
Efficient haplotype matching between a query

and a panel for genealogical search

Ardalan Naseri1,†, Erwin Holzhauser1,†, Degui Zhi2,* and

Shaojie Zhang 1,*

1Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA and 2School of Biomedical

Informatics and School of Public Health, University of Texas Health Science Center at Houston, Houston, TX

77030, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Abstract

Motivation: With the wide availability of whole-genome genotype data, there is an increasing need

for conducting genetic genealogical searches efficiently. Computationally, this task amounts to

identifying shared DNA segments between a query individual and a very large panel containing

millions of haplotypes. The celebrated Positional Burrows-Wheeler Transform (PBWT) data struc-

ture is a pre-computed index of the panel that enables constant time matching at each position be-

tween one haplotype and an arbitrarily large panel. However, the existing algorithm (Durbin’s

Algorithm 5) can only identify set-maximal matches, the longest matches ending at any location in

a panel, while in real genealogical search scenarios, multiple ‘good enough’ matches are desired.

Results: In this work, we developed two algorithmic extensions of Durbin’s Algorithm 5, that can

find all L-long matches, matches longer than or equal to a given length L, between a query and a

panel. In the first algorithm, PBWT-Query, we introduce ‘virtual insertion’ of the query into the

PBWT matrix of the panel, and then scanning up and down for the PBWT match blocks with length

greater than L. In our second algorithm, L-PBWT-Query, we further speed up PBWT-Query by intro-

ducing additional data structures that allow us to avoid iterating through blocks of incomplete

matches. The efficiency of PBWT-Query and L-PBWT-Query is demonstrated using the simulated

data and the UK Biobank data. Our results show that our proposed algorithms can detect related

individuals for a given query efficiently in very large cohorts which enables a fast on-line query

search.

Availability and implementation: genome.ucf.edu/pbwt-query

Contact: degui.zhi@uth.tmc.edu or shzhang@cs.ucf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The increasing volumes of whole-genome genotype data, partly due

to the steady drop in the cost of genotyping (Campbell et al., 2015;

Jiang et al., 2016), offer a new opportunity to study genetic relation-

ships and relatedness between individuals. In the public domain,

biobank-scale SNP array projects have collected large amounts of

genotype data. For example, UK Biobank has released genotype and

health-related data of �500 k individuals in the UK (Bycroft et al.,

2018; Sudlow et al., 2015). However, this sample size is dwarfed by

the collections in consumer genetics companies. As of July 2018,

23andMe claims to have over 5 million customers and have col-

lected the genotype data of all customers. AncestryDNA has col-

lected DNAs of more than 10 million individuals. It has been

projected that genotype data of more than 100 million individuals

will be available through direct-to-consumer companies by 2021

(Khan and Mittelman, 2018).
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Genetic relationships among individuals are reflected in Identity

by Descent (IBD) segments, shared DNA segments between a pair of

individuals that have been inherited from a common ancestor. The

length of IBD segments correlates with how recently two individuals

share a common ancestor. A pair of individuals that share a com-

mon ancestor in a more recent generation may share more IBD seg-

ments, of larger length, compared with a pair of individuals that

share a common ancestor less recently (Thompson, 2013).

Therefore, in genotype or haplotype sequences, IBD segments that

define a recent common ancestor correspond to long matches of

DNA sequences. It has been projected that about 60% of individuals

of European descent have a third-degree cousin or closer relative in

a current database of over 1 million (Erlich et al., 2018) that can be

found using IBD segments.

Previous research efforts were mostly focused on ‘M-vs-M’

matches of IBD segments. For a collection (panel) with M individu-

als or haplotypes, the goal was to identify all IBD segments between

any pairs of individuals in the panel. Several methods have been pro-

posed to detect all pairwise IBD segments in a panel (Browning and

Browning, 2011, 2013a, b; Gusev et al., 2009; Purcell et al., 2007;

Rodriguez et al., 2013, 2015). Most of these works rely on pairwise

comparisons and thus with computational complexity O(NM2),

where N is the length of the genome. GERMLINE (Gusev et al.,

2009) is a fast ‘M-vs-M’ method claimed to be linear to the size of

the panel [O(NM)] for random sequences. However, real genetic

sequences typically contain repetitive local haplotypes and thus

GERMLINE does not demonstrate linear behavior in real sequences.

Durbin (2014) proposed an efficient genotype indexing method for

storing and searching haplotype sequences. The proposed method,

called Positional Burrows-Wheeler Transform (PBWT), is based on

sorting the haplotype sequences based on their reversed prefix order.

PBWT enables an efficient haplotype search among the haplotypes

within a panel and has been applied for genotype phasing and im-

putation (Loh et al., 2016a, b).

For genealogical search, finding all matches greater than or equal

to a certain length between a haplotype query and panel is desired.

This can be thought of as finding all individuals in a panel related to

the query that have a common ancestor in recent generations, which

reveals more information about the query than set-maximal

matches. A trivial example illustrates our point: in a large popula-

tion containing a single pair of identical twins, the only set-maximal

match that exists between any pair of individuals is the match be-

tween the twins spanning the length of the twins. All other relation-

ships between any pair of individuals are missed. In the general case,

to a lesser degree, examining only the longest set-maximal matches

misses the majority of measurable genetic relationships between

pairs of individuals in a population. The length of matches correlates

with the number of generations that two individuals share a com-

mon ancestor. As a result, it can be applied to find multiple relatives

of a given query individual up to a given degree of relatedness.

