to a qualitative change in the

dynamics.

A conclusion from our work is that the notion of causal effects

between subsystems might not be very useful in neuroscience.

Given the ubiquitous existence of feedback and recurrent

connections, the criterion for the existence of natural causal

effects can hardly be fulfilled when analyzing neural data.

Furthermore, it has been widely studied that these connections

play important roles determining properties of the dynamics which

are functionally relevant e.g. [25,51]. Therefore, the impact of the

causal connections in the brain is generally not related to causal

effects from one subsystem to another. Even when considering the

effect of an external sensory stimulus, which is closer to an external

intervention, one is not interested on the impact of this

intervention per se, but in which way the brain is capable of

encoding and decoding the sensory information. This perspective

follows the idea suggested by [52] that, regarding the neural code

and neural computations, statistical dependencies are more

relevant than causal effects. In the same line [43] illustrated that

while a measure of causality based on interventions [17] can be

informative about the causal structure when the transfer entropy

provides erroneous information about it, the transfer entropy, as a

measure of statistical dependence quantifying the extra reduction

in uncertainty when considering the past of the other process, is in

general more informative about the computational properties of

the system. This means that in fact, when the transfer entropy is

used to study causal interactions between brain regions from

experimental data e.g. [6,38–42], or neural models e.g. [53–55], it

may be not only more correct but also more useful to interpret this

measure not in terms of the strength of causality but as a measure

of statistical dependence. Furthermore the transfer entropy is

connected to the mutual information rate [56,57] and under some

conditions it quantifies information transfer [43].

Pearl’s interventional approach to causality constitutes a

unifying framework that relates different approaches to causal

analysis like counterfactual analysis [9] and structural equation

modeling [58]. However, the consideration of sequential inter-

ventions [23] or time series is less common in the interventional

framework. Only recently the link between Granger causality and

the effect of interventions has been examined [24] in detail. Also

for Dynamic Causal Modeling the interpretation of the coefficients

in a bilinear model in terms of single external interventions has

recently been pointed out [14]. Examining the way in which this

general approach is compatible with the aims of studying causal

effects between brain subsystems helped us to clarify when it is

meaningful to ask for the causal effect from one brain subsystem to

another, and to distinguish what type of information this analysis

provide us in comparison to the inference of causal connections or

the analysis of dynamic statistical dependencies between the

subsystems.

What is new in our approach with respect to the interventional

framework is the idea of considering when causal effects occur

naturally in a system. This also led us to consider probability

distributions of interventions, while Pearl focuses on the analysis

of single interventions [10]. The novelty of our contribution,

based on the proposal of the criteria of the existence of natural

causal effects and the maintenance of the natural joint

distribution, results from the different aims that the analysis of

causal effects between brain regions has with respect to other

applications envisaged in the development of interventional

causality. In general, in medical research e.g. [59] or epidemi-

ology [60], one is really interested in assessing the effect of

external interventions that alter the system. However this is not in

general the case when studying causality in the brain, at least for

the type of analysis in which Granger causality or Dynamic

Causal Modeling are commonly applied.
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We expect this work to contribute to clarify the aims and

potentials of causal analysis applied to study brain dynamics and to

complement a recent vivid debate about brain causality [14].

Understanding the links between causal structure, causal effects

and statistical dependencies is a line of research complementary to

the development of more accurate models of brain dynamics [61].

We have written this paper in the context of neuroscience but the

concept of natural causal effects should clearly be useful in other

fields where effects of interacting subsystems are of importance.

Methods

We used tools from information theory (e.g. [45]) to

characterize the similarity of two probability distributions and

the statistical dependencies between variables. The basic quantity

is the Kullback-Leibler divergence (KL divergence). The KL

divergence is a measure of the difference between two probability

distributions and is defined as

KL(p�(x),p(x)) ¼D
X

x

p�(x) log
p�(x)

p(x)
: ð18Þ

An important characteristic of the KL divergence is that it is a

non-negative number and is zero if and only if the two

distributions are identical. The mutual information

I(X ; Y ) ¼D
X

x,y

p(x,y) log
p(x,y)

p(x)p(y)
, ð19Þ

is a particular average of KL divergences

I(X ; Y )~Ex½KL(p(yjx),p(y))�~Ey½KL(p(xjy),p(x))� ð20Þ

that quantifies the interdependence between the random variables.

We have considered two examples, one in the main text and one

in Supporting Information S1. In these examples we calculated

KL divergences for some particular distributions resulting from

stationary processes for which these measures can be calculated

analytically. For the bivariate Markov binary stationary processes

we used the Jensen-Shannon divergence (JSD) instead of the KL

divergence because it is well defined for probabilities with different

domains [62]. The JSD corresponds to an average of two KL

divergences:

JSD(p�(x),p(x)) ¼D 1

2
KL(p�(x),

p(x)zp�(x)

2
)

z
1

2
KL(p(x),

p(x)zp�(x)

2
)

ð21Þ

and is bounded between ½0,1�.
For the bivariate linear Gaussian stationary processes the KL

divergence can be expressed in terms of the mean and covariance

matrix of the distributions. This can be derived in analogy to the

entropy of a multivariate Gaussian distribution (see Theorem 8.4.1

in [45]). For two Gaussian distributions N (m1,
X

2
) and

N (m2,
X

2
) The KL divergence is:

KL(N (m1,
P

1),N (m2,
P

2))~
1

2
(tr(1{

X{1

2

X

1

)

z ln
j
P

2j
j
P

1j
z(m2{m1)T

X{1

2

(m2{m1)):

ð22Þ
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