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Abstract
Endangered species that exist in small isolated populations are at elevated risk of los‐
ing adaptive variation due to genetic drift. Analyses that estimate short‐term effec‐
tive population sizes, characterize historical demographic processes, and project the 
trajectory of genetic variation into the future are useful for predicting how levels of 
genetic diversity may change. Here, we use data from two independent types of ge‐
netic markers (single nucleotide polymorphisms [SNPs] and microsatellites) to evalu‐
ate genetic diversity in 17 populations spanning the geographic range of the 
endangered eastern massasauga rattlesnake (Sistrurus catenatus). First, we use SNP 
data to confirm previous reports that these populations exhibit high levels of genetic 
structure (overall Fst = 0.25). Second, we show that most populations have contem‐
porary Ne estimates <50. Heterozygosity–fitness correlations in these populations 
provided no evidence for a genetic cost to living in small populations, though these 
tests may lack power. Third, model‐based demographic analyses of individual popula‐
tions indicate that all have experienced declines, with the onset of many of these 
declines occurring over timescales consistent with anthropogenic impacts 
(<200 years). Finally, forward simulations of the expected loss of variation in rela‐
tively large (Ne = 50) and small (Ne = 10) populations indicate they will lose a sub‐
stantial amount of their current standing neutral variation (63% and 99%, respectively) 
over the next 100 years. Our results argue that drift has a significant and increasing 
impact on levels of genetic variation in isolated populations of this snake, and efforts 
to assess and mitigate associated impacts on adaptive variation should be compo‐
nents of the management of this endangered reptile.
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1  | INTRODUC TION

Small, recently isolated populations face the risk of reduced viabil‐
ity over time due to genetic costs of inbreeding (Allendorf, Luikart, 
& Aitken, 2013). Habitat fragmentation can reduce gene flow be‐
tween populations and decrease population size. This in turn in‐
creases the magnitude of genetic drift and the negative impact 
of inbreeding depression on survival and reproduction, and can 
lead to populations entering an “extinction vortex” (Gilpin & Soulé, 
1986). Genetic analyses of historical and contemporary features 
of populations can provide information that is useful in assessing 
whether small isolated populations are at risk of high levels of drift 
and inbreeding depression, and thus should be significant compo‐
nents of conservation plans for endangered species (Jamieson & 
Allendorf, 2012).

One population feature that is important to understand in this 
context is effective population size (Ne) (Luikart, Ryman, Tallmon, 
Schwartz, & Allendorf, 2010), which measures the strength of ge‐
netic drift in a population. This is expected to reflect the rate at 
which variation is lost from populations and, in turn, may predict 
their ability to respond to future environmental change (Allendorf 
et al., 2013). Effective size is estimated over historical or contempo‐
rary timescales (Hare et al., 2011). Historical (long‐term) estimates 
of Ne evaluate the parameter over evolutionary timescales and gen‐
erally estimate effective size at a species‐wide level (Charlesworth 
& Willis, 2009). In contrast, contemporary (current) measures of Ne 
estimate the parameter over short timescales (<5 generations) and 
so are most relevant to conservation and wildlife management appli‐
cations (Hare et al., 2011).

The development of estimators of contemporary Ne using ge‐
netic data is an active area of research in conservation genetics 
(Waples, 2016; Waples, Larson, & Waples, 2016). Recently, Gilbert 
and Whitlock (2015) simulated data under a variety of demo‐
graphic scenarios to evaluate different estimators of contempo‐
rary Ne and concluded that an estimator based on genome‐wide 
estimates of linkage disequilibrium (LDNe, Waples & Do, 2008), 
as implemented in the program NeEstimator (Do, Waples, & R.S., 
Peel, D., Macbeth, G.M., Tillett, B.J., and Ovenden, J.R., 2014) was 
accurate in small isolated populations. Likewise, Wang (2016) val‐
idated the use of a sibship‐based estimator implemented in the 
program Colony (Jones & Wang, 2010) under similar demographic 
scenarios. Both methods have been widely used for estimating 
contemporary Ne for captive and wild populations (Husemann, 
Zachos, Paxton, & Habel, 2016).

Analysis of observed distributions of genetic polymorphism 
can also yield insights into the demographic history of popula‐
tions (Lawton‐Rauh, 2008; Marjoram & Tavare, 2006). To date, 
these analyses have primarily made qualitative inferences of 
changes in population size over time by comparing observed and 
expected patterns of diversity at small numbers of microsatel‐
lite loci (Garza & Williamson, 2001; Peery et al., 2012). However, 
these approaches can have low statistical power to detect even 
severe bottlenecks in natural populations (Busch, Waser, & 

DeWoody, 2007; Peery et al., 2012). Increasingly, alternative co‐
alescent‐based modeling approaches are being used (i.e., Storz & 
Beaumont, 2002; Excoffier et al., 2013), which have the advan‐
tage of using an explicit statistical framework to test diverse de‐
mographic scenarios. These approaches have been used to detect 
significant demographic events over recent timescales, includ‐
ing those within the range of significant human impacts to the 
landscape (Goossens et al., 2006; Harris et al., 2016; Hoffman, 
Grant, Forcada, & Phillips, 2011). When combined with other 
information, the inferred timing of demographic events can be 
used to assess whether humans have played a significant role in 
those events (Goossens et al., 2006) or whether they are instead 
more likely due to natural large‐scale events, such as those asso‐
ciated with historical changes in climate (Tucker, Schwartz, Truex, 
Pilgrim, & Allendorf, 2012).

Finally, projecting future changes in genetic diversity can iden‐
tify genetic risks faced by populations that have recently declined 
(Amos & Balmford, 2001). This issue is especially important when 
recent declines have led to populations not in genetic equilibrium. 
Populations with a small contemporary effective size may retain 
the genetic profile of a larger population after the decline, and 
this can lead to overestimates of the amount of variation present 
relative to present and future population sizes. Demographic sim‐
ulations can help assess the rate at which existing levels of vari‐
ation will decline and provide insights into an effective timeline 
for management activities such as genetic rescue (Frankham, 2015; 
Tallmon, Luikart, & Waples, 2004). One difficulty is that while the 
ultimate goal of management activities is the conservation of adap‐
tive variation, these simulations are based on neutral evolution‐
ary processes like genetic drift and focus on patterns of change 
in neutral variation (Carvajal‐Rodríguez, 2010). Nonetheless, they 
provide a time frame in which adaptive variation may be lost under 
the assumption that levels of adaptive and neutral variation covary 
(Reed & Frankham, 2003).

