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Contrast sensitivity (CS) is widely used as a measure of
visual function in both basic research and clinical
evaluation. There is conflicting evidence on the extent to
which measuring the full contrast sensitivity function
(CSF) offers more functionally relevant information than
a single measurement from an optotype CS test, such as
the Pelli–Robson chart. Here we examine the
relationship between functional CSF parameters and
other measures of visual function, and establish a
framework for predicting individual CSFs with effectively
a zero-parameter model that shifts a standard-shaped
template CSF horizontally and vertically according to
independent measurements of high contrast acuity and
letter CS, respectively. This method was evaluated for
three different CSF tests: a chart test (CSV-1000), a
computerized sine-wave test (M&S Sine Test), and a
recently developed adaptive test (quick CSF). Subjects
were 43 individuals with healthy vision or impairment
too mild to be considered low vision (acuity range of
�0.3 to 0.34 logMAR). While each test demands a slightly
different normative template, results show that
individual subject CSFs can be predicted with roughly the
same precision as test–retest repeatability, confirming
that individuals predominantly differ in terms of peak CS
and peak spatial frequency. In fact, these parameters
were sufficiently related to empirical measurements of
acuity and letter CS to permit accurate estimation of the
entire CSF of any individual with a deterministic model
(zero free parameters). These results demonstrate that in
many cases, measuring the full CSF may provide little

additional information beyond letter acuity and contrast
sensitivity.

Introduction

The spatial contrast sensitivity function (CSF)
represents a useful summary of functional vision by
measuring the amount of contrast needed to detect or
discriminate patterns across a range of spatial scales
(Campbell & Robson, 1968). The clinical importance of
contrast sensitivity (CS) is supported by research
showing that many conditions, including amblyopia
(Bradley & Freeman, 1981; Hess & Howell, 1977),
glaucoma (Hot, Dul, & Swanson, 2008; Ross, Bron, &
Clarke, 1984), macular degeneration (Kleiner, Enger,
Alexander, & Fine, 1988), diabetic retinopathy (Della
Sala, Bertoni, Somazzi, Stubbe, & Wilkins, 1985; Sokol
et al., 1985), and cataracts (Chylack et al., 1993; Drews-
Bankiewicz, Caruso, Datiles, & Kaiser-Kupfer, 1992),
show measurable losses in CS, even in cases where
acuity may be in the normal range (Bodis-Wollner,
1972; Jindra & Zemon, 1989; Regan & Neima, 1984;
Woods & Wood, 1995). Impairment of CS is also
associated with functional disabilities (Rubin & Legge,
1989; Turano, Rubin, & Quigley, 1999), and is often
more predictive of performance impairment than are
standard acuity measurements (Brabyn, Schneck,
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Haegerstrom-Portnoy, & Lott, 2001; Ginsburg, 2003;
Ginsburg, Evans, Sekule, & Harp, 1982).

Although numerous methodologies have been
developed over the decades to measure threshold CS,
the standard approach presents single targets (e.g.,
sine-wave gratings or letter optotypes) and measures
the smallest amount of luminance contrast needed to
detect or discriminate the target using various tasks
that include target detection, letter identification, and
orientation discrimination. Optotype-based tests,
prominent examples being the Pelli–Robson chart
(Pelli, Robson, & Wilkins, 1988) and the Mars chart
(Dougherty, Flom, & Bullimore, 2005), are more
commonly used in the clinic due to time efficiency and
ease of use. While these tests may be sensitive enough
to detect generalized deficits in CS (Ismail & Whi-
taker, 1998; Stavrou & Wood, 2003), they generally
lack power to resolve frequency-specific deficits due to
the broadband nature of letter stimuli (Ginsburg,
2003; Legge, Pelli, Rubin, & Schleske, 1985). In
comparison, full CSF tests use several band-limited
targets, such as sine-wave gratings or Gabors, to
measure CS across a broad range of spatial frequen-
cies (Arden & Jacobson, 1978; Campbell & Robson,
1968; Ginsburg, 1984; Owsley, 2003), and may be
better equipped to reveal potentially relevant changes
in the shape of the CSF (Regan, Silver, & Murray,
1977).