The problem under consideration of this project is to develop an

algorithm independent from the number of haplotypes for identify-

ing all long IBD segments between a query and a panel, i.e. ‘1-vs-M’

search, given M haplotypes in the panel. Why is the time complexity

independent from the number of haplotypes or individuals import-

ant? This is because when the panel contains millions of individuals,

naive methods of all pairwise comparison [with computational com-

plexity O(NM)] will be too slow for real-time applications.

However, no efficient on-line method yet exists to identify all long

IBD segments between a query and a panel. GERMLINE (Gusev

et al., 2009) does yet not offer a direct algorithm for ‘1-vs-M’

search. Durbin’s Algorithm 5 (Durbin, 2014) can find the single

longest set-maximal matches between a query haplotype and all

haplotypes in the panel with runtime O(N), i.e. independent from

the number of haplotypes in the panel. However, in practice, mul-

tiple ‘good enough’ matches are desired for a genealogical search.

Of note, one might be tempted to repeatedly apply Durbin’s set-

maximal matches algorithm and exclude the detected match at each

run. This solution would not be practical, since the indices for the

panel need to be re-computed or updated after each detected match.

To our knowledge, there are no algorithms to find all L-long

matches, matches longer than or equal to a given length L between a

query and a panel of haplotypes, independent from M.

In this work, we present a set of efficient algorithms that can

identify all L-long matches of a given query in an arbitrarily large

panel. We address the main limitation of Durbin’s original PBWT

algorithm that cannot find all L-long matches for a new query effi-

ciently. First, we introduce an efficient approach for finding long

matches to a query using PBWT, named PBWT-Query. The key idea

of PBWT-Query is to ‘virtually’ insert the query haplotype into the

PBWT matrix of the panel, and then scan up and down in the PBWT

index for any long match. However, this algorithm may not be effi-

cient when matches are numerous and the cost of scanning is non-

negligible. To address this issue, we developed a second algorithm,

L-PBWT-Query, that introduces additional pre-computed array

data structures, named Linked Equal/Alternating Positions (LEAP)

arrays, to help skip unnecessary repetitive up-and-down scanning of

PBWT-Query at each site. Moreover, we developed a memory-

mapped implementation of the L-PBWT-Query that can alleviate

the main memory burden added by the LEAP arrays and the PBWT

panel. The time complexity of both PBWT-Query and L-PBWT-

Query is independent from the number of haplotypes in the panel.

In the next section, we describe the algorithm in detail, followed

by simulation results that show the efficiency of PBWT-Query and

L-PBWT-Query. Finally, the application on real data is demon-

strated by using the one million haplotypes from the UK Biobank

data to search for related individuals extracted from the panel.

2 Materials and methods

2.1 Overview and notation
PBWT (Durbin, 2014) facilitates an efficient approach to find all

L-long matches, matches longer than or equal to a given length L,

among the haplotypes in a panel. It also provides a fast approach to

find the longest matches for a haplotype query in a panel. However,

finding L-long matches to a query is of greater interest. Suppose we

have a haplotype s ¼ s½0�s½1� . . . s½N � 1�. Then, s[i, j) denotes the

subsequence s½i�s½iþ 1� . . . s½j� 2�s½j� 1�, and jsj denotes the length

of s, i.e. jsj ¼ N. When we compare any haplotype sequences, we al-

ways assume that they share the same sites, number of sites, and

ordering of sites. To follow the notations of Durbin (2014), we de-

fine the haplotype matrix of X as the matrix whose ith row is xi.

We can formulate our problem as follows: Given a query haplo-

type z and a database of haplotypes X ¼ x1;x2; . . . ; xM, where jzj ¼
jxij ¼ N for any xi 2 X, we would like to find all L-long matches

that are greater than or equal to length L between z and all xi 2 X.

We say that there is an L-long match between z and xi from sites e

to k if k� e � L, e ¼ 0 or z½e� 1� 6¼ xi½e� 1� and k ¼ N or

z½k� 6¼ xi½k�, i.e. that match from e to k between z and xi cannot be

extended in either direction. To find L-long matches to a query, we

first find the position of the query in the PBWT panel at each site.

All of the possible L-long matches ending at a given site k will occur

in contiguous blocks of haplotypes adjacent to the ‘would be’
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position of the query in the panel sorted by the reverse of the prefix

ending at site k. Hence, we can scan the neighboring sequences in

the PBWT panel to find L-long matches. The time complexity of

PBWT-Query is OðN þ cðR� Lþ 1ÞÞ, where R is the average

length of the matches, and c is the total number of matches.

To speed up the search, we use LEAP arrays to reduce the search

space of possible matches that terminate at each site k by skipping over

haplotypes whose matches can still be extended to further sites. The

LEAP arrays consist of arrays Ik
ps; Ik

pd; Ik
ns; Ik

nd; Dk
ps; Dk

pd; Dk
ns and Dk

nd

for each site k, which we formally define in the Notation section. These

arrays are generated from the PBWT matrix and independent from the

query haplotype. We called this new approach L-PBWT-Query, whose

worst-case time complexity is O(N þ c), where c is the number of L-

long matches. The LEAP arrays can be pre-computed in O(NM) time,

and require O(NM) space in main memory or hard disk. Therefore, the

greatest utility of our approach is the use-case where the user has a large

amount of hard disk or main memory space and a constant (or infre-

quently changing) database haplotype panel and wants to perform

many queries on the same panel. In this case, the database population

needs only be pre-computed once to achieve subsequently fast.

