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Abstract: Epigenetics involves the heritable changes in patterns of gene expression determined
by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene
expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and
changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes
driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic
variation, which can induce phenotypic alterations in plants under stress. Some of the stress-
driven changes in plants are temporary, while some modifications may be stable and inheritable
to the next generations to allow them to cope with such extreme stress challenges in the future.
In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics
in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic
and biotic stresses that alter their growth and development. We emphasize the molecular process
underlying changes in DNA methylation, differential variation for different species, the roles of
non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its
role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize
DNA methylation as a significant future research priority for tailoring crops according to various
challenging environmental issues.

Keywords: abiotic stresses; DNA methylation; epigenetics alterations; plant improvements

1. Introduction

The epigenetics concept was originally introduced by Waddington in the mid-20th cen-
tury, by combining epigenesis and genetics for elaborating the phenotypic characteristics of
plants, the result of the causal interaction between genes, and their products [1]. However,
our current knowledge about molecular biology has directed us to a narrower definition
that includes only the study of the molecular processes in and around DNA that control
genome-related activity and phenotype, independent of the DNA sequence. It may be
inherited through mitosis or meiosis and is evident from many findings that stress-induced
epimutations are successfully transferred to the next generation [2–6]. Epigenetics has
attained great success for its applications in plant breeding, where it has been used to
assess the propagation of epigenetic marks across generations to improve desirable crop
traits [7]. Epigenetics can be used as a potential plant breeding tool for crop improvement.
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Yang et al. [8] found that DNA methylation can produce epigenetic variations in response
to abiotic stresses in plants. They worked on ArabidopsisMSH1 protein. MSH1 is one of six
MutS homologs in Saccharomyces cerevisiae involved in mismatch repair but it is the only
member of the family to function in the repair and maintenance of mitochondrial DNA. The
RNAi suppression of MSH1 generated phenotypic diversity for stress response gateways.
After testing for seven generations, they concluded that epigenetic changes can be stable
and used to speed up breeding programs enhancing plant responses to various abiotic
stresses. In soybean (Glycine max), MSH1 epi populations were developed by crossing
with MSH1 assimilated soybean memory lines. The resulting soybean epi lines exhibited
an increase in the alteration of numerous yield-associated traits: pods per plant, seed
weight, and fruit maturity time in both greenhouse and field condition experiments [9]. In
Arabidopsis and tomato (Solanum lycopersicum), MSH1 was exploited to produce rootstock
epigenetic variation. The population from a grafting experiment showed improved growth
vigor compared with control. A large-scale field experiment showed the consequences of
MSH1 grafting on tomato plant epigenetics over five progenies, indicating the agricultural
potential of epigenetic differences and their potential to speed up crop breeding [10].

Inheritance of epigenetic markers (natural variation in DNA methylation associated
with environmental changes) over generations has been reported [11,12]. Yang et al. [8]
found that MSH1-induced epigenetic memory was stable over seven generations. The
MSH1 memory includes a different state that occurs in about 20% of plants that have
experienced reprograming. Categorized by condensed growth rate, changed chlorophyll
content, delay in development change and flowering, and improved stress response, MSH1
memory is unpredictably steady, penetrant, and inherited. Genome-wide methylome
analysis combined with RNAseq and network-based upgrading studies found changed
circadian clock linkages, phytohormones, and stress reaction corridors that interconnect
with the circadian controller. The functional HISTONE DEACETYLASE 6 and methyl-
transferase MET1 are necessary for MSH1 reprograming and therefore change the memory
needs of the RNA-guided DNA methylation path. This technique of phenotypic flexibility
may help plants to enhance their adaption ability during environmental alteration. Liu
et al. [13] noted that heat stress memory returned back to the wild type after two generations
upon withdrawal of stress. Epigenetic changes can therefore persist for many generations
after plant exposure to any environmental stress. In this study, the researchers provided
the idea in which genetic assistance of complex traits is divided into direct effects from
core genes and unintended effects from peripheral genes acting in trans.

Epigenetic changes also have a genetic root cause, such as gene-body methylation
driven by single-nucleotide polymorphisms [14]. Epigenetics plays an essential role in the
understanding of natural selection, inheritance, and possibly other evolutionary processes;
however, one of the difficulties in correlating phenotypic effects with specific epigenetic
variations is that epigenetic and phenotypic variations may vary in natural systems [15–18].
Along with epigenetic variations, environmental factors have also been reported to promote
variations; therefore, both epigenetic mechanisms and environmental factors may function
as essential intercessors in mediating appropriate plant responses to adverse environmental
conditions, but how much both environmental factors and epigenetic changes contribute
to phenotype remains controversial [18–21]. The potential application and exploitation
of epigenetics as a complementary molecular mechanism for natural selection, acclimati-
zation, and phenotypic variations may help with plant improvement through a genetic
evolutionary process that would strengthen future agriculture so that it is compatible
with the environmental challenges [22,23]. Alterations in DNA play vital roles in the
epigenetic regulation of expression of genes in plants. Researchers have focused on the
classical epigenetic signature, 5-methylcytosine (5-mC); the field of epigenetics is receiving
increased scientific attention due to the discovery of supplementary variations in DNA
bases and their participation in governing gene expression. Hypothetically, each of the
DNA constituents can be modified; however, only cytosine and adenine alterations are
known [24]. Epigenetic modifications play an important role in the plant response mech-
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anisms to the environment without altering DNA sequences. Cellular RNA has various
chemical alterations, and these variations contribute to all features of RNA breakdown.
The assembly of amendments in RNA adds a new coating to the gene guideline, leading
to the development of the field of RNA epigenetics. Newly developed high-throughput
sequencing tools for identifying RNA alterations have drastically advanced the practical
study of RNA epitranscriptomics [25].