The eastern massasauga rattlesnake (Sistrurus catenatus) is a 
small short‐lived (generation time ~2 years) venomous snake found 
throughout eastern North America. In the United States, it primar‐
ily exists in relatively small, isolated patches of habitat surrounded 
by heavily modified landscapes (Szymanski et al., 2016). Population 
declines throughout the range due to habitat fragmentation and 
destruction have led to the listing of this species under the US 
Endangered Species Act (US Fish & Wildlife Service, 2016) in the 
United States and as a Species at Risk (Government of Canada, 2009) 
in Canada. This species exhibits little phylogeographic structure 
across its range (Sovic, Fries, & Gibbs, 2016), and so important man‐
agement units within this species may best align with existing indi‐
vidual populations. Previous work at the population level (Chiucchi & 
Gibbs, 2010; Gibbs & Chiucchi, 2012) identified high levels of genetic 
structure among populations that have persisted over long periods 
of time, large variation in long‐term Ne between populations, and lit‐
tle evidence for recent declines in population sizes. However, these 
results were based on microsatellite‐based variation alone and used 
qualitative methods of analyses for inferring demographic patterns. 
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In particular, measures of effective population size were historical 
long‐term measures. These may not reflect the strength at which 
drift is currently operating in these populations, making them un‐
informative for present‐day management decisions for this species.

Here, we use two independent genetic datasets to make con‐
servation‐relevant inferences about genetic and demographic char‐
acteristics of individual populations across the range of this species. 
Our specific goals are to (a) evaluate the degree of genetic isolation 
among populations using a new genome‐scale dataset; (b) estimate 
contemporary effective population sizes to generate a better un‐
derstanding of the present and future importance of drift in these 
populations; (c) re‐evaluate previous results (Gibbs & Chiucchi, 
2012) that the genetic cost to living in small populations is small 
by using new estimates of individual heterozygosity from RADSeq 
loci in heterozygosity–fitness correlation (HFC) analyses (Chapman, 
Nakagawa, Coltman, Slate, & Sheldon, 2009); (d) test for evidence 
of past population size changes and estimate the timescale on 
which inferred changes occurred; and (e) use simulations to project 
the rate at which existing levels of variation will be lost in popula‐
tions. Our study represents the most comprehensive analyses of 
the present‐day and future genetic demography of existing popula‐
tions of S. catenatus and provides information useful for developing 
the Recovery Plan for this species (US Fish and Wildlife Service, in 
preparation).

2  | METHODS

2.1 | Samples

We analyzed genetic data from S. catenatus individuals from 17 
populations spanning the geographic range of this species (Figure 1; 
Table 1). Individual populations were defined as sets of randomly 
collected adult samples from within a single geographic location 
≤3 km2 in area for which sample sizes were sufficiently large to con‐
duct the analyses described below (see Table 1 for marker‐specific 
sample sizes for individual populations). Samples from most popula‐
tions were collected across multiple years and/or consisted of multi‐
ple body size classes from a single year and so represent adults from 
a mixture of age classes. This is relevant to interpreting estimates of 
contemporary effective population size (see below). These popula‐
tions were the same as those analyzed by Chiucchi and Gibbs (2010) 
with the difference that samples from one additional population 
from Spring Valley, Ohio (SPVY—see Figure 1), were analyzed using 
RADSeq data.

2.2 | Genetic data

We analyzed individuals (n = 385) using two multilocus genetic data‐
sets: One based on DNA microsatellite loci previously analyzed by 

F I G U R E  1   Map showing locations of populations of Sistrurus catenatus analyzed in this study. Summaries of genetic variation for 
RADSeq and microsatellite loci are given in Table 1
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Chiucchi and Gibbs (2010) and a new dataset based on restriction 
site‐associated DNA loci (RADSeq—Andrews, Good, Miller, Luikart, 
& Hohenlohe, 2016). Sixty percent (n = 229) of individuals were 
characterized using both genetic markers. Both datasets were used 
for estimating contemporary effective population sizes. Only the 
RADSeq dataset was used for the historical demographic analyses, 

which are based on modeling site frequency spectra (SFS) (see 
below). For the microsatellites, we used previously published data 
from 17 loci reported in Chiucchi and Gibbs (2010). For RADSeq loci, 
we generated data following the protocols described in Sovic et al. 
(2016). Briefly, high‐quality genomic DNA was extracted from blood 
or tissue samples, and double‐digest RADSeq libraries (Peterson, 

TA B L E  1   Estimates of genetic variation for each population based on microsatellite and polymorphic RADSeq loci. Microsatellite results 
are based on data from 17 microsatellite loci reported in Chiucchi and Gibbs (2010)

Population Code

Microsatellite RAD

N Ho He FIS AR N N loci (100%) Ho He Fis AR

Southern Illinois

South Shore State 
Park

SSSP 18 0.646 0.679 0.050 3.70 5 537 (59%) 0.329 0.400 0.180 1.44

Eldon Hazlet 
State Park

EHSP 14 0.738 0.759 0.029 4.35 8 1,183 (29%) 0.287 0.350 0.170 1.48

Western and Central Ohio

Prairie Road Fen PRDF 21 0.535 0.588 0.093 3.14 21 510 (43%) 0.332 0.363 0.070 1.33