Following, we introduce PBWT data structures and LEAP arrays.

2.1.1 PBWT matrix and positional prefix array

We define the haplotypes in X sorted by the kth reversed prefix (i.e.

by the reverse of sites 0 to k � 1) as yk, and the positional prefix

array ak containing a permutation of the indices 0 to M � 1 such

that yk
i ¼ Xak ½i�. For every yk, we refer to the contiguous block of

haplotypes yk
i ; y

k
iþ1 . . . ; yk

j�1; y
k
j as yk

i through yk
j ; similarly, yk

i ½k�
through yk

j ½k� refers to yk
i ½k�; yk

iþ1½k� . . . ; yk
j�1½k�; yk

j ½k�, etc. For ex-

ample, if X ¼ {1001, 1111, 0100}, then, y3 ¼ {1001, 0100, 1111}

and a3 ¼ {0, 2, 1}. Then, we refer to the PBWT matrix as the matrix

whose ith column corresponds to the ith column of yi.

2.1.2 Divergence array

We define the divergence array dk such that dk[i] is the starting pos-

ition of the longest match between yk
i and yk

i�1 ending at k (Durbin,

2014), i.e. dk gives the starts of all the longest matches ending at a

given k for any two adjacent haplotypes in yk. The longest match be-

tween some yk
i and yk

j (i < j) ending at k begins at maxi<m� j dk½m�.

2.1.3 LEAP arrays

Here, we formally define the LEAP arrays: Ips, Ipd, Ins, Ind, Dps, Dpd,

Dns and Dnd. For each yk½k�, i.e. each column of the PBWT matrix,

we maintain four indices: Ik
ps; Ik

pd; Ik
ns and Ik

nd. Ips and Ins allow us to

jump around between equal values within each column of the PBWT

matrix. Similarly, Ipd and Ind allow us to jump around between dif-

fering values within each column of the PBWT matrix. The subscripts

ps, pd, ns and nd are shorthand for previous-same, previous-differ-

ent, next-same and next-different, respectively, which will make

sense below. If j is the largest index such that yk
i ½k� ¼ yk

j ½k� and j < i,

Ik
ps½i� ¼ j; that is, we can use Ik

ps to jump in yk from a given haplotype

to the closest preceding haplotype that has the same value at k. If j is

the largest index such that yk
i ½k� 6¼ yk

j ½k� and j < i, Ik
pd½i� ¼ j; that is,

we can use Ik
pd to jump in yk from a given haplotype to the closest

preceding haplotype that has a different value at k. If j is the smallest

index such that yk
i ½k� ¼ yk

j ½k� and j > i, Ik
ns½i� ¼ j; that is, we can use

Ik
ns to jump in yk from a given haplotype to the closest proceeding

haplotype that has the same value at k. Finally, if j is the smallest

index such that yk
i ½k� 6¼ yk

j ½k� and j > i, Ik
nd½i� ¼ j; i.e. we can use Ik

nd

to jump in yk from a given haplotype to the closest proceeding haplo-

type that has the different value at k. Although these indices facilitate

our ability to skip unnecessary haplotypes during our search, when

we jump between haplotypes, we need to know if the block of poten-

tial L-long matches terminated in the skipped haplotypes. If any di-

vergence value for the skipped haplotypes is larger than L � k, we

know that our query cannot have an L-long match ending at k to the

haplotype that we jumped to. Therefore, we maintain four additional

arrays: Dps, Dpd, Dns and Dnd, which are natural counterparts to Ips,

Ipd, Ins and Ind. Each of these stores the largest divergence value be-

tween the haplotypes that we skipped, depending on the index that

we used to jump. For example, if we use Ik
ps½i� ¼ j to jump from yk

i ½k�
to yk

j ½k�; Dk
ps½i� will give us maxj< r< i dk½r�; similarly, if we use Ik

ns½i� ¼
j to jump from yk

i ½k� to yk
j ½k�; Dk

ns½i� will give us maxi< r< j dk½r�. Dps,

Dpd, Dns and Dnd are undefined when fewer than two haplotypes are

skipped using Ips, Ipd, Ins and Ind, respectively; in those cases, we can

use the divergence arrays directly.

2.2 PBWT-Query: finding all L-long matches from a new

sequence z to X in OðN þ cðR� Lþ 1ÞÞ time
2.2.1 ‘Virtual insertion’ of the query haplotype

Figure 1 shows a simple example of virtually inserting a query

haplotype to the PBWT panel. The position of the new haplotype at

each site will be adjacent to the longest match at the site k. Durbin

(2014) proposed an efficient algorithm to find all set-maximal

X7 |11110110000011011100000110000  0  0101101
X2 |00010110011010000011011110000 1  0010000
X6 |00100101111000010011010000100 0  0100010
X3 |11011000011111011100011001100 0  0010001
X4 |10001011010110000000100111100 1  0010111
X5 |10101001101001101110010100010 0  0010001
X8 |01011100010000001101001101110 0  0010000
X1 |10000110000101110101010100011  0  0001000
X0 |11111011000100111011111011011 1  0100100 

10101111010101101110010100010  0  0000001query

Reversed sorted prefixes at k

X7 |11110110000011011100000110000  0  0101101
X2 |00010110011010000011011110000 1  0010000
X6 |00100101111000010011010000100 0  0100010
X3 |11011000011111011100011001100 0  0010001
X4 |10001011010110000000100111100 1  0010111
X5 |10101001101001101110010100010 0  0010001