Although many studies have been already conducted to explore the potential effects
of DNA methylation in plants, the relationship between DNA methylation and abiotic
stress, i.e., heat, cold, salinity, and trace metals, has been relatively unexplored in crops.
Therefore, the aim of this review is to describe and update our understanding on the
epigenetic mechanisms that may help with abiotic stress adaptations. Epigenetic factors
participate in abiotic stress responses, and various chromatin modifications are altered
when plants are exposed to stressful environments.

2. DNA Methylation Associated Epigenetic Changes

Genome alteration has been proposed as a strategy to assist in the successful adap-
tation to severe and prolonged stresses. The epigenetic regulatory mechanism mainly
comprises three levels: histone or chromatin modification, non-coding RNAs, and DNA
methylation. These levels perform collectively to extend the function and regulation of
genes for both normal and abnormal cellular processes [26,27].

2.1. DNA Methylation

DNA methylation leads to many genetically transmissible, adaptive epigenetic char-
acteristics in plants [28]. In addition to the four nitrogenous DNA bases, small amounts of
5-methylcytosine (5-mC), N4-methylcytosine, and N6-methylcytosine are also present in
DNA [5]. Among these, 5-mC is the most common and was described as the fifth DNA base,
characterized and described before DNA recognition as genetic material [29]. The 5-mC nu-
cleoside base is characterized by the covalent methylation of carbon five in the nitrogenous
base of cytosine [30]. The addition of the methyl group to the DNA base provides a site for
various protein complexes to bind, resulting in the modification of the histone scaffolds
and the subsequent modulation of the gene expression [31]. In mammals, plants, and even
prokaryotes, methylation mostly occurs in gene promoter regions, and sometimes at other
transcriptional regulatory sites [32]. Recently, oxidative methylation occurring at game-
togenesis, embryos, stem cells, and neurons has been studied. Many epigenetic changes
have been observed during different developmental phase, which indicates the role of
DNA methylation in gene expression [33]. Similarly, these mechanisms may contribute to
adaptation during any environmental stress, i.e., drought, salinity, trace metals, and heat
stress; however, demethylation may happen without DNA replication and in terminally
differentiated cells [34,35]. Methylation sites were reported in both the heterochromatic
and euchromatic regions of plant genomes [36]. Highly methylated transposable ele-
ments and other repetitive sequences are found compactly packed at heterochromatic
sites, whereas euchromatic regions show comparatively less cytosine methylation [37,38].
Cytosine methylation sites can be categorized as symmetric and asymmetric sites, and
methylation in plants occurs predominately at CpG sites, which are an evolutionarily
conserved motif of cytosine followed by guanine attached to a phosphate [39]. Symmetric
sites are found in DNA regions generally called CpG islands, which have abundant CpG
and CpNpG regions, consisting of self-complementary methylable pairs of cytosines on
different strands [40]. In contrast, asymmetric methylation sites consist of cytosine in any
sequence and are not found in plants [41,42]. DNA demethylation of an epigenetic marker
can happen with the activity of DNA glycosylase/lyase or when methylated sites are not
effectively maintained [43–47]. In Arabidopsis, DNA methylation to regulate transpose on
silencing, differential expression of a gene, and stable gene silencing is achieved through
three different genetic pathways and deposited at CG, CHG, and CHH sequences (where H
corresponds to A, T, or C) [48,49]. Methylomic and transcriptomic analyses of the genome
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have highlighted the variability in DNA methylation and its potential effects on the expres-
sion of genes and plant physiological characteristics [50]. Variations in plant behavior for
floral morphology, fruit ripening and anthocyanin contents attributable to epialleles have
been explored in many genetic studies [51]. Gene promoter methylation has been reported
to control transcription and may provide a significant contribution toward necessary life
phases of plants and mammals [52,53]. 5-Methylcytosine (5mC and 5fC) is an epigenetic
change known to contribute to guiding gene expression in an extensive variety of biological
schemes. 5mC, produced by the covalent addition of a methyl group to the fifth carbon of
the pyrimidine ring of cytosine, is the most predominant epigenetic DNA alteration in the
genomes of metazoans, plants, and fungi. 5mC was initially revealed in tubercle bacillus,
which was shadowed by the discovery of this change in calf thymus DNA [54]. Single-
molecule sequencing technology such as nanopore sequencing from Oxford Nanopore
Technologies and single-molecule real-time long-read isoform sequencing from Pacific Bio-
Sciences are transforming how the transcriptome is examined. These approaches provide
numerous benefits compared with the most extensively practiced high-quantity short-read
RNA sequencing (RNA-Seq) methods and enable the widespread examination of transcrip-
tomes in recognizing full-length splice isoforms and numerous other post-transcriptional
measures. In addition, direct RNA-Seq offers valuable data about RNA alterations, which
are lost during the PCR augmentation step in other approaches [55].