Spring Valley 
Wildlife Area

SPVY 0 ‐ ‐ ‐ ‐ 7 395 (57%) 0.340 0.395 0.127 1.32

Killdeer Plains 
Wildlife Area

KLDR 68 0.749 0.768 0.024 4.82 27 1,372 (25%) 0.274 0.296 0.062 1.49

Willard Marsh 
Wildlife Area

WLRD 15 0.676 0.663 −0.043 4.34 10 617 (60%) 0.300 0.345 0.123 1.44

Northeast Ohio

Grand River 
Lowlands 1

GRL−1 18 0.576 0.571 −0.009 3.16 20 733 (32%) 0.364 0.347 −0.064 1.36

Grand River 
Lowlands 2

GRL−2 18 0.535 0.508 −0.055 2.79 16 533 (45%) 0.342 0.341 −0.001 1.31

Grand River 
Lowlands 3

GRL−3 20 0.642 0.626 −0.037 3.57 19 610 (47%) 0.321 0.330 0.020 1.37

Western Pennsylvania

State Games 
Lands 95

GLAD 6 0.526 0.576 0.084 3.02 5 351 (60%) 0.373 0.402 0.074 1.27

Venango County VNGO 7 0.532 0.606 0.132 3.55 7 410 (59%) 0.349 0.386 0.103 1.34

Jennings 
Environmental 
Education 
Center

JENN 9 0.595 0.688 0.143 3.58 10 410 (59%) 0.352 0.365 0.039 1.31

New York

Bergen Swamp BERG 20 0.558 0.545 −0.029 2.75 14 371 (50%) 0.323 0.344 0.054 1.22

Cicero Swamp CCRO 62 0.538 0.544 0.011 2.94 27 635 (32%) 0.298 0.315 0.037 1.22

Ontario

Bruce Peninsula 
Nat. Park

BPNP 20 0.708 0.720 0.016 4.46 27 886 (35%) 0.273 0.304 0.083 1.45

Beausoleil Island, 
Georgian Bay Is. 
Nat. Park

BEAU 15 0.616 0.657 0.046 3.80 22 666 (45%) 0.291 0.318 0.081 1.38

Killbear Provincial 
Park

KBPP 20 0.608 0.600 −0.014 3.49 18 672 (48%) 0.288 0.324 0.110 1.40

Note. Code is the identifier used for each population on Figure 1; N = number of individuals genotyped; Ho and He are observed and expected hete‐
rozygosity, Fis is the fixation index, and AR is allelic richness which were calculated using Arlequin (Excoffier & Lischer, 2010). N loci (100%) is the 
number of polymorphic RAD loci scored in individuals in that population (% scored in all individuals).
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Weber, Kay, Fisher, & Hoekstra, 2012) were generated with EcoRI 
and SbfI restriction enzymes (New England Biolabs, Ipswich, MA) 
and a modified version of the RADSeq protocol described in DaCosta 
and Sorenson (2014). For details of the library preparation methods, 
see the Supplemental Information section of Sovic et al. (2016). 
Pooled libraries of up to 36 individuals were sequenced in single‐end 
50‐bp runs as partial lanes on an Illumina HiSeq 2,500 sequencer. De 
novo locus assembly, SNP identification, and genotyping of RADSeq 
loci were carried out on the raw fastq data using AftrRAD version 
5.0 (Sovic, Fries, & Gibbs, 2015). Unless otherwise specified, default 
settings were used in the AftrRAD run. Specifically, reads containing 
one or more bases for which the quality (Phred) score was below 
20 were removed from analyses (minQual = 20). Reads that shared 
90% or more sequence similarity after accounting for indels were 
assigned as allelic variants at a given locus as part of the de novo 
assembly (minIden = 90). After assembly, genotypes were called at 
loci for which there was a minimum of five reads in the individual 
(MinReads = 5). Loci with <5 reads were scored as missing data. 
Within each population, we then retained for analyses only those 
loci that were scored in all samples. Genotypes were assigned based 
on read (haplotype) identity for all analyses, with the exception of 
site frequency spectra used for model testing in fastsimcoal, which 
were constructed by selecting the first SNP from each locus (see 
details below).

2.3 | Population structure

Repeated analyses based on DNA‐based markers such as RAPDs 
(Lougheed, Gibbs, Prior, & Weatherhead, 2000) and microsatellites 
(Chiucchi & Gibbs, 2010) have shown high levels of genetic structure 
and low migration rates between individual populations of Sistrurus 
catenatus. To assess whether RADSeq data showed similar levels of 
genetic structure, we used hierfstat (Goudet, 2005) to estimate pair‐
wise and overall Fst for both the RADSeq dataset newly reported 
here and, for comparative purposes, for the microsatellite data 
reported by Chiucchi and Gibbs (2010). We calculated Pearson’s r 
correlation and associated significance levels between pairwise Fst 
values generated for microsatellite and RADSeq data using the rcorr 
function in the R base package (R Development Core Team, 2015).

2.4 | Effective population size

We assumed that each population was essentially genetically iso‐
lated due to high degrees of genetic structure between populations 
and low levels of genetically effective migration inferred by Chiucchi 
and Gibbs (2010). As such, we analyzed each set of samples from a 
single location as a genetically isolated population. We calculated 
contemporary effective population sizes using two different esti‐
mators for both the RADSeq and microsatellite datasets. First, we 
estimated contemporary Ne using the LDNe method (Waples & Do, 
2008), as implemented in the program NeEstimator (Do et al., 2014). 
This method estimates Ne based on patterns of linkage disequilib‐
rium between loci and was shown to perform well relative to other 

methods when calculating Ne under scenarios of low Ne and low 
migration rates (Gilbert & Whitlock, 2015). We used a “two allele” 
minimum for each locus within each population based on the recom‐
mendations of Waples and Do (2010) relative to the sample size of 
individuals (≤25) in almost all our populations. Confidence intervals 
for Ne values were estimated using a parametric approach imple‐
mented in the program. Second, we used Colony (Jones & Wang, 
2010), which uses a maximum‐likelihood‐based method to calcu‐
late Ne based on inferred sibship frequencies among the samples, 
with associated confidence intervals obtained through bootstrap 
resampling.

2.5 | Heterozygosity–fitness correlations

Snout–vent length (SVL) and body mass data were available for a sub‐
set (N = 91) of the individuals genotyped for RAD variation. These 
included samples from SSSP (N = 5), BERG (N = 7), CCRO (N = 18), 
GRL‐2 (N = 7), GRL‐3 (13), SPVY (N = 6), WLRD (N = 5), GLAD (N = 5), 
JENN (N = 8), VNGO (N = 7), and PRDF (N = 10). We log‐transformed 
(ln) these data and performed a major axis regression in the R pack‐
age lmodel2 (Legende, 2018) to obtain the slope of the best‐fit line 
between these variables. The slope of this line (bSMA) was used to 
calculate the Scaled Mass Index (SMI, Peig & Green, 2009) according 
to the equation SMI =BMi(SVL0/SVLi)bSMA, where BMi is the mass of 
the sample, SVL0 is the mean SVL across all samples, and SVLi is the 
SVL of sample i. We then used major axis regression to evaluate the 
relationship between these SMI values and average genome‐wide 
SNP heterozygosity, which was estimated for each individual from 
RADSeq data using scripts included with AftrRAD.