A key question of practical importance presented in
the literature on visual CS regards the extent to which
unique and useful information might be gained from
lengthy procedures that estimate the full range of the
CSF, in comparison to time-efficient methods that
produce a single CS estimate with letter optotypes (Pelli
et al., 1988; Woods & Wood, 1995). This issue is often
posed in terms of whether frequency-specific informa-
tion can reveal subtle and functionally relevant
differences between normal- and low-vision groups.
While there is evidence in support of measuring the full
CSF to distinguish certain low-vision groups (Bour &
Apkarian, 1996; Hess & Howell, 1977; Kupersmith,
Seiple, Nelson, & Carr, 1984), there is also evidence to
show redundancy in the information provided by these
techniques (Elliott & Whitaker, 1992; Woods & Wood,
1995). In fact, Chung and Legge (2016) recently
proposed a provocative hypothesis regarding this issue,
suggesting that the CSF curve of an individual might be
accurately estimated by simply shifting a standard
‘‘template’’ CSF horizontally and vertically along the
log axes according to independent measures of high-
contrast visual acuity and letter CS, respectively. If the
full range of an individual CSF can be accurately
recovered from these two auxiliary measures, then this
would suggest redundancy with more common, and
efficient, clinical measures of visual function and, as a

practical matter, may obviate the apparent need in
many cases to measure the full CSF.

The present study examined this issue within a
heterogeneous cohort of observers with substantial
variance in age, visual function, and history of
ophthalmologic disease. We conducted three distinctive
tests designed to estimate the CSF: the CSV-1000 chart-
based test (Vector Vision Co., Greenville, OH), a
computerized sine-grating test (M&S Technologies,
Dallas, TX), and quick CSF (Adaptive Sensory
Technology, Inc., Boston, MA), which offers a novel
adaptive approach to estimate functional parameters of
the underlying CSF using a 10-alternative forced-choice
task on narrowband filtered Sloan letters (Hou,
Lesmes, Bex, Dorr, & Lu, 2015). In addition, broad-
band (unfiltered) letter CS measurements were obtained
from the Pelli–Toronto test (M&S Technologies), a
computerized version of the Pelli–Robson chart test,
and acuity measurements were acquired with ETDRS
charts at near (40 cm) and far (3 m) distances. Log CS
(logCS) measurements from each CSF test were fitted
with a functional form of the CSF (truncated log
parabola) with four interpretable parameters corre-
sponding to peak CS, peak spatial frequency (SF),
bandwidth, and truncation to define the asymmetrical
plateau at low frequencies (Carney et al., 2000; Lesmes,
Lu, Baek, & Albright, 2010; Watson & Ahumada,
2005). All tests were repeated in the same or following
day to assess test–retest repeatability using the Bland–
Altman method (Bland & Altman, 1999) as an
indicator of test reliability, and to serve as a basis for
comparison to errors in model-based predictions.

We developed a predictive modeling framework that
measures a template CSF from group-averaged data
and uses two simple linear models to capture intrinsic
relationships between letter CS and peak CSF sensi-
tivity, and between acuity and peak SF, across the
group of participants. In the overall model, a total of
six free parameters are fitted to group-level data.
Evaluating this model on an individual-subject basis by
plugging in empirical measures of letter CS and acuity
thus delivers an individualized prediction of four
functional parameters and, by evaluation, frequency-
specific logCS data to compare directly with raw
measured data. In this way, the full range of the CSF
may be predicted on an individual basis with effectively
zero free parameters, because it is determined explicitly
from just two common clinical measurements of visual
function. Results show that while each CSF test
demands a unique standard template to fit group data,
likely due to methodological differences (Elliott &
Whitaker, 1992; Moseley & Hill, 1994; Woods &
Wood, 1995), a model that shifts the template CSF
horizontally and vertically according to acuity and
letter CS is capable of predicting the full range of CSF
data for most individuals with roughly the same
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precision as test–retest reliability for a given type of
CSF test.