2.2. DNA Methyl-Transferases

DNA methyl-transferases (DNMTs) maintain pre-existing cytosine methylation pat-
terns at previously unmethylated sites [56]. Three types of DNA methyltransferases
maintain methylation post-replication: methyl-transferases 1(MET1), chromomethylase
3 (CMT3) target CG, and CHG; domains rearranged methylase (DRM2), with the help
of siRNA, targets asymmetric CHH contents [57]. Interestingly, in Arabidopsis, DRM2
achieved de novo-methylation for all contexts of cytosine [58]. Specialized 24-nucleotide
small-interfering RNA (RNA-directed DNA methylation pathway) guided DRM2 to the
target loci [59]. Methyltransferase (CMT3) acts in conjunction with histone methyltrans-
ferase KYP (kryptonite/SUVH4) to maintain CHG methylation [60]. The plant ortholog
of mammal DNA, (cytosine-5)-methyl-transferase 1, was shown to maintain methylation
after strand replication by detection of semi-methylated CG di-nucleotide sites and den-
ovomethylation of the corresponding non-modified CG site on the daughter strand [61].
MET1 is induced by VIM family proteins. DNMT2, homologs of which are found in
mammals and plants, possesses tRNA methylase activity. The DNMT3 family comprises
DNMT3a and DNMT3b genes. These methyl-transferases are expressed in undifferentiated
embryonic stem cells but are down regulated following differentiation [62]. In adult somatic
tissues, the expression of DNMT3 proteins is low, whereas in tumor cells, they are over-
expressed and have an essential function in the hypermethylation of the CpG-rich promoter
region of tumor-suppressing genes and cause inactivation of these cells [63]. At any specific
site, DNA methyltransferase and demethylation enzymes control the methylation status,
and it can be actively or passively demethylated [64]. Passive DNA demethylation mostly
occurs due to de novo methylation inhibition or through inhibition of the maintenance
of parental imprint following DNA replication [65]. Passive demethylation is induced by
loss of DNA methyltransferase function [66,67]. Several currently characterized DNMT
enzymes were shown to exhibit diverse but occasionally overlapping functions [68]. The
strong conservation of the DNA methylation mechanism is evident through its distribution
across algae, fungi, plants, invertebrates, and vertebrates [69]. This segment revealed that
DNA methylation changes play a crucial role in a plant’s ability to respond to stresses.
However, these changes in DNA methylation depend on the type of stress response.

3. Mechanisms of DNA Methylation

The symmetrical nature of CpG and CpNpG methylation facilitates their copying
during DNA replication; in the case of non-symmetrical CpNpN methylation, there must



Plants 2021, 10, 1096 5 of 21

be a subsequent denovomethylation for every DNA replication set [59]. It was found that
most methylation occurs within CpG sites, but a notable percentage also occurs at non-
CpG sites [70]. The newly synthesized, unmethylated strand creates a hemi-methylated
medium with every cycle of DNA duplication that leads to the recruitment of MET1 and
methylation of the opposite unmethylated CG site [71]. CHH methylation occurs through
two different mechanisms. CMT2 generates H3K9me2 in the transposable elements, which
are mostly present in heterochromatin [72,73]. CHH methylation relies on the actions
of a self-reinforcing loop in euchromatic regions, which are the result of 24-nucleotide
siRNAs directing denovomethyl-transferase for manipulating the sequences [50,64]. DNA
methylation occurs with the action of various DNA methyltransferases in plants, which
depends on the sequence contents; once it is established, it is further maintained byMET1
and CMT3 [65,74]. DNA demethylation can happen passively by dilution of methylation
scripts by DNA duplication. The direct change of 5-methylcytosine to cytosine, as first
thought, does not happen. Conversely, active DNA methylation includes oxidation of the
methylated base by 10 to 11 translocations, or deamination of the methylated base. The
amended nucleotide, maybe together with nearby nucleotides, is substituted by the BER
corridor. New detail luminated the role of known enzymes in this procedure. They recog-
nize base editing repair glycosylases, which may collaborate with or substitute thymine
DNA glycosylase in the base removal stage and that suggest the participation of DNA
destruction repair corridors other than BER in the active demethylation of DNA [75].

4. RNA-Mediated DNA Methylation

Plants adopt denovo-DNA methylation and gene silencing (transcriptional) using 24-
nucleotide small-interfering RNAs and long non-coding RNAs in the RNA-directed DNA
methylation process [67]. Arabidopsis mutant lines knocked out for chromatin-mediated
gene-silencing small-interfering RNAs (siRNA), which provided evidence of siRNAs partic-
ipation in RNA-directed DNA methylation [68]. ncRNAs formed by DNA-dependent RNA
polymerases IV and V have been identified as the precursors of 24nt siRNAs necessary for
RdDM; ncRNAs generated by polymerases V are directly used as scaffold RNAs [69–71].
The IV and V polymerases can be directed to RdDM target sites by pre-existing chromatin
modifications and SHH1 protein binding to H3K9me2 by its domain, and subsequently re-
cruits Pol IV [72]. In addition to producing 24nt siRNAs and scaffold RNAs, Pol II-mediated
transcription leads to siRNA production of some RdDM loci through the involvement
of the Pol IV and Pol V polymerases [72]. In contrast with Pol V, Pol II exhibits partially
distinct associations with different AGO proteins [73]. Temperature plays an important role
in the regulation of RNA conferred DNA methylation; it was reported that exposure to low
temperature promotes VIGS, whereas high-temperature delays the process [74]. Although
promoter regions undergo denovomethylation, transposable elements and some repetitive
DNA elements are also silenced by this process [75]. However, the dynamic changes in
epigenetic markers on stress-responsive genes make their chromatin status accessible or
inaccessible and regulate the expression of stress-responsive genes at the transcriptional or
post-transcriptional level.