X8 |01011100010000001101001101110 0  0010000
X1 |10000110000101110101010100011  0  0001000
X0 |11111011000100111011111011011 1  0100100 

query |10101111010101101110010100010 0  0000001

yk[k]
PBWT 
panel

yk[k]

Fig. 1. An example of virtually inserting a new query haplotype to a PBWT panel at site k. The haplotype sequences of the panel are sorted based on the reversed

prefix order in the PBWT panel at site k
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matches between a query z and a panel X, UpdateZMatches

[Durbin’s Algorithm 5 (Durbin, 2014)]. A set-maximal match

(Durbin, 2014), between z and some xi 2 X is defined as an L-long

match (L � 1) between z and xi from e to k such that there does not

exist a match between z and any other xj 2 X ði 6¼ jÞ from e0 to k0

where e0 < e or k0 > k. Simply, the match between z and xi is set-

maximal if it cannot be extended in either direction, and z does not

have a larger match to any other haplotype in X whose indices en-

close the indices of its match to xi. To find all set-maximal matches

at k, UpdateZMatches computes three values: fk, gk and ek such that

z has a set-maximal match to yk
fk

through yk
gk�1 from ek to k if yk

fk
½k�

through yk
gk�1½k� 6¼ z½k�. It computes fk, gk and ek based on fk�1; gk�1

and ek�1. A detailed routine for computing fk, gk and ek can be

found in the Supplementary Algorithm S1. To follow the notations

of Durbin (2014), we define w such that wðk; i; 0Þ ¼ uk½i� and

wðk; i;1Þ ¼ ck þ vk½i�, where uk[i] is the number of zero values at site

k in yk
0 through yk

i�1; vk½i� is the number of one values at site k in yk
0

through yk
i�1, and ck is the total number of zeros at site k.

It is the case that if z were in yk, it would occur in sorted order im-

mediately preceding either yk
fk

or yk
gk

. This is because z½ek;kÞ matches

yk
fk
½ek;kÞ through yk

gk�1½ek; kÞ, but yk
fk
½ek � 1� 6¼ yk

gk�1 ½ek � 1� (or ek ¼
0). In both cases, if z½ek � 1� ¼ 0, z can go in sorted order immediately

preceding yk
fk

. Otherwise, it can immediately proceed to yk
gk�1. We refer

to this index of yk which would immediately proceed to z as hk, and we

can use this to find all L-long matches between z and X ending at k.

yk
iþ1 through yk

j all have a match to yk
i of at least length k� dk½m�,

and yk
i through yk

j�1 all have a match to yk
j of at least length

k� dk½m�. This implies that if we pick some haplotype yk
i in X, we

know that all matches to yk
i ending at k of length greater than or equal

to L occur in some block yk
t through yk

b in yk such that t < b, 0 � t �

iþ 1; i� 1 � b < M and k�maxt<m�b dk½m� � L. It follows that

all matches to X ending at k, whether from an external query haplo-

type or internal haplotype, occur in a contiguous block at yk.

2.2.2 Reporting all L-long matches

We know that all matches to z ending at k of length greater than

or equal to L occur in a contiguous block yk
tk

through yk
bk

in yk

such that tk < bk, 0 � tk � hk; hk � 1 � bk < M and

k�maxtk <m�bk
dk½m� � L. What is left, then, is to find the smallest

index tk and largest index bk that enclose the block of haplotypes

with potential L-long matches. We say potential because each

yk
tk � i� bk

is only a match if yk
i ½k� ¼ z½k�, but not an L-long match, as

the end of the match can be extended, i.e. yk
i ½ek; kþ 2Þ matches

z½ek; kþ 2Þ. We define dk
z to be the smallest value such that z½dk

z ;kÞ
matches yk

hk�1½dk
z ;kÞ and dk

h to be the smallest value such that

yk
hk
½dk

h ;kÞ matches z½dk
h ; kÞ. We can use dk

z and dk to scan up yk be-

ginning at yk
hk�1 until we find yk

tk
(except in the case where tk ¼ hkÞ,

printing L-long matches along the way. Similarly, we can use dk
h and

dk to scan down yk beginning at yk
hk

until we find yk
bk

(except in the

case where bk ¼ hk � 1Þ, printing L-long matches along the way.

Specifically, we can keep scanning in either direction so long as k�
dk½i� � L for the particular yk

i we are iterating through [similar to

Durbin’s Algorithm 3 (Durbin, 2014)], and we can print an L-long

match between z and yk
i so long as z½k� 6¼ yk

i ½k�. Although scanning

up, if tk � hk � 2, the match between z and a particular yk
i would

begin at maxðdz;maxi�1�m�hk�1 dk½m�Þ. Similarly, while scanning

down, if bk > hk, the match between z and a particular yk
i would

begin at maxðdh;maxhþ1�m� i dk½m�Þ. A detailed procedure of this

approach is presented in the Supplementary Algorithm S2.