Methods and procedures

Subjects

Forty-three subjects (20 women, 23 men) partici-
pated in the study and were recruited at the Eye Care
Institute at the Western University of Health Sciences
College of Optometry by use of advertisement with
flyers and posters in the local campus community.
Recruiting participants at the clinic offered the benefit
of obtaining a relatively diverse sample of participants
in terms of age (22 to 86 years), acuity (�0.3 to 0.34
logMAR), and history of ophthalmologic disease.
While the study obtained a broad sample of subjects
visiting the clinic for routine examination, it was not
explicitly designed with the power to compare individ-
uals with normal and low, due to the convenience
sampling. Incidentally, 29 of the 43 subjects (mean age
¼ 36.03 years, SD ¼ 10.55) were designated as having
healthy vision with no history of ophthalmic disease,
and 14 of the 43 (mean age¼ 57.71 years, SD¼ 16.64)
had prior history of some type of ophthalmic disease
(seven cataracts, two glaucoma, one ocular hyperten-
sion, three age-related macular degeneration, and one
amblyopia). Despite the prior history and later age of
some individuals, this group collectively had a rela-
tively mild degree of functional impairment, evidenced
by the fact that all subjects had better than 20/40 vision
except a single individual with 20/50 acuity. All subjects
gave written informed consent in accordance with the
study procedures approved by the institutional review
board at the Western University of Health Sciences,
and all research was done in adherence to the tenets of
Declaration of Helsinki. All examinations were per-
formed binocularly and were repeated on the same or
following day, with the exception of two participants
who returned within 1 week of the first examination.
The order in which the examinations were completed
was determined pseudorandomly for each subject with
a random number generator.

Vision examinations

CSF tests

The Sine CSF is a computerized test presented on a
calibrated monitor and computer system, the Smart
System II, produced by M&S Technologies. The test
presented sine-wave targets of varying orientation (08,
458, 908, and 1358) for up to 5 s at a distance of 9 ft, and
subjects verbally reported the perceived orientation.

Using a staircase procedure, the test measured contrast
thresholds for five levels of spatial frequency: 1.5, 3, 6,
12, and 18 c/8, presented in that order. Michelson
contrast ranged from 100% to 0.5%. We used the
standard settings associated with the built-in Sine CSF
test without modification.

The CSV-1000 is a printed chart-based test produced
by VectorVision. The test presented sine-wave targets
of varying spatial frequency (3, 6, 12, and 18 c/8) at a
distance of 8 ft, with subjects making a forced choice
between two targets presented on different rows (one
with sinusoidal modulation and the other that a solid
gray). Contrast was adjusted using the method of
limits, with eight discrete levels of contrast per SF, and
the lowest contrast available on the chart was 0.5%. We
used the table listed on the company’s website (http://
www.vectorvision.com/csv1000-norms/) to translate
scores, which range from 1 to 8, to logCS units for
curve fitting and analysis. We used the standard
recommended protocol associated with the commercial
CSV-1000 test (without glare).

Quick CSF (qCSF) is a relatively new computerized
test designed to measure a specific functional form of
the CSF, the truncated log parabola, using Bayesian
adaptive methods (Dorr, Lesmes, Lu, & Bex, 2013;
Hou et al., 2010; Lesmes et al., 2010). The test involved
50 trials with narrow-band Sloan letters filtered in the
SF domain with a raised cosine function (Chung,
Legge, & Tjan, 2002) and full-bandwidth half-height
value of 1 octave. Filtered letter stimuli were resized to
generate 16 evenly log-spaced center SFs ranging from
1.33 to 32 c/8. Hence, the size of letter stimuli was
scaled according to SF (e.g., higher SFs appear as
smaller targets). Subjects performed a 10-alternative
forced-choice letter-identification task at a distance of
14 ft. The SF and contrast of targets varied adaptively
from trial to trial to sample the entire joint space of SF
and contrast optimally according to an information
criterion, and hence to provide efficient estimation of
four functional parameters (Hou et al., 2015).

Letter CS test

The Pelli–Toronto is a computerized test on the
M&S Smart System II that is designed to replicate the
Pelli–Robson chart, which is classically performed on a
print-based medium (Pelli et al., 1988). Recent work
has found good agreement between measurements
obtained with the computerized Pelli–Toronto test and
the Pelli–Robson chart (Chandrakumar, Colpa, Regi-
nald, Goltz, & Wong, 2013). Advancements of the
computerized system include the ability to display a
single letter at a time, to randomize the order of letters
for each examination, and to change the angle of
resolution (i.e., acuity level) of the letters at will. The
test was performed at a distance of 9 ft, and the task
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was to identify unfiltered Sloan letters (size: 20/80 angle
of resolution) while an adaptive staircase procedure
adjusted the level of Weber contrast until threshold was
estimated. Because letter size is variable for this test, we
chose a letter size that exceeded the minimum angle of
resolution for all individuals in the study (all subjects
greater than 20/50 acuity), so that acuity would not
likely be a limiting factor for CS performance. For
reference, letter size for the Pelli–Toronto test in our
study was 20/80, whereas letter size for the standard
Pelli–Robson chart is 20/60.