4.1. MicroRNAs

Micro RNAs (miRNAs) are 20–24ntRNAs processed from longer endogenous tran-
scripts by a dicer-like enzyme [76]. DNA-dependent RNA Pol II transcribes these either in
genes targeted for post-transcriptional regulation, or in the protein-coding genes. The RNA
precursors that give rise to miRNAs in plants range from 70 to more than 600 nucleotides;
these are self-complementary, forming imperfect hairpin or stem-loop structures [77,78].
The function of miRNAs in DNA methylation-mediated gene regulation was also exper-
imentally established in addition to the suppression of the expression of target genes
by mRNA degradation. The involvement of miR165/166 was established in guiding
the methylation of PHB and PHV transcription factor template DNA to regulate their
expression during leaf surface differentiation [79].
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4.2. Small-Interfering RNA

RNA-directed DNA methylation is a process in which siRNA-mediates denovo-DNA
methylation in plants [80]. Small-interfering RNA (siRNAs), similar to miRNAs, consist of
20–24nt, and are known to play a crucial role in the heterochromatin formation processes,
silencing of transposons, transgene, and mRNAs post-transcriptional regulation [81]. The
siRNAs are generated through cleavage by dicer-like enzymes of long dsRNA transcribed
by cis-antisense gene pairs, repetitive DNA, or non-coding transcripts [82]. These are incor-
porated into an AGO4 protein complex to guide the methylation machinery to the homolog
DNA sequence, and thus facilitate DRM2-mediated DNA methylation. Moreover, AGO4
attaches to particular target gene promoter regions directed by enzyme-PolV-driven long
non-coding RNAs to CpNpN-type asymmetric DNA methylation sites, thus suppressing
their transcription [83]. The inhibition of siRNA biogenesis is a possible regulatory mecha-
nism of the plant stress response. Dcl2 and Dcl3 mutants, with weakened capability for
trans-activation of siRNA biogenesis, are more sensitive to genotoxic stress from exposure
to methylmethane sulfonate (MMS) [84].

5. DNA Methylation and Tools for the Study of DNA Methylation Analysis

Several protocols are available for examining DNA methylation status. For epigenetic
analysis, selection of the best method may be a difficult task when answering a specific
biological query. Researchers need to explore reliable tools and techniques to address their
experimental questions based on the appropriateness and feasibility of specific techniques
for their sample types, the high output capabilities, and the cost-effectiveness [85,86].

5.1. Bisulfite-Dependent Treatment

Sodium-bisulfite functions in DNA methylation detection by converting unmethylated
cytosines into uracil, while leaving 5-methyl-cytosine residues intact [87]. Sequencing by
this method is useful for methylation studies. Through bisulfite treatment, DNA contributes
to the formation of uracil by the deamination of cytosine and the altered residues are then
read as thymine following amplification through PCR and Sanger sequencing [88]. During
the last decade of the 20th century, Frommer et al. were the first to perform bisulfite
conversion for the determination of 5-MEC [89]. Since these seminal studies, bisulfite
conversion has become a well-established and widely used method for DNA methylation
studies. However, different methods can be adopted for post-conversion PCR analysis
depending on the degree of specificity and the required resolution of methylation. For the
determination of methylation in the DNA molecule, cloning and sequencing are the widely
used methods that may even provide single-nucleotide resolution of methylation [90].
There is one drawback to the bisulfite conversion protocol i.e., 16–20 h are required to
fully replace cytosines with uracils [91]. However, high temperature can speed up the
conversion of cytosine to uracil [92]. Time-course experiments demonstrated that the whole
cytosine present in samples DNA can be converted to uracil by the application of high
temperature (70–90 ◦C); even then, most of the methyl-cytosines remain unbroken [93].
Although some DNA degradation occurs in the reaction, a sufficient quantity of DNA is
available for amplification and genomic sequencing. It is expected that accelerated DNA
methylation analysis followed by new techniques will assist in the study of many advanced
aspects of epigenetics and DNA modification for clinical applications as well as for basic
research [94,95]. Another limitation that, until recently, prevented the wider application
of bisulfite treatment was the requirement for a sufficient quantity of DNA for complete
genome sequencing. However, a minor modification to the protocol, in which adaptor
ligation is postponed until after bisulfite treatment, has allowed routine GBS with about
30ng or less of DNA; more recently, the bisulfate treatment and PCR-free methods have
been devised for rapid and cost-effective methylation analysis [96–98]. Pyro-sequencing
and MS-HRM proved to be the most suitable methods. Using pyrosequencing, every CpG
in a selected area in a plant can be investigated. The instrument cost is the main drawback
of this approach. MS-HRM is a simple PCR-based technique. The measurement is quick,
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cheap, and precise. MSRE examination is based on the precise methylation breakdown of
DNA. It does not involve a bisulfite change in DNA as with the other approaches. MSRE
analysis is easy to achieve, but it is not appropriate for intermediately methylated areas
and is also fairly costly [99].