2.6 | Model‐based analyses of 
historical demography

We used historical demographic analyses to test between models of 
population history. Our goal was to assess whether evidence exists 
for declines in population size within each population. For declin‐
ing populations, we assessed whether the declines occurred over a 
timescale consistent with anthropogenic impacts (arbitrarily defined 
as <200 years—see Discussion) or were better explained by histori‐
cal factors occurring over longer timescales. To avoid problems as‐
sociated with model overparameterization, we analyzed the simplest 
models possible that captured the key features of the process (popu‐
lation size change) we were interested in exploring. Specifically, we 
tested between two simple demographic models (Figure 2). The first 
(“null model”) represents a population of constant size and is defined 
by a single parameter, the current population size (NCURR). The sec‐
ond (“bottleneck model”) is characterized by three parameters: the 
current population size (NCURR), a time of instantaneous population 
size change (TBOT), and a population size prior to TBOT (NANCES). 
Note that although we refer to this model as the “bottleneck model,” 
there are no restrictions regarding the direction of the population 
size change, as it allows for increasing population size in addition 
to decreasing population size. Harris et al. (2016) used a similar 
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approach to assess the impact of urbanization on white‐footed mice 
(Peromyscus leucopus) in New York City. Prior ranges for the three 
parameters “NCURR,” “NANCES,” and “TBOT” were 10–50,000, 
10–50,000, and 1–10,000, respectively, and were not bounded on 
the upper end.

We tested among the competing historical demographic mod‐
els with fastsimcoal 2.5.2 (Excoffier, Dupanloup, Huerta‐Sanchez, 
Sousa, & Foll, 2013), which uses maximum‐likelihood methods to 
perform model selection and parameter estimation based on the site 
frequency spectrum (sfs) calculated from the population genotypes. 
This approach has advantages over qualitative analyses of demog‐
raphy based on microsatellite data (e.g., Kimmel et al., 1998) by al‐
lowing the evaluation of the statistical fit of different demographic 
models using a genomic‐scale dataset summarized with a single met‐
ric. Folded site frequency spectra (calculated from observed counts 
of the minor allele) were generated separately for each of the 17 
populations from SNPs scored in all sampled individuals. For loci 
with more than one variable site, only the first SNP at each locus 
was retained. For each of these populations, we performed 100 fast‐
simcoal runs (30 ECM cycles and 1e5 simulations per run) under each 
of the two models. The maximum‐likelihood runs under each model 
were then compared using AIC to select the optimal model for each 
population.

Once the optimal model was identified for each population, we per‐
formed additional fastsimcoal analyses to estimate parameters within 
each population under the optimal model. To obtain point estimates, 
we used site frequency spectra that included all sites, performed 100 
independent fsc runs for each population, and obtained parameter 
estimates by selecting the values associated with the maximum‐likeli‐
hood run. To evaluate the variability of these parameter estimates, we 
generated 50 bootstrap resampled datasets, each with 10% fewer sites 
than the full dataset, from the observed sfs from each population, and 
performed fsc analyses on each these 50 resampled datasets (also 100 
runs for each dataset; 30 ECM cycles and 1e5 simulations per run).

A key parameter in these models is the genome‐wide mutation rate. 
Because we are not aware of any direct estimates for genome‐wide 
mutation rates for snakes, we conducted a series of preliminary anal‐
yses using paired sets of models and datasets that only varied in their 
use of “high” and “low” mutation rates. For the “high” mutation rate, we 
used 2.5 × 10−8 per site/generation as estimated for humans (Nachman 
& Crowell, 2000) and used in Sovic et al. (2016). For the “low” mutation 
rate, we used 2.1 × 10−9 per site/generation as used for a recent study 
on frogs by Thomé and Carstens (2016) and used in Gibbs et al. (2018). 
We then compared the model likelihoods for each analysis and found 
that the use of the high mutation rate consistently generated signifi‐
cantly better model likelihoods (results not shown). Consequently, we 
used the rate of 2.5 × 10−8 mutations per site/generation in our subse‐
quent analyses. Finally, as described by Sovic et al. (2016), we followed 
the approach of Lande, Engen, and Saether (2003) to convert estimates 
of time from generations to years, but used a lower estimate of age at 
first reproduction (2 years) which is based on data collected from the 
populations we studied (G. Lipps, unpublished data). This resulted in an 
estimated generation time of 2.03 years.

We stress that although we have conducted independent his‐
torical demographic analyses on each population the degree to 
which each population represents independent entity over historical 
timescales is unclear. Thus, as a whole the results of these analyses 
should be taken as a qualitative survey of the types of demographic 
histories experienced by an unknown number of historically inde‐
pendent populations across the range of this species.

2.7 | Potential impact of Fst‐outlier loci on 
demographic results

Our analyses of population structure, size, and historical demog‐
raphy assume that the polymorphism measured represents neutral 
variation, yet loci showing high levels of divergence between pop‐
ulations (outlier loci) may represent loci under divergent selection. 

F I G U R E  2   Historical demographic 
models analyzed for each population using 
fastsimcoal. Note that for the “bottleneck 
model,” there are no restrictions regarding 
the direction of the population size 
change, as it allows for both increases 
or decreases in population size. Table S3 
shows the results for model comparisons 
for each population based on AIC. 
Parameter estimates for the best‐fit 
models are given in Table S4
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We explored the sensitivity of our demographic analyses to such 
loci in two ways. First, we used Outflank version 0.2 (Whitlock & 
Lotterhos, 2015) with default parameter settings to identify highly 
divergent loci across populations. This program represents a “sec‐
ond‐generation” Fst‐outlier detection program that has much 
lower false‐positive rates, yet comparable power as compared to 
earlier programs. For the Outflank dataset, we allowed up to 10% 
missing data at each locus. Second, because characteristics of our 
study system (high levels of genetic structure and small numbers 
of loci and populations) may make detection of outliers problem‐
atic (Lotterhos & Whitlock, 2015), we also conducted a sensitivity 
analyses in which we chose a set of three population pairs that 
represent a range of sizes and interpopulation distances, and then 
assessed the impact of deleting a portion of high Fst loci from the 
dataset on demographic estimates. Specifically, we used Genepop 
(Rousset, 2008) to calculate Fst for each locus in each of the fol‐
lowing pairwise comparisons: PRDF/BERG, KLDR/KBPP, GRL‐1/
GRL‐2. We then identified the loci associated with the top 5% of 
Fst values, removed these loci from the datasets, and used these 
modified datasets to calculate effective population size and per‐
form historical demographic analyses with the same methods used 
for the full datasets.