Visual-acuity tests

High-contrast visual acuity was measured at near (40
cm) and far (3 m) distances with printed ETDRS charts
using standard procedures. LogMAR was scored letter
by letter (Arditi & Cagenello, 1993).

Analysis

Modeling the CSF

Data were analyzed using MATLAB (Mathworks,
Natick, MA). The outcome variable for each test was
contrast sensitivity (1/contrast threshold) logarithmi-
cally transformed (base 10) to logCS units. For each of
the three CSF tests, logCS measurements were fitted
with a parametric form of the CSF (Figure 1a), the
truncated log-parabola function (Carney et al., 2000;
Lesmes et al., 2010). We used this function because it
has been demonstrated to produce suitable fits to CSF
data of individual subjects (Hou et al., 2010; Watson &

Ahumada, 2005), and because the qCSF test was
designed specifically to estimate parameters for this
particular function (Lesmes et al., 2010). According to
this model, log (decimal) sensitivity S(f) is defined by
the following equations:

S0ðfÞ ¼ log10ðCSmaxÞ

� log10ð2Þ
log10ðfÞ � log10ðsfmaxÞ

log10ð2bÞ=
2

0
@

1
A

2

ð1Þ

SðfÞ ¼ S0ðfÞ; f � sfmax

SðfÞ ¼ log10ðCSmaxÞ � d;

f, sfmaxS
0ðfÞ, CSmax � d; ð2Þ

where S0(f) defines the standard three-parameter log-
parabola model in Equation 1 and the rules for low-
frequency truncation are specified in Equation 2.

Benefits of model fitting include the ability to
summarize the entire CSF with interpretable param-
eters including the peak CS (CSmax; units: CS); peak
SF (sfmax; units: c/8); bandwidth (b; units: c/8),
describing the width of the parabola; and truncation
(d; units: logCS), describing the plateau of the
function at the lowest SFs (Figure 1a). Curve fitting
was performed in MATLAB using a built-in nonlinear
least-squares regression algorithm (nlinfit.m). Param-
eterizing the CSF according to this function also
permits estimation of the area under the log CSF
(AULCSF), a summary statistic that quantifies the
entire range of contrast visibility (Applegate, Hil-
mantel, & Howland, 1997), as well as the high-SF
cutoff value (the SF where threshold is 100% contrast
and therefore logCS ¼ 0). To evaluate the quality of
log-parabola model fits, we compute the root-mean-

Figure 1. (a) Schematic illustration of the four parameters defining the truncated log-parabola function, and (b) group mean logCS

data with best-fitting model curves. Error bars represent standard error of the mean.
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squared error (RMSE) between recorded data and
model estimates evaluated at the same SFs (see
Equation 8).

Test–retest repeatability

Test–retest repeatability was evaluated using the
Bland–Altman method (Bland & Altman, 1999). We
computed the coefficient of repeatability (COR) as 1.96
times the standard deviation of test–retest differences
(test 2 � test 1), representing the 95% level of
agreement. The magnitude of COR indicates test
reliability, where lesser values indicate less variability of
repeated measurements and therefore better reliability.
The mean difference between test and retest represents
the bias.

Relationships to letter CS and acuity

To assess the relationship between CSF model
parameters and auxiliary visual measures (high-con-
trast acuity and letter CS), we computed the Pearson
correlation coefficient to indicate the strength and
directionality of the linear relationships. Prior work has
shown a negative linear relationship between high-
contrast acuity and peak SF of the CSF (Chung &
Legge, 2016), which we sought to replicate in our
sample of subjects with comparatively better baseline
visual function. The negative relationship reflects the
fact that subjects with better acuity will have lower
values on the logMAR scale but higher values of peak
SF. We also expected a positive linear relationship
between letter CS and peak CS based on prior work
(Pelli et al., 1988; Pelli, Rubin, & Legge, 1986),
although not all studies have found this relationship to
be as significant (Rohaly & Owsley, 1993). Our analysis
focused on these specific relationships, but for com-
pleteness we later report the full set of correlations
among all parameters and these two measurement types
(Table 4).