5.2. Reduced Representation Bisulfite Sequencing

Reduced representation bisulfite sequencing (RRBS) was originally developed to
lower the cost associated with deciphering the mammalian methylome [100]. In the RRBS
technique, Msp1 restriction enzyme digestion occurs and digested 40 to 220bps fragments
are selected for bisulfite conversion and sequencing. Since most of the methylome studies
focused on promoter regions, hypothetically, it would be more efficient to reduce the
conversion and sequencing of non-promoter regions. RRBS was reported to provide
exposure to 85% of CpG islands, which comprise 1–3% of the mammalian genome, which
is only a small portion of genome sequencing [101]. RRBS is more cost-effective than WGBS
and it is dependent on the successful enrichment of CpG regions, which may result in
inadequate exposure of intergenic regions. However, RRBS may be the method of choice for
high-throughput studies that require a cost-effective approach, and thus is widely applied
in methylation patterns analysis [102]. Plant genomes profiling has also been conducted
using RRBS in different crops such as Quercus robur [103] and B. rapa [104]. Platt et al.
found that CpG methyl polymorphisms participate in local adaptation, either directly or
through linkage to DNA regions under strong selection force [105]. Other related methods
for the analysis of genomic DNA methylation are MBD-seq, Methyl Cap-seq [106,107] and
using a methyl CpG-binding domain protein for DNA fragments having a high quantity of
methylated CpG sites [108,109].

6. DNA Methylation Response to Abiotic Stress

Several studies explained DNA methylation in response to abiotic stress. Pre-exposure
of plants to various abiotic stresses such as high or low temperature, high salt exposure,
and deficient or flood water conditions may instigate an improved response for future
stresses [110]. However, the response varies for different stresses in different plant species.
Among the abiotic stresses, the major stresses are drought, heat, salt, cold, and trace metals;
the majority of research focus has been on crop improvements against these stresses.

6.1. Adaptation to Drought

Drought stress has been an important and long-lasting research hot spot in plant
biology. Under drought conditions, plants are phenotypically affected at different lev-
els: molecular, cellular, physiological, and morphological [111]. In comparisons among
Arabidopsis and Zea mays L. plants that experienced dehydration stress showed improved
retention of water in the next generations or stress at later stages [109]. It has been estab-
lished in many studies that repeated stress, or priming, leads plants to respond in more
effectively to future challenges [112,113]. Plants exhibit dynamic methylation levels under
drought stress, and epigenetic modifications are important in driving plant responses to
environmental stresses [114–116]. Most of the epigenetic research on abiotic stress has
provided shreds of evidence for stress-induced DNA methylation and demethylation either
at the genome or at the specific loci level. During plant stress responses, the changes in
DNA methylation patterns are sometimes associated with changes in the regulation of
transcriptional genes involved in the process [117–119]. DNA methylation, induced by
drought conditions, has been reported to contribute to adaptation to drought stress in
Oryza sativa and in many other crops. Under drought stress conditions, a large amount
of genome-site-specific variation in methylation occurs [120,121]. DNA methylation is an
epigenetic mechanism in the regulation of plant gene expression that affects the plant’s
developmental process, resulting in a comparatively stable plant genome during periods
of external hardship [122,123]. A strong association has been found between DNA methy-
lation and the expression of genes under drought treatment in many plants. In a DNA
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methylation study on Populus trichocarpa that under stress, the proportion of methylated
cytosines was 10.04% compared with only 7.75% in the well-watered treatment [124,125].
In many other crop plants, a high proportion of drought-induced changes in DNA methy-
lation status ore-pimutations has been reported following adaptation to long-term drought
stress [83,123,126]. Numerous epigenetic processes likely function simultaneously for the
effective adaptation to abiotic stress. Abscisic acid (ABA)has been established as a regulator
of gene expression by inducing changes in methylation and histone acetylation [127,128].
Studies on moss Physcomitrella patens and Arabidopsis species reported that ABA represses
gene expression through DNA methylation of the promoter regions [129,130]. In another
investigation on rice cultivars exposed to drought and salt stresses, it was found that methy-
lation extent was significantly different across the cultivars, and several methylated regions
were linked with differential expression of genes necessary for abiotic stress response,
with a positive correlation found among hypermethylated and small RNA [131,132]. In a
study on crown gall-infected Arabidopsis, during tumor development, an epigenetic pro-
cess, DNA methylation-controlled crown gall formation through ABA to mediate drought
stress tolerance [133]. Global DNA methylation changes in response to recurrent drought
stress were investigated in two common Greek Medicago sativa La. varieties (Lamia and
Chaironia-Institute of Industrial and Forage Crops). The decrease in DNA methylation of
stressed Lamia plants probably indicated the existence of an epigenetic mechanism that
may confer drought tolerance [134,135].

6.2. Acclimatization to Salt

High salt accumulation in the soil is another important crop production constraint
that affects 20% of the global cultivated area and strongly influences the distribution and
abundance of plant species [135–138]. A genomic study on phenotypically contrasting rice
lines for methylation changes under salt stress showed that hypomethylation due to salt
stress is linked with the changed expression of DNA demethylases. Phenotypic variation
associated with salinity tolerance may be affected due to epigenetic modulators [139–141].
Epigenetic changes have a composite impact on stress-inducible genes and modulate
transcription factors expression [141]. A salt-tolerant B. napus cultivar (Exagone) and
salt-sensitive B. napus cultivar (Toccata) were exposed to salt stress conditions; per MSAP
analysis, overall DNA methylation was decreased in cv. Exagone and increased in cv.
Toccata [142]. In Arabidopsis, a putative small RNA target area was recognized about 2.6 kb
upstream of HKT1 and was revealed to be heavily methylated [143]. The DNA methylation
level in this area was reduced in the RdDM mutantrdr2, which presented the improved
expression of HKT1, indicating that RdDM adversely controls AtHKT1 gene expression.
Parallel guiding action was also observed in wheat [144].