Figure 2 illustrates searching for L-long matches for L ¼ 3. For

clarity, we have included example yk’s for k ¼ 1, 2, 3, where we have

0 1 0 1 0 0 0 1

X1 0 1 1 0 0 1 0 1

X2 0 0 0 0 0 1 1 0

X3 1 1 1 1 0 0 0 0

X4 1 1 0 1 1 0 1 1

X5 0 1 0 1 0 0 1 1

Haplotype matrix  (y0)

z (query)
A

PBWT matrix

0 1 0 0 0 1 1 0

0 0 1 1 0 1 0 1

1 1 0 1 0 0 1 1

1 1 1 0 1 0 1 1

0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 1
B

z

X1 X1 X2 X2 X2 X2 X5 X3

X2 X2 X1 X5 X1 X1 X3 X1

X3 X5 X5 X4 X5 X5 X4 X5

X4 X3 X3 X1 X4 X3 X2 X4

X5 X4 X4 X3 X3 X4 X1 X2

0 1 0 1 0 0 0 1
C
z

y3

X2 0 0 0 0 0 1 1 0

 z 0 1 0 1 0 0 0 1

X5 0 1 0 1 0 0 1 1

X4 1 1 0 1 1 0 1 1

X1 0 1 1 0 0 1 0 1

X3 1 1 1 1 0 0 0 0

y1

 z 0 1 0 1 0 0 0 1

X1 0 1 1 0 0 1 0 1

X2 0 0 0 0 0 1 1 0

X5 0 1 0 1 0 0 1 1

X3 1 1 1 1 0 0 0 0

X4 1 1 0 1 1 0 1 1

y2

X2 0 0 0 0 0 1 1 0

 z 0 1 0 1 0 0 0 1

X1 0 1 1 0 0 1 0 1

X5 0 1 0 1 0 0 1 1

X3 1 1 0 1 1 0 1 1

X4 1 1 0 1 1 0 1 1

D

Fig. 2. An example of searching for L-long matches of length �3 in a panel with five haplotypes comprising eight sites. (A) The haplotype matrix (y0) and the

query z. (B) The PBWT matrix. ith column in the PBWT matrix corresponds to the ith column of yi. (C) The positional prefix arrays. Each row depicts the positional

prefix array ak. Each positional prefix array ak contains the permutation of indices 0 to N � 1 such that yk
i ¼ Xak ½i �. (D) yk’s for k ¼ 1, 2, 3. The haplotypes in X sorted

by the kth reversed prefix (i.e. by the reverse of sites 0 to k � 1) are referred as yk. The prefixes used to sort are shaded in gray in y1, y2 and y3. The blocks of poten-

tial set-maximal matches ending at k are labeled in purple, the index of the haplotype that immediately proceeds to z is highlighted as red, and the intervals of po-

tential L-long matches ending at each site are highlighted in lime green. f and g which enclose the block of potential set-maximal matches are underlined
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highlighted in gray the reverse prefixes that are used to sort the rows

of the haplotype matrix, and have included the sorted order of z in

these panels. The key idea of our approach is, scanning through each

site k from 0 to N, to find the would-be position of the query z in yk.

Then, we can scan up and down site k in yk to search for L-long

matches that end at that site. First, at each site k, we find the block of

potential set-maximal matches ending at k, labeled in purple. If z were

in yk, it would occur at the beginning or end of this block. In this ex-

ample, z always happens to be at the beginning of the purple blocks,

but it can also occur at the end. As we scan through this block, we

output an L-long match ending at each green position if, at that pos-

ition, there is a mismatch between that individual and the query.

The time complexity of computing fk, g and ek is O(N) across all

k (Durbin, 2014). For a given site, we may scan through all M hap-

lotypes in search of tk and bk. If there is a block of matches that does

not terminate at each site, we will still need to scan the entire block.

As we do this for N sites, the time complexity of PBWT-Query is

OðN þ cðR� Lþ 1ÞÞ, where R is the average length of the matches

and c the total number of matches. In the next section, we introduce

L-PBWT-Query which employs additional data structures to achieve

a time complexity independent from the number of haplotypes and

the lengths of the matches.

2.3 L-PBWT-Query: finding all L-long matches from a

new sequence z to X in OðN þ cÞ time
Although searching for tk and bk, the smallest and largest indices

that contain potential L-long matches, every yk
i scanned through

where z½k� ¼ yk
i ½k� (i.e. the match can be extended further) is un-

necessary work. Therefore, if we can restrict our search at each site

only to those yk
i where z½k� 6¼ yk

i ½k�, we can improve the time com-

plexity of searching for tk and bk across all sites to OðN þ cÞ, where

c is the number of L-long matches. We can achieve this by maintain-

ing a data structure that allows us to efficiently jump between yk
i ½k�

of the same k, for i ¼ 0 to M � 1 and k ¼ 1 to N � 1. Again, the key

idea is that we want to jump around between only those yk
i ½k� where

z½k� 6¼ yk
i ½k�. For bi-allelic data, if z[k] ¼ 1, we primarily want to

move around yk
i ½k� that equal to 0, and similarly, if z[k] ¼ 0, we pri-

marily want to move around between yk
i ½k� that equal to 1, to find

matches that end at k þ 1.

2.3.1 Speeding up PBWT-Query using LEAP arrays

Using our data structure, we can modify the procedures to scan up

and down in search of tk and bk once we have found hk. Namely,

when we scan up, we can use Ik
ps or Ik

pd to find the first yk
i

(i � h� 2) such that yk
i ½k� 6¼ z½k�, if such exists. Then, if necessary,

we can use Ik
ps to keep searching only through haplotypes that differ

from z at site k. Algorithm 1 demonstrates the updated routines

which efficiently scan up a given yk to find tk and bk using our data

structure. Similarly, when we scan down, we can use Ik
ns or Ik

nd to

find the first yk
i (i � hþ 1) such that yk

i ½k� 6¼ z½k�, if such exists.