2.8 | Projecting loss of genetic variation

We assessed how existing levels of variation might change in the 
future for a range of contemporary effective sizes given no change 
in current sizes. To do this, we conducted forward genetic simula‐
tions in simuPOP with overlapping generations (Peng & Kimmel, 
2005). SimuPOP is a flexible forward‐time simulator of demographic 
scenarios that uses life history information from the species under 
study. We first generated models that incorporated estimates of key 
features of Sistrurus demography (Jones et al., 2012) (see below). 
Next, we ran 10 iterations for each of three fixed Ne values (50, 
30, and 10) that represent a range of empirically estimated values 
for Ne. For each iteration, 1,000 independent bi‐allelic loci were 
initialized for every individual with a starting frequency of p = 0.81 
and q = 0.19, corresponding to a starting He of 0.30, which ap‐
proximates the currently observed He in polymorphic RADSeq loci 
(Table 1). Simulations were run for 100 time steps, where one time 
step equaled one year. Individuals did not reproduce until year 2 and 
died after year 5. We based our choices of minimum reproductive 
ages and maximum ages based on previously published demographic 
data. While S. catenatus may live up to 12 years, less than 70% of a 
breeding cohort is expected to reach age 5 (mean annual survival 
of 0.67; Jones et al., 2012). During each time step, individuals were 
aged by one year, and those greater than 5 years old removed from 
the simulated population. Random pairs of adults in the population 
were then chosen to reproduce until the population returned to the 
fixed population size. After new individuals were generated, indi‐
vidual heterozygosity was exported every time step for later anal‐
ysis. For each run, individual heterozygosity was used to calculate 
the average heterozygosity for each year. Standard deviation of the 

observed heterozygosity was calculated for each year from the 10 
iterations and used to generate 95% confidence intervals.

We compared our simulation results with a widely used analyti‐
cal approach for estimating loss of variation based on population ge‐
netic theory (James, 1970) that has been used for estimating changes 
in heterozygosity in endangered species (Amos & Balmford, 2001). 
Specifically, James (1970) proposed using the equation Ht = H0 
(1−1/2Ne)t to describe changes in heterozygosity over time in bot‐
tlenecked populations where H0 is initial heterozygosity and Ht is 
heterozygosity t generations after the instantaneous decline of a 
large population to size Ne. A key difference between the two meth‐
ods is that compared to the simulation‐based approach in SimuPOP, 
this analytical approach assumes no overlapping generations with 
all individuals only reproducing in a single generation. As with our 
simuPOP runs, we fixed the initial H0 at 0.3 and then projected the 
loss of variation using the equation above for three fixed values of 
Ne: 50, 30, and 10.

3  | RESULTS

3.1 | Genetic markers

For the RADSeq data, a mean of 1,037,766 sequence reads were as‐
signed to each of the 263 samples (range 216,381–4,239,460). The 
average numbers of total non‐paralogous loci and polymorphic loci 
per population were 52,815 and 641, respectively (Table 1). For a 
given population, the median read depth ranged from 48 to 61 reads 
per polymorphic locus, and the percentage of polymorphic loci that 
were scored for all sampled individuals ranged from 25% to 60% 
across the 17 datasets (Table 1). These values for coverage are con‐
sistent with those reported in Sovic et al. (2016), while the number 
of polymorphic loci used in the analyses here is smaller than for the 
previous study. This is because datasets in this study represent only 
intra‐population variation, while the datasets for the previous study 
included both intra‐ and interpopulation variation.

3.2 | Genetic structure

The overall Fst for RADSeq data across all populations was 0.283 
with pairwise values for individual populations ranging from 0.083 to 
0.398 (Table S1a). These values are similar to values estimated from 
microsatellite data (overall value: 0.223; range of pairwise values: 
0.088–0.51; Table S1b). Fst values based on RADSeq and micros‐
atellite data for specific pairwise comparisons are significantly cor‐
related with each other (r = 0.74; p < 0.05) with microsatellite‐based 
values averaging ~22% less than matched RADSeq‐based values. 
The variation in pairwise values is similar, with coefficients of vari‐
ation of 28.1% and 31.6% for pairwise Fst values based on RADSeq 
and microsatellite data, respectively. We note that direct compari‐
sons of Fst values based on multi‐allelic microsatellite loci and bi‐al‐
lelic SNP loci are problematic because differences in Fst based on 
each type of marker do not scale in the same way (Frankham et al., 
2017). However, qualitatively, the RADSeq data support previous 
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results from the microsatellite analyses of Chiucchi and Gibbs (2010) 
that these populations are genetically distinct and demographically 
isolated from each other.

3.3 | Estimates of effective population size

Point estimates of the effective population sizes for individual popu‐
lations vary depending on the type of genetic data and method used 
to generate the estimates (Figure 3; Table S2). A small number of 
populations (RADSeq: EHSP and VNGO; microsatellites: BPNP and 
GLAD) yielded estimates that were 1–2 orders of magnitude greater 
than other populations or were estimated as infinite in size—these 
are coded as NA in Table S2, and omitted from Figure 3. Estimates 
from LDNe for RADSeq data range between 2 (JENN) to 48 (BPNP) 
with an overall mean (±SE) of 17.3 ± 3.5. Microsatellite‐based esti‐
mates of LDNe ranged from 3 (GRL‐1) to 64 (JENN) with an overall 
mean that is slightly higher (20.6 ± 3.6 SE). For estimates based on 
RADSeq data, all populations had values <50, whereas for micros‐
atellite data, 13 of 15 (87%) populations were below this threshold. 
These summaries include all populations including those where es‐
timates were not available for one type of data. When paired esti‐
mates for single populations are compared, mean values based on 
RADSeq data are slightly lower (RADSeq: 15.6 ± 3.5; microsatellites: 
21.1 ± 5). Paired values based on each type of data are not signifi‐
cantly correlated with each other (r = 0.11; p > 0.05).