6.3. Adjustment to Heat

Heat stress is one of the predominant environmental factors posing a significant threat
to food security as global warming progresses [145]. Extreme temperatures at high altitudes
and in the tropical regions have been shown to influence plant growth and development
including crop yield and nutritional value [146]. A study in B. napus revealed differences in
the degree of methylation and changes in cytosine methylation patterns under heat stress in
the plantlets of the two rapeseed cultivars, which were representative of heat-tolerant and
heat-sensitive genotypes [147]. Both genotypes exhibited different levels of methylation
under heat stress. Methylation was increased in the heat-sensitive genotype compared
with the tolerant genotype; moreover, the heat-tolerant genotype showed comparatively
more DNA demethylation events than the sensitive genotype. The authors found that heat
exposure affected a large number of and different gene sets through changes in cytosine
methylation, providing evidence that these genes mostly participate in responding to heat
stress and ultimately leading to tolerance [148]. Furthermore, this study revealed that the
DNA methylation alterations differed between heat-tolerant and heat-sensitive genotypes
of B. napus in response to heat stress, which further illuminates the molecular mechanisms
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of the adaption to heat stress in B. napus [149]. The RNA-directed DNA methylation
(RdDM) pathway plays an important role in the response to heat stress through the up-
regulation of the epigenetic modulators DRM2, nuclear RNA polymerase NRPD1, and
NRPE1 by increasing genome methylation [150]. In a transcriptome analysis investigation
of the molecular pathways involved in the response to high temperature by anthers in
cotton lines 84021 and H05 (Gossypium hirsutum), a total of 4599 differentially expressed
genes were found to be involved in epigenetic modifications, carbohydrate metabolism,
and regulation of plant hormone signaling [151].

6.4. Response to Cold Stress

Cold stress is regarded as a major environmental factor that limits agricultural expan-
sion and crop productivity in hilly terrain [152]. Deciphering the epigenomic landscape in
plants exposed to cold conditions is a rapidly developing field [153]. Methylation-sensitive
amplified fragment-length polymorphism markers detected changes in cytosine methyla-
tion in the alpine subnival plant, Chorispora bungeana, when exposed to 4 ◦C chilling and
−4 ◦C freezing stress. Rapid alterations in cytosine methylation occurred throughout the
periods of chilling and freezing [154]. Comparative methylome analysis in Populus simonii
grown under cold, osmotic, heat, and salt stresses showed condition-dependent variable
cytosine methylation patterns and 1376 stress-specific differentially methylated regions
(SDMRs) [155]. A new study showed that the chromatin remodeler contributes in the
CBF-dependent cold tolerance in Arabidopsis. The pkl mutants are oversensitive to cold
stress treatment [156]. In addition to histone methylation, other histone alterations play
significant roles in the cold stress reaction. Histone acetylation is enhanced in the bodies of
a number of cold-responsive gene [157].

6.5. Adaptation to Trace Metals

Heavy metal (HM) toxicity has become a major threat to sustainable crop production
worldwide [158]. However, an increasing number of studies are highlighting the role of
epigenetic mechanisms in the regulation of plant stress responses [159,160]. Therefore, the
aim of this review was to explore and analyze the scientific literature on epigenetics as
an important factor that regulates HM stress responses. In plants, specific hypomethy-
lation of DNA was reported in clover and industrial hemp exposed to cadmium, nickel,
and chromium [161]. Recent studies using the methylation-sensitive amplification poly-
morphism approach have demonstrated that global DNA methylation changes occur in
Cd-exposed Arabidopsis, O. sativa, Posidonia oceanic, and Gracilaria dura genomes [162–164].

The regulatory network involved in general in governing epigenetic modifications
in response to abiotic stresses in plants is shown in Figure 1 and a brief summary of
DNA methylation studies in different plant species under abiotic stresses is provided in
Tables 1 and 2.
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Figure 1. Schematic representation of regulatory network governing epigenetic modifications in
response to abiotic stresses and during development in plants. The epigenetic modifications are
shown here, at two levels: DNA methylation and RNA biogenesis. The boxes colors are display-
ing symmetry in explanations, epigenetic type, process and players involved during epigenetic
modifications. The plasticity during development and abiotic stress management is displayed via
routes of RNA biogenesis and DNA methylation, RNA biogenesis generating miRNAs = MicroRNAs,
siRNAs = small interfering RNAs, PTGS = posttranscriptional gene silencing, TGS = transcriptional
gene silencing, 24nt siRNAs = 24nucleotide small interfering RNAs, RdDM = RNA-directed DNA
methylation, AGO = argonaut, CG, CHG, CHH = cytosine guanosine (where H is any base except
G), MET1 = methyl transferase 1, CMT3 = chromomethylase 3, DNMTs = DNA methyltransferases,
DRM2 = domains rearranged methylase.

Table 1. Recent studies on DNA methylation in diverse plant species under drought, salt, and heavy
metals stress.