Then, if necessary, we can use Ik
ns to keep searching only through

haplotypes that differ from z at k. A detailed routine of the algo-

rithm for scanning down is included in the Supplementary

Algorithm S3. Then, Algorithm 2 demonstrates our updated L-

PBWT-Query that makes use of our improved scanning routines in

Algorithm 1 and Supplementary Algorithm S3.

Figure 3 demonstrates y30 for an example genotype panel, along

with the indices used to facilitate efficient query search. In the panel,

t and b refer to the indices that define the block of haplotypes y30
t

through y30
b where all L-long matches for L ¼ 4 ending at site 30

may occur. Within that block of haplotypes, we are interested in

those y30
i where y30

i ½30� 6¼ z½30�. Since we would have to scan up

from y30
h�1 to find t and scan down from y30

h to find b, without the in-

dices, we could end up scanning through the entire column, a worst-

Algorithm 1 Scan Up For L-Long Matches

function ScanUp(k, h, d
z

)

if kþ 1� dz � L and match ends at k þ 1 then

report match to ykþ1
h�1 from dz to k þ 1

dmax  dz; t h� 2

if kþ 1� dmax � L then

if k � N and kþ 1� dkþ1½t þ 1� � L then

//Use Ik
ps or Ik

pd to find the first yk
i (i � h� 2) such

// that yk
i ½k� 6¼ z½k�, if such exists

dmax  maxðdmax; dkþ1½t þ 1�Þ
if ykþ1

t ½kþ 1� ¼ z½kþ 1� and Ikþ1
pd ½t� � 0 then

dmax  maxðdmax;dkþ1½t�;Dkþ1
pd ½t�Þ

t Ikþ1
pd ½t�

else if ykþ1
t ½kþ 1� ¼ z½kþ 1� then

t �1

//If necessary, we can use Ik
ps to keep searching only

//through haplotypes that differ from z at site k

while t � 0 and kþ 1� dmax � L do

report match to ykþ1
t from dmax to k þ 1

if Ikþ1
ps ½t� � 0 then

dmax  maxðdmax; dkþ1½t�;Dkþ1
ps ½t�Þ

t Ikþ1
ps ½t�

else

while kþ 1� dkþ1½t þ 1� � L do

if dkþ1½t þ 1� > dmax then dmax  dkþ1½t þ 1�
report match to ykþ1

t from dmax to k þ 1

t t � 1

Algorithm 2 L-PBWT-Query

for k 0 to N � 1 do

//z matches ykþ1
fkþ1

through ykþ1
gkþ1�1 from ekþ1 until

//at least k þ 1

fkþ1; gkþ1; ekþ1  UpdateFandG(k)

//z can be inserted into ykþ1 in sorted order either

//before ykþ1
fkþ1

or before ykþ1
gkþ1

if z½ekþ1 � 1� ¼ 1 then

hkþ1  gkþ1

dkþ1
h  maxðekþ1;dkþ1½hkþ1�Þ

dkþ1
z  ekþ1

else

hkþ1  fkþ1

dkþ1
z  maxðekþ1;dkþ1½hkþ1�Þ

dkþ1
h  ekþ1

if hkþ1 > 0 then

ScanUp(k, hkþ1; dkþ1
z )

if h < M then

ScanDown(k, hkþ1; dkþ1
h )
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case O(M) operation; across all sites, we could end up performing

O(NM) operations. However, with the indices, we only ever tra-

verse through those sequences where the match ends at 30; so, at

site 30, our scanning up and down is improved to worst-case

O(number of matches ending at 30), and therefore, across all sites,

our runtime is improved to worst-case OðN þ cÞ, where c is the

number of L-long matches.

As before, the time complexity of computing fk, gk and ek is

O(N) across all k (Durbin, 2014). Now, our worst-case time com-

plexity for scanning for tk and bk across all sites is O(N þ c), where

c is the number of L-long matches. So, our total worst-case time

complexity for L-PBWT-Query is O(N þ c), which is independent

from the number of haplotypes M. Although our querying approach

has a runtime linear in N and the number of L-long matches, our ap-

proach assumes that the PBWT, I matrices and D matrices for X are

pre-computed, and stored in the hard disk. These can be computed

in O(NM) time, and they occupy O(NM) space in the hard disk.

Specifically, if X occupies NM memory, the additional I and D

matrices occupy roughly 8NM memory.

2.3.2 Memory-efficient implementation of L-PBWT-Query

We implemented two versions of L-PBWT-Query: L-PBWT-Query

(Memory-Mapped), where all of the pre-computed data structures

are accessed using memory-mapped files using Boost libraries, and

L-PBWT-Query (Memory-Extensive), where all of the pre-computed

data structures are loaded into main memory. To clarify, L-PBWT-

Query (Memory-Mapped) does not load all of the panel and data

structures in main memory at once. Instead, parts of the panel and

data structures are loaded from the appropriate files into memory in

a ‘lazy loading’ fashion, i.e. as they are needed. Therefore, using

memory-mapped files reduces I/O operations. This mechanism pro-

vides a relatively fast alternative to access the panel and data struc-

tures, especially if a panel has been recently queried by queries

relatively similar to subsequent queries, which we refer to as ‘warm-

ing up’ a panel. When a panel is warmed up, relevant portions of the

panel and data structures (a relatively small subset of the overall

panel and data structures) have already been loaded into main mem-

ory and mapped to virtual memory, for faster subsequent access.