For sibship frequency‐based measures of Ne, point estimates 
range from 8 (SPVY) to 140 (BPNP) (mean: 36.38 ± 10.2) for RADSeq 
data, and 14 (GRL‐1) to 95 (BPNP) (mean: 44.06 + 5.8) for microsat‐
ellite data. Proportionally fewer populations (RADSeq: 77% [10/13]; 
microsatellites: 75% [12/16]) had sibship‐based values <50. Paired 

estimates show similar patterns (RADSeq: mean = 29.55 ± 8.5; mi‐
crosatellites: 35.36 ± 10.2) but, in contrast to LDNe estimates, are 
highly correlated with each other (r = 0.89; p < 0.05). In general, al‐
though estimates of contemporary Ne vary depending on method 
and marker type, most populations have small effective sizes of <50 
with only a few populations having larger sizes.

3.4 | Heterozygosity–fitness correlations

There was no significant relationship between our estimate of indi‐
vidual fitness (standardized mass index−SMI) and genome‐wide indi‐
vidual heterozygosity estimates based on RADSeq data (r2 = 0.001; 
p = 0.418). We also performed regression analyses on individual 
populations with a minimum of five samples, but as for the full data‐
set, no significant positive relationships were detected (results not 
shown).

3.5 | Demographic modeling

Statistical comparisons of the two demographic models in Figure 2 
show strong support (AIC ~1) for the model incorporating popula‐
tion size change as best‐fitting the data for all individual populations 
(Table S3). Estimates of ancestral population size (Na) averaged 
39,197 (range 21,073–56,684) and were consistently higher than 
those for current population size (Nc), which had a mean of 2,445 
(range 10–12,583), suggesting all populations were best modeled as 
having experienced a population decline.

In terms of the timing of this decline, joint inspection of the 
point estimates relative to the parameter distributions from 
the resampled datasets shows two scenarios (Figure 4). For 12 

F I G U R E  3   Contemporary effective population size estimates based on LDNe generated from microsatellites (hollow triangles) and 
RADSeq data (filled triangles) for 17 populations of s. catenatus. Confidence intervals with an upper bound of infinity are represented by 
dashed lines extending to the top of the plot. Only RADSeq data are available for the population from SPVY
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populations, there is a close correspondence between the point es‐
timate of TBOT (in generations) from the original data and the dis‐
tribution of TBOT values from the resampled data. In contrast, for 
five populations (EHSP, PRDF, WLRD, GRL‐2, and BEAU), the point 
estimate does not mirror the resampled distribution, and therefore, 
TBOT cannot be inferred with confidence. For populations with co‐
incident point estimates and distributions, eight populations have 
small values (<100 generations) suggesting recent declines within 
the past 200 years (SSSP, SPVY, GRL‐1, GRL‐3, GLAD, VNGO, 
JENN, and BERG), while four populations have relatively large val‐
ues (>2,000 generations or>4,000 years) suggesting declines on 
historical timescales. Thus, for populations for which TBOT can be 
inferred with confidence, a majority (8/12; 67%) showed declines 
during the time period in which humans have had strong impacts on 
the landscape, while four showed declines on historical timescales.

3.6 | Lack of impact of Fst‐outlier loci on 
demographic estimates

None of the 701 loci included in the Outflank analysis of the 17 
populations were flagged as Fst‐outliers. Sensitivity analyses for six 
populations suggested that removal of loci associated with the top 

5% of Fst values based on pairwise population comparisons had little 
effect on our results. Specifically, for all six populations, estimates of 
LDNe, and model choice results and parameter estimates from fsc 
were identical or very similar to those from the full dataset (results 
not shown). These findings indicate that even if our datasets contain 
subsets of loci under divergent selection not detected by our Fst‐
outlier tests due to a lack of power, it is unlikely such loci are having 
an impact on our demographic inferences.

3.7 | Projected loss of variation

All simulated populations lost variation over time, with the great‐
est loss occurring in the simulation based on the smallest fixed 
value of Ne (Figure 5). Based on point estimates of He at 0, 30, 
and 50 generations, populations with an Ne value of 50 lost 21% 
of their initial variation, those with Ne = 30 lost 33% of their vari‐
ation, and populations with Ne = 10 lost 68% of their variation 
over roughly 100 years given our estimate of the generation time 
of this snake. These estimates of expected loss of He were sub‐
stantially less than the predicted losses over the same period of 
time based on the analytical formula that assumes no overlapping 
generations, which showed declines of He that varied from 63% 

F I G U R E  4   Histograms representing maximum‐likelihood estimates from fastsimcoal of the number of generations in the past at which a 
decline in population size occurred for each of the 17 populations. The dotted gray line indicates the bin containing the point estimate (see 
Table S4), and distributions reflect estimates from 50 bootstrapped datasets for each population. Times along the x‐axis are binned into 
intervals of 100 generations. The bin of 0–100 generations, roughly corresponding to an anthropogenic timeframe (~200 years), is indicated 
with red. All estimates exceeding 2,000 generations are combined into the 2,000 generation bin
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(Ne = 50) to 99% (Ne = 10) (Figure 5). This demonstrates the im‐
portance of incorporating realistic demographic parameters into 
models used for projecting loss of variation. Overall, these results 
suggest that nearly all populations are not at genetic equilibrium 
relative to their current effective size but have excess polymor‐
phism which they will lose due to drift at varying rates over the 
next 100 years. This implies that most have undergone recent de‐
clines in census size (reflected in estimates of current effective 
size), but these declines have yet to influence the standing genetic 
variation present in a given population.

4  | DISCUSSION

4.1 | Estimation of contemporary Ne

A major result is that point estimates of contemporary Ne are small 
(<50) for the majority of populations sampled from across the range 
of Sistrurus catenatus. For example, estimates based on LDNe analy‐
sis of RADSeq data show that mean Ne is ~22 individuals (range: 
2–48), although the confidence estimates for individual populations 
can be large. This result of small Ne values holds regardless of the 
method used to generate the estimates (i.e., LDNe vs. Colony), or 
the type of genetic marker (microsatellites vs. RADSeq), and sug‐
gests that genetic drift is poised to have a significant impact on the 
maintenance of genetic variation in these populations.