Stress Type Plant Methodology Response References

Drought

Maize
(Z. mays)

Transcriptome,
miRNA, DNA

methylation analysis

Improved water
retention [115,165–167]

Mouse-ear
cress

(A. thaliana)

Drought transcriptome
analysis

Improved water
retention [168,169]

Rice
(O. sativa) MSAP

Genome site-specific
methylation

deference
[170]

Black
cottonwood

(P. trichocarpa)
BS-seq

Increased proportion
of methylated

cytosines
[120]

Greek
(M. sativa)

DNA methylation
changes

Decrease in DNA
methylation [127]

Physcomitrella
patens and

Arabidopsis

DNA methylation of
gene promoters

ABA represses gene
expression [124,125]
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Table 1. Cont.

Stress Type Plant Methodology Response References

Salt

Rice
(O. sativa) ELISA-based assay

Hypomethylation-
intolerant
cultivar

[130]

Brassica
(B. napus) MSAP

Hypomethylation
intolerant and

hypermethylation in
sensitive cultivars

[132]

Soybean
(G. max)

Expression of various
transcription factors

Demethylation and
hypomethylation [136,143,159,171]

Heavy metals

Clover DNA methylation
analysis Hypomethylation [147]

(A. thaliana) MSAP DNA methylation [148]

Rice MSAP DNA methylation, [149]

GroceriaDura MSAP DNA methylation [150]
MSAP means “methylation-sensitive amplification polymorphism.

Table 2. Recent studies on DNA methylation in diverse plant species under heat and cold stress.

Stress Type Plant Methodology Response References

Cold
Alpine MSAP Cytosine

methylation [172]

(P. sumonii) Methylation Cytosine
methylation [142]

Heat

Rapeseed
(Brassica family) MSAP

Increased DNA
demethylation in
the heat-tolerant

genotype;
increased DNA

methylation in the
heat-sensitive

genotype

[137]

Mouse-ear cress
(A. thaliana)

Methylation-
sensitive

qPCR

Upregulation of
epigenetic

modulators
[138]

Cotton
Regulation of

anther
development

DNA methylation,
histone

modifications
[139,173]

Maize
(Z. mays)

DNA methylation
analysis

Improved heat
tolerance [174]

7. Implementation and Prospective Applications of DNA Methylation in
Plant Improvement

Recently, DNA methylation has received increased attention. DNA methylation
has important functions during the response to stress in plants, differential variations of
which are exhibited in different species. The pattern of DNA methylation in the genome
changes during development, resulting in dynamic process involving both de novo DNA
methylation and demethylation. It will be interesting to investigate the role of active DNA
demethylation in other important developmental processes, such as flowering, sexual
reproduction, seed germination, and programmed cell death.

7.1. Seed Advancement and DNA Methylation

Seed bearing in flora is coordinated by the expression of many genes, which can be
synchronized by DNA-methylation [175]. It was also confirmed that DNA methylation
patterns undergo active modifications during the seed development process [47]. In a
study on soybean (G. max), 66%, 45%, and 9% of CG, CHG, and CHH sites on average,
respectively, were methylated in cotyledons. CHH methylation increase was observed from
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6% to 11% in cotyledons between the early and late developmental stages, respectively.
A greater portion of domains rearranged methyl-transferase genes in mature seeds [175].
In maize (Z. mays L.), the maternally expressed gene (mee1) is established in the embryo
and endosperm; upon fertilization and embryogenesis, the embryonic maternal allele
of mee1 is demethylated and remethylated, respectively, whereas the maternal mee1 in
endosperm tissue remains hypomethylated [176,177]. Another study on B. rapa distinctly
showed that DNA methylation is mandatory for seed development [178]. Similarly, DNA
hypomethylation was found in endosperm tissues comparing embryos in rice (O. sativa)
and A. thaliana [179]. Different plant species exhibit variable responses for sensitivity or
tolerance, to lose or interrupt DNA methylation. The RdDM pathway plays a vital role in
the development of maternal somatic tissues, but not in gametophytes or zygotes [179].
The global CHH methylation level rises during seed development; subsequently, CHH
methylation decreases owing to passive demethylation during germination, thereby sug-
gesting a pivotal role of DNA methylation in seed dormancy [180,181]. It was also reported
that seasonal variation in cotton (G. hirsutum) fiber development is linked with changes in
DNA methylation [182]; Osabe et al. found that methylation changes seasonally in fibers,
as well as other tissues [183]. Thus, these findings clearly indicate that DNA methylation
plays a large role in gene expression and phenotypic trait development and may be used
for future targeted breeding of crops.