3 Results

3.1 Benchmarking using simulated data
We simulated a large haplotype panel using the Markovian

Coalescent Simulator (MaCS) Chen et al. (2009) with the command

macs 500001 2000000 -t .001 -r .001 -h 1e2 and extracted subsets

of the panel for our benchmarking. For the purpose of benchmark-

ing, we implemented PBWT-Query (Memory-Extensive) and

Exhaustive Search. Exhaustive Search scans across the entire length

of sites for each pair of the query and a haplotype in the panel,

which has O(NM) time complexity. For all of our benchmarks, we

used the following protocol: When running L-PBWT-Query

(Memory-Mapped), for a given panel, we always warmed up a panel

with three runs on the particular query, then averaged the runtime

of three additional runs. When running PBWT-Query (Memory-

Fig. 3. An example of a haplotype panel with its corresponding indices to facilitate the search for L-long matches for L ¼ 4 ending at site 30, exclusive. The indices

I30
ps ; I30

pd; I30
ns ; I30

nd allow jumping from any y30
i ½30� to the nearest y30

j ½30� preceding or proceeding y30
i ½30� such that y30

i ½30� ¼ y30
j ½30� or y30

i ½30� 6¼ y30
j ½30�. D30

ps ; D30
pd; D30

ns

and D30
nd give us the largest divergence values from haplotypes skipped using I30

ps ; I30
pd; I30

ns and I30
nd, respectively. The indices for the seventh sequence in y30 are

highlighted in the table. t and b refer to the top and bottom of the block of potential L-long matches in y30, and h refers to the sequence that would immediately

proceed to the query if it were in y30

i238 A.Naseri et al.



Extensive), L-PBWT-Query (Memory-Extensive) and Exhaustive

Search, we averaged the runtimes of three runs.

First, we want to verify that the runtime of PBWT-Query and L-

PBWT-Query, in practice, is truly independent from the number of

haplotypes. To that end, we developed a benchmark which we refer

to as the increasing haplotypes benchmark. Figure 4 and

Supplementary Table S1 show the results of our increasing haplo-

types benchmark, respectively, which support our assertion that the

runtime of our approach is independent from the number of haplo-

types. For this benchmark, we tested panels where we successively

increased the number of haplotypes in the panel by a constant

amount (from 20 000 to 200 000 haplotypes in steps of 20 000). In

the first experiment, we kept the number of sites (10 000) and the

number of matches (25 359) constant for the added haplotypes

(Fig. 4A and Supplementary Table S1). The minimum length of

match L was set to 1000. We can see that, indeed, for the

Exhaustive Search, run time increases roughly linearly with the num-

ber of haplotypes (M). The runtime of our memory-mapped imple-

mentation stays roughly constant, even as we increase the number of

haplotypes ten times. When compared with L-PBWT-Query

(Memory-Extensive), there appears to be some constant overhead

associated with fetching data from memory-mapped files, instead of

cache or main memory. PBWT-Query runtime is similar to L-

PBWT-Query as the number of matches remains constant. In the se-

cond experiment, we increased the number of haplotypes and the

number of matches increases linearly (Fig. 4B and Supplementary

Table S1). Both L-PBWT-Query implementations show a better run-

time compared with PBWT-Query with increasing number of haplo-

types and increasing number of matches.

Additionally, we want to concretely investigate the additive ef-

fect of increasing sites and increasing matches on the runtime of

PBWT-Query and L-PBWT-Query. To that end, we developed a

benchmark which we refer to as the increasing sites benchmark.

Figure 5 is a plot of our increasing sites benchmarks, and

Supplementary Table S2 gives the runtimes of those benchmarks.

We performed two benchmarks: one where we successively increase

the number of sites (from 20 000 to 200 000) while keeping the

number of matches constant (Fig. 5A), and another where we suc-

cessively increase the number of sites (from 20 000 to 200 000)

while the number of matches increases linearly with the number of

sites (Fig. 5B). From both of these figures, we can see that the run-

time of our approach increases as expected, linearly with the number

of sites and matches. As before, there is some constant overhead

associated with fetching from memory-mapped files instead of main

memory. All benchmarks were run on a 2.1 GHz server with 500

GB of RAM. The maximum resident sizes for the benchmarks are

included in the Supplementary Table S3.

3.2 Applying PBWT-Query and L-PBWT-Query on the

UK Biobank data
PBWT-Query and L-PBWT-Query were tested on the UK Biobank

data (487 409 participants and 974 818 haplotypes for autosomal

A B

Fig. 4. Running time (in seconds) of searching for a query in panels containing 10 000 sites with increasing number of haplotypes (A) while keeping the number

of matches constant and (B) with increasing number of matches

A B

Fig. 5. Running time (in seconds) of searching for a query in panels containing 20 000 haplotypes with increasing number of sites: (A) while keeping the number

of matches relatively constant (�70 000 matches) and (B) with increasing number of matches linearly with the number of sites
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chromosomes) (Bycroft et al., 2018) to demonstrate their utility on

real data. The UK Biobank dataset includes pairwise kinship coeffi-

cients between individuals computed using the KING toolset

Manichaikul et al. (2010). According to the KING tutorial, the kin-

ship coefficient ranges [0.177, 0.354], [0.0884, 0.177] and [0.0442,

0.0884] denote first-, second- and third-degree relationships, re-

spectively. Here, a first-degree relationship refers to a parent–off-

spring or full-sibling relationship, a second-degree relationship

includes half-siblings, avuncular pairs and grandparent–grandchild

pairs, and a third-degree relationship includes the first-cousins

Manichaikul et al. (2010).