These estimates are much smaller than the effective sizes based 
on microsatellite variation reported by Gibbs and Chiucchi (2012) 
for many of the same populations reported here and, in some cases, 
for estimates of Ne based on historical demographic modeling of 
RADSeq‐based polymorphism by Sovic et al. (2016) (and here). This 
is because these studies estimate Ne over different timescales using 

different methodologies, and so values from each set of studies are 
not directly comparable (Hare et al., 2011). For example, the esti‐
mates of Ne in Chiucchi and Gibbs (2010) are based on results from 
Migrate (Beerli, 2009) which generates estimates of long‐term ef‐
fective size. These reflect the amount of genetic diversity (estimated 
as)maintained in a population at evolutionary equilibrium due to the 
joint effect of drift and mutation (µ) over a period of approximately 
4Ne generations ( = 4Neµ). Likewise, the estimates of Ne using 
fastsimcoal generated by Sovic et al. (2016) and here also represent 
historical estimates of effective population size over many past 
generations. These long‐term estimates have conservation value in 
potentially representing a measure of population size that predates 
human impacts. As such, they could represent a historical target 
for assessing current management goals (Hare et al., 2011) or for 
evaluating the magnitude of recent anthropogenic impacts relative 
to historical population sizes (Alter, Rynes, & Palumbi, 2007). Long‐
term estimates can also be useful for species‐level comparisons 
relevant to conservation. For example, Sovic et al. (2016) compared 
long‐term effective sizes and population dynamics of S. catenatus 
with the closely related but non‐threatened Western Massasauga 
Rattlesnake (S. tergeminus). The demographic patterns they detected 
were consistent with differences in the conservation status of each 
species. The long‐term effective population size was much smaller 
for the representative S. catenatus population than for the S. tergem‐
inus population, and the S. tergeminus population was best modeled 
as a growing population, whereas S. catenatus showed evidence of a 
long‐term population decline.

In contrast, the short‐term estimates of Ne based on single sam‐
ple estimators reported here measure effective population size over 
much more recent timescales—approximately the period of sample 
collection, and hence are useful for different conservation purposes 
(Hare et al., 2011). Specifically, in species with overlapping genera‐
tions, they generate an estimate of Ne that is approximately equal to 
Nb * generation time, where Nb is the effective number of breeding 
individuals in a given year. As such, short‐term estimates are more 
useful for estimating short‐term abundance using empirically de‐
rived estimates of the ratio of Ne/Nc, where Nc is population census 
size (Palstra & Ruzzante, 2008), and evaluating the degree to which 
genetic drift may erode the adaptive genetic potential of small pop‐
ulations over timescales relevant to management activities (Lynch, 
Conery, & Burger, 1995).

Because our analyses use mixtures of age classes of individuals 
from each population, they may underestimate true values of contem‐
porary Ne (Waples, Antao, & Luikart, 2014). The degree of this bias is 
related to the ratio of adult lifespan/generation time, which we esti‐
mate as ~4. This assumes a two‐year generation time (see above) and 
uses the range‐wide estimate of annual survivorship (0.67—Jones et al., 
2012) to project when 95% of a hypothetical cohort of snakes would 
have died. Given this value, extrapolations from the trends shown in 
Figure 6 in Waples et al. (2014) suggest that our estimates of Ne based 
on LDNe may be underestimated by as much as 25%.

Two other studies have recently reported contemporary effec‐
tive size estimates for this species using microsatellite genetic data 

F I G U R E  5   Results of simulations showing the projected loss 
of existing levels of variation (estimated as He) over time for 
populations of varying effective size. Trajectories are shown for 
fixed Ne values of 50, 30, and 10 individuals from results based on 
the SimuPOP simulations (point estimates shown by solid line +95% 
CI polygons) or the analytical formula for loss of He over time in a 
bottlenecked population
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analyzed using the LDNe program. Both show estimates broadly sim‐
ilar to the values reported in this paper. Bradke et al. (2018) reported 
values of 29.5 (95% CI = 22.2–40.5) and 44.2 (95% CI = 29.7–73.4) for 
two populations in Michigan. Baker et al. (2018) reported Ne values 
of ~30 individuals (95% CIs ~15–47) for each of three point estimates 
over a 10‐year period (2002 to 2012) for the SSSP population in 
Illinois reported here. As described by Bradke et al. (2018), these val‐
ues fall within the range of LDNe estimates found for other threat‐
ened and non‐threatened snakes (see Table 3 in Bradke et al. (2018)).

A general benchmark for evaluating whether species are at short‐
term genetic risk comes from the widely debated “50/500 rule” first 
proposed by Franklin (1980) for assessing the minimum viable size 
for endangered species. Briefly, the rule proposed that to avoid the 
deleterious effects of inbreeding depression, populations should be 
maintained at a minimum short‐term effective size of at least 50 in‐
dividuals. The validity of 50 individuals as a specific numerical tar‐
get has been much discussed (Frankham, Bradshaw, & Brook, 2014; 
Jamieson & Allendorf, 2012) and argued to be too small to achieve 
its purpose (Frankham et al., 2014). Regardless, our empirical finding 
that most populations of S. catenatus have a contemporary Ne of <50 
suggests that these populations are potentially at risk of the deleteri‐
ous effects of inbreeding depression (but see Wood, Yates, & Fraser, 
2016) and that conservation planning for this species needs to take 
this possibility into account.

4.2 | Heterozygosity–fitness correlations

Our results reinforce those of Gibbs and Chiucchi (2012) who also 
found little evidence of genetic costs of inbreeding based on het‐
erozygosity–fitness correlations (HFCs) (Chapman et al., 2009). We 
note that the datasets used in the two studies are not independent. 
Many of the same individuals (and their estimates of body condition) 
were used in both analyses, with the difference being in the type and 
number of genetic loci used to estimate individual heterozygosity. 
We echo the cautions of Gibbs and Chiucchi (2012) that body condi‐
tion is an indirect measure of individual fitness in these animals and 
that small sample sizes combined with small effect sizes may reduce 
the statistical power of both analyses to detect effects. A more di‐
rect way to test whether populations are currently experiencing sig‐
nificant mutational load would be future genome‐level assessments 
of whether deleterious mutations such as loss of functional variants 
(e.g., Rogers & Slatkin, 2017) occur in individuals, and whether the 
frequency of such variants is greater in small versus large popula‐
tions (Perrier, Ferchaud, Sirois, Thibault, & Bernatchez, 2017).