7.2. Vegetative Growth and Flowering

In the life cycle of plants, flowering has key importance in vegetative and reproductive
growth, being mediated by the expression of a complex gene network that is precisely
controlled by flowering time. Regulation of this network is achieved by environmental
signs, e.g., photoperiod, light intensity and quality, temperature, and endogenous signals
instigating plant growth hormones to accomplish the task [184]. The most important factor
for flowering is photoperiod, and plants are divided into three groups according to three
photoperiod responsiveness: long-day, short-day, and day-neutral plants. However, some
species such as Arabidopsis are facultative long-day (LD) plants exhibiting accelerated
flowering under long-day photoperiods after vernalization, which provides an epigenetic
basis for stress memory [185]. Within flowering induction signaling pathways of the leaf
phloem tissue in rice, short-day (SD) photoperiods induce the expression of genes that
encode globular proteins florigens to induce flowering via specific up-regulation of Hd3a
and RFT1 [173]. DNA methylation has also been reported in the regulation process of
flowering from floral bud development to complete flowers and seed development [186].
It was found that DNA methylation may play a vital role in the floral development process
of individual male and female dioecious plants. To confirm the hypothesis of the role of
DNA methylation in flowering in an experiment, DNA-methylation inhibitor 5-azac was
applied on the stems of female and male basket willow trees before flower bud initiation; it
accelerated the initiation of flowering and subsequent floral growth. This indicates that
DNA methylation plays a significant role not only in vegetative reproductive stages but
also in floral growth. In plants, the RdDM pathway primarily mediates de novo DNA
methylation and siRNA screen cumbered on to argonaute-4protein. AGO4 protein interacts
with domains to rearrange methyltransferase2, which catalyzes denovo DNA methylation
in a sequence-free pattern [187]. In most of the flower buds, 24ntsiRNAs are predominantly
expressed; approximately 0.4% may predominantly express in the buds of some vegetables,
e.g., radish [176]. Mostly in non-crop plants, MSAP is used to identify variations in methy-
lation, as in perennial ryegrass (Lolium perenne) [188], maize (Z. mays L.) [189], rapeseed
(B. napus) [190], blackwattle (Acacia mangium) [180], and Japanese larch (Larix kaempferi)
(Lamb. Carr.) [191].

7.3. Fruit Ripening

DNA methylation has also been reported to participate in the ripening of the fruits of
many plant species [192]. In an experiment on orange (citrus X sinensis) fruit ripening, at the
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ripening stage, the orange fruit attained DNA methylation up to 30,000 genomic sites and
lost ~1000 sites compared with immature orange fruits, supporting the conclusion that an
increase in DNA methylation occurs during the fruit ripening process [193]. The increase
in methylated sites correlates with the decreasing demethylase gene expression [194]. It
was also reported that DNA hypermethylation is crucial to optimum ripening, and that
hypermethylation relates to the repression of many genes, such as photosynthesis, as well
as the transcriptional activation of other many genes, including loci involved in abscisic
acid action [182–184]. Interestingly, in contrast to examples of hypermethylation during
fruit ripening, active DNA demethylation was also reported as an important element
participating in the control of ripening [195]. Like many other fruit crops, in the Rosaceae
family, deferential gene expression patterns were found to play an important role in fruit
setting, development, and ripening [196–198]. In another study, promoters of more than
200 ripening genes were identified as potential targets of SlDML2 due to their prevalent
demethylation during tomato ripening [199].

8. Future Outlooks

DNA methylation is the main and fundamental component of epigenetic changes
and an integral part of the epigenetic regulation in humans, plants, and other organisms.
Although the full pathway mechanisms remain unclear, DNA methylation can modulate
gene transcription, and its patterns exhibit plasticity and adaptability over time in response
to environmental cues, stress, and other factors [200]. There are many developmental pro-
cesses across several models and non-model organisms, a good knowledge of the epigenetic
regulation would provide key insights for future research. In conclusion, epigenetic mech-
anisms may help plants to survive and adapt to extreme environmental conditions and
selection pressures [201]. The present updated knowledge and progress in plant sciences
has provided researchers with the necessary data analysis to further clarify the mechanisms
of epigenetic stress responses, which may help with the development of crops with toler-
ance against a range of adverse abiotic factors; climate change, in particular, poses serious
global challenges [202]. Epigenetic modifications are sometimes reversible but mostly pro-
vide a good source of heritable changes for quick adjustments to the environment. Some
environmental stresses reportedly induce chromatin remodeling and associated changes
in gene transcription. For example, vernalization states may persist in some species [203].
The benefits of the application of epigenetic engineering for agricultural production due
to time requirements and use of marker-assisted selection remain unclear. So, examining
epigenetic variation will help provide a comprehensive understanding of the mechanisms
governing histone modification, small RNA interference, and DNA methylation, among
other epigenetic modification pathways [204]. Future research in epigenetics will also help
to identify the underlying mechanisms through which epigenetic markers are inherited
or lost, thus providing the ability to create or remove regulatory epi-alleles that improve
crop traits such as yield, sugar contents, response to different stresses, or activation or
silencing of transgenes [205]. Moreover, future research will increase our ability to combine
regulatory pathways, such as manipulation of transcription factor expression, with epige-
netic modulation of promoter and enhancer specificity, pre-mRNA splice-site selection, and
processivity by RNA polymerase, thus increasing the ability to enhance or attenuate the
expression of specific genes as conditions require. It is evident from the recent progress in
the field of epigenetics that future crop engineering can potentially incorporate epigenetic
alterations for genetic diversity and crop improvement through novel trait selection.

9. Conclusions

In this review study, we briefly discussed DNA methylation, its mechanisms, and
its possible role in epigenetic changes in stress tolerance development in plants. We
provided some insight into DNA methylation, analysis, and its relationship with epigenetic
modification and stress tolerance. Currently, epigenetics is the most promising avenue for
plant scientists, and this compilation will be helpful for designing future studies to enhance
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genetic diversity and to manipulate regulatory pathways with epigenetics to modify or
enhance the expression of specific genes for improving the stress tolerance of crops.
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