The aim is to investigate whether potential genetic relationships

from the UK Biobank data can be inferred by searching for exact

matches using PBWT-Query or L-PBWT-Query. Because true IBDs

can be disrupted by mismatches, the sum of the lengths of L-long

matches between a pair of individuals was tested as a potential sig-

nal to differentiate first-, second- and third-degree relationships

from each other, and from a background population. Two hundred

individuals (400 haplotypes) which had genetic relationships within

the UK Biobank data were chosen as queries. As a representative

sample of the background population, one thousand individuals

were randomly chosen from the UK Biobank excluding the 200

query individuals. The two hundred individuals were queried

against the entire UK Biobank data for exact matches of length �
700 SNPs in Chromosomes 1 through 22. This match length cutoff

was chosen by following the precedent of 23andMe, whose simula-

tions show that first, second and third cousin relationships can be re-

liably detected by haplotype matches of length � 700 SNPs and 7

cM across all chromosomes. If we consider the detection power as

the percentage of related pairs with any matches of length � 700

SNPs, there is a 100% detection power in detecting potential first-

and second-degree relationships by searching only in Chromosome

1. The detection power for first, second and third-degree relation-

ships using all autosomal chromosomes is 100%. The queries were

run using PBWT-Query and L-PBWT-Query (Memory-Extensive)

on a 2.5 GHz server with 15 TB of SSD and 6 TB of RAM. The aver-

age time for running L-PBWT-Query a single query (one haplotype)

on Chromosomes 1 through 22 is 6 s and for PBTW-Query 20 s, dis-

counting the time to load the L-PBWT-Query data structures into

memory. The maximum resident set size for L-PBWT-Query was

4.7 TB, and 2.4 TB for PBWT-Query.

There is a promising separation between the three degrees of re-

latedness and the background population. Figure 6A shows that the

sum of the lengths of L-long matches between a pair of individuals is

a capable signal to differentiate first-, second- and third-degree rela-

tionships from random pairs picked from the background population,

and to filter potential first- second- and third-degree relationships for

further processing. Figure 6B shows an example of detected identical

segments in Chromosome 1 between an individual (A) and two of

their relatives (B and C) in the UK Biobank data. The two haplotypes

for each individual are distinguished by 1 and 2 (e.g. A has haplotypes

A1 and A2). The total length of the segments shared with the first-

degree relative is significantly larger than those shared with the third-

degree relative. We computed the AUC values to differentiate three

degrees of relationships using the sum of the lengths of the shared seg-

ments. The AUC value between first- and third-degree relationships is

0.98, and AUC value between first- and second-degree relationships is

0.96. There are a few outliers in the second-degree relationships; how-

ever, the AUC value between the second- and third-degree relation-

ships is 90%. Thus, identical segments interrupted due to genotyping

or phasing errors can be used to infer the related individuals, and to

estimate the degree of relatedness between closely related individuals,

without careful post-processing of the interrupted matches.

4 Discussion

In this work, we proposed two efficient algorithms, PBWT-Query

and L-PBWT-Query, for finding all L-long matches between a query

haplotype and a panel. The time complexity of L-PBWT-Query does

not rely on the number of haplotypes in the panel, which enables

on-line genealogical search in large cohorts. Furthermore, the

memory-mapped version of the algorithm, L-PBWT-Query

(Memory-Mapped), will facilitate fast search when extensive main

memory is not available, in exchange for a slightly increased running

time. PBWT-Query shows similar runtime to L-PBWT-Query as the

number of matches remains constant with the increasing number of

haplotypes. However, the difference in efficiency becomes more ob-

vious with the increasing number of matches.

L-PBWT-Query (Memory-Mapped) does not require loading the

entire panel into the main memory in order to facilitate a fast search.

The tradeoff, however, is an increased running time due to increased

I/O operations. We demonstrated that the running time of the

L-PBWT-Query (Memory-Mapped) version is slightly worse than L-

PBWT-Query (Memory-Extensive), but L-PBWT-Query (Memory-

Mapped) will be more practical if extensive memory resources are

not available.

A B

Fig. 6. (A) Probability distributions of the sum of L-long matches (in cM) between the query and related individuals (first-, second- or third-degree), and random

individuals in the UK Biobank data. Relatedness is computed using KING. (B) An example of detected identical segments in Chromosome 1 (in bps) for an individ-

ual with at least two relatives (first- and third-degree relatives) in the UK Biobank data
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We applied L-PBWT-Query on �500 k individuals from the UK

Biobank data and were able to detect close relatives of query indi-

viduals. The running time for all autosomal chromosomes in the UK

Biobank data would be only a few seconds using a single CPU. Our

results show that very close relatives can be easily found by

L-PBWT-Query. We also ran PBWT-Query on the UK Biobank

data. Although the memory usage for PBWT-Query was lower than

L-PBWT-Query, the run time was moderately worse. To further im-

prove detection, consideration of haplotype phasing quality will be

needed. Another limitation of our work is that we have been focus-

ing on developing efficient algorithms for exact matches of a query

in the panel. In order to enhance the application on real datasets and

detect more distant relatives, the algorithms need to be made toler-

ant to genotyping errors or mutations that could have occurred in

real data, e.g. by random projection (Naseri et al., 2017).
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