4.3 | Historical demography

Our analysis of historical demography suggests that range‐wide, all 
populations have undergone a decline in population size. However, 
based on point estimates, the timing of the population reduction 
varies: Eight populations show a decline within the past 200 years, 
whereas four others experienced declines >2,000 years bp. This sug‐
gests that there are two different classes of drivers for the population 

declines. The first operates on contemporary timescales that are 
coincident with the colonization and subsequent landscape modifi‐
cation by European settlers in North America, which has occurred 
within the past 200 years (Pielou, 1991; Schmidt, 1938). In contrast, 
the older dates correspond with large‐scale environmental changes 
related to climate that have previously been hypothesized to impact 
the distribution of this (Cook, 1992) and other species in this region 
of North America (Soltis, Morris, McLachlan, Manos, & Soltis, 2006).

There are no obvious spatial patterns in populations showing 
recent versus historical declines that might suggest a broad‐scale 
geographic cause to such variation. Populations within the same 
geographic regions show either different (e.g., EHSP and SSSP) or 
similar (e.g., VNGO, GLAD, and JENN) timescales for declines. This 
lack of a pattern suggests that local conditions may play a primary 
role in determining the timescale of population declines. This hy‐
pothesis could be explored by incorporating a historical dimension 
to evaluating habitat suitability in the local area where each popula‐
tion is found (e.g., McClusky et al., 2018).

These results are at odds with previous work that showed limited 
evidence for population declines in these populations using differ‐
ent methods of analyses and microsatellite genetic data. Specifically, 
Chiucchi and Gibbs (2010) used allele distribution tests implemented 
in Bottleneck (Luikart, Allendorf, Cornuet, & Sherwin, 1998) and 
only found significant results supporting recent bottlenecks in three 
of 16 populations. We suggest that the SFS‐based tests used here 
are more sensitive because they employ an explicit model‐testing 
framework, use a much greater amount of genetic data, and examine 
the possibility of declines over a broader timescale.

Other studies using similar approaches have found evidence 
for either recent or historical bottlenecks in other endangered ver‐
tebrates (Dussex, Rawlence, & Robertson, 2015; Goossens et al., 
2006; Salmona et al., 2012; Tucker et al., 2012; Zhu et al., 2013), but 
in general, the focus is on one or a few populations of each species. 
Our study differs in that it examines evidence for declines across a 
relatively large number of independent populations, and shows that 
the timing of significant declines varies across populations. This sug‐
gests that characterizing species as impacted only at historical or 
contemporary timescales is simplistic and that a given species may 
experience both types of declines. Identifying populations that have 
experienced significant recent declines may represent a way of pri‐
oritizing certain populations over others in terms of the impacts of 
anthropogenic effects on the viability of specific populations.

4.4 | Projecting future levels of genetic variability

Our simulations suggest that if there are no changes in key population 
parameters like size and levels of migration, most Sistrurus catenatus 
populations will lose 20% or more of their existing variation over the 
next 100 years. These conclusions are based on several assumptions. 
First, they assume populations will remain no larger than their cur‐
rently estimated effective size with no increase in migration. This is 
reasonable given that trends over time are for populations to remain 
isolated with the same or declining numbers Szymanski et al.., 2016). 
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Second, our analyses are based on the evolutionary dynamics of what 
we assume is neutral variation and not the adaptive variation that 
is used to delineate adaptive conservation units within threatened 
taxa (Funk, McKay, Hohenlohe, & Allendorf, 2012). This is a com‐
mon problem in conservation genetic studies in that the genes that 
underlie adaptive variation are difficult to identify. However, Reed 
and Frankham (2003) have provided evidence that the two types of 
variation are broadly correlated with each other. In Sistrurus, stud‐
ies of adaptive variation within populations are scarce, but Jaeger et 
al. (2016) have documented variation in MHC loci in three popula‐
tions in Illinois that showed qualitative association with variation in 
six microsatellite loci. In addition, Ochoa et al. (in prep.) have found 
evidence for polymorphism in genes associated with venom proteins. 
In general, these findings suggest that adaptive variation is present 
in existing populations of Sisturus and that high levels of drift have 
yet to purge this variation. However, whether the rate at which it is 
expected to be lost parallels the results of our simulations is unclear. 
Because selection generally acts to retard the impact of drift on the 
loss of variation within populations, we suspect that the timeline for 
loss of variation established by our simulations may be conservative.

These results have conservation implications. They suggest 
that existing populations of Sistrurus may not yet have paid the 
true genetic cost of living in their current size population, but that 
this cost could be “paid” in the near future. As such, despite their 
history of living in small populations over historical timescales 
(Chiucchi & Gibbs, 2010), they may be moving to a new equilibrium 
with respect to gene dynamics, with issues to do with losses of 
adaptive genetic variation becoming more prominent in the near 
future. In other words, many of these populations may be poised 
to enter the extinction vortex (Gilpin & Soulé, 1986) but have yet 
to experience the fitness costs that will act in a positive feedback 
loop to drive populations to even smaller sizes. The simulations 
may also provide a timeline that could guide the timing of intro‐
ductions associated with genetic rescue (Tallmon et al., 2004) in 
the event it is adopted as a viable management option (Ralls et 
al., 2017). Specifically, our simulations suggest that as a guide to 
preserve 50% of the existing variation in the very smallest popula‐
tions (Ne = 10), new genetic variation would need to be introduced 
within the next 40 years, whereas for the largest populations 
(Ne = 50), this could be delayed for as long as >100 years. Genetic 
introductions have been used to increase population viability in 
other highly inbred snake populations through the introduction 
and subsequent removal of radio‐tagged males (Madsen, Shine, 
Olsson, & Wittzell, 1999; Madsen, Ujvari, & Olsson, 2004). We 
feel that a similar approach could be used to supplement varia‐
tion in populations of Sistrurus, especially given the fact that this 
species represents a taxon where outbreeding depression is not 
expected to be a significant issue (Frankham, 2015).
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