Results

Group descriptive statistics

The group means and standard deviations of logCS
values for each CSF test are reported in Table 1. LogCS
values were similar from test to retest for each test type,
highlighting the general reproducibility of results on
repeated measurements. In comparing across different
CSF tests, the Sine and qCSF tests provided compa-
rable measurements for logCS at the lowest SF (1.5 c/8).
However, test results increasingly diverged for mea-
surements at higher SFs. For the highest SF (18.0 c/8),
the Sine test produced a mean measurement of 1.12
logCS, which was twice as high as the measurement
from the qCSF test (0.56 logCS); this may be explained
by the fact that the qCSF scaled the size of the stimuli
by the SF, and hence stimuli were significantly smaller
than in the other tests at high SFs. For instance, the use
of smaller high-frequency stimuli presented by the
qCSF could result in increased fixation errors and
position uncertainty, especially near the limit of
contrast visibility, which could help account for the
relative reduction in logCS. The CSV-1000 produced
the highest measurement (1.35 logCS at 18 c/8). In
examining Table 1, there are substantial differences in
the raw levels of measurement produced by the tests.
The pattern of differences is not straightforward to
characterize and may be better understood by fitting
the raw data with the functional model of the CSF and
comparing differences in functional parameters, as
reported in the following section.

Mean logCS values for the Pelli–Toronto letter test
were similar from test (M ¼ 1.57, SD ¼ 0.25) to retest
(M¼ 1.59, SD¼ 0.25). In terms of high-contrast visual
acuity, logMAR values for distance acuity ranged from
�0.3 (20/10) to 0.34 (20/45), and near acuity ranged
from�0.2 (20/12.5) to 0.3 (20/40). The median for both
near and far acuity was�0.06 logMAR—slightly better
than 20/20 vision—indicating a sample population with
generally little to no deficit in high-contrast visual
acuity.

Test Number

Spatial frequency (c/8)

1.5 3.0 6.0 12.0 18.0

M&S Sine 1 1.78 (0.29) 2.09 (0.27) 2.06 (0.31) 1.61 (0.40) 1.06 (0.33)

2 1.83 (0.27) 2.16 (0.22) 2.12 (0.31) 1.66 (0.39) 1.18 (0.38)

CSV-1000 1 1.95 (0.14) 2.14 (0.18) 1.77 (0.22) 1.33 (0.24)

2 1.94 (0.13) 2.15 (0.16) 1.81 (0.2) 1.37 (0.20)

Quick CSF 1 1.76 (0.15) 1.82 (0.17) 1.62 (0.26) 1.06 (0.35) 0.53 (0.39)

2 1.78 (0.16) 1.86 (0.16) 1.66 (0.24) 1.11 (0.34) 0.58 (0.40)

Table 1. Mean (SD) logCS for each type of CSF test. Notes: Test Number 2 represents retest.

Journal of Vision (2016) 16(15):15, 1–15 Thurman et al. 5



Test–retest repeatability

The Bland–Altman COR and bias are reported for
each test measurement in Table 2. Among the CSF
tests, the qCSF showed the best overall repeatability,
with COR values ranging from 0.23 to 0.26 logCS. The
CSV-1000 produced repeatable measurements with
COR values ranging from 0.29 to 0.42 logCS, and the
Sine test demonstrated relatively poorer repeatability,
with COR values ranging from 0.41 to 0.63 logCS. The
bias from test to retest was low for all test measure-
ments, ranging from 0.01 to 0.12 logCS. Bias values
tended toward the positive range, representing a minor
generalized increase in logCS for retest measurements
in comparison to the first test. This small improvement
likely represents an effect of practice or task-specific
learning (Lu, Hua, Huang, Zhou, & Dosher, 2011).

Like the CSF tests, the Pelli–Toronto letter CS test
showed moderate repeatability (COR¼ 0.39) with very
low bias (0.01). Generally, these levels of repeatability
are comparatively similar to results of prior studies on
the repeatability of other CS tests, which commonly
range from about 0.15 to 0.5 logCS units (Buhren,
Terzi, Bach, Wesemann, & Kohnen, 2006; Kelly, Pang,
& Klemencic, 2012; Kollbaum, Jansen, Kollbaum, &
Bullimore, 2014; Pomerance & Evans, 1994). Of note,
the qCSF test stands out in terms of its precision and
repeatability across the full spectrum of SFs, which
may be attributed to methodological differences in
which CS estimates are constrained by estimation of
the functional form of the CSF. A result of parametric
function fitting is to effectively smooth across the data
(because of the nonindependence of CS estimates
across SFs), a likely contributor to the increased
consistency of test–retest measurements.

Due to the suitable levels of agreement between test
and retest, we average these measurements for all
subsequent analyses reported in this article. We will
return to test–retest reliability measures in the final
section as a means of evaluating the performance of the

predictive model, because the precision of repeated
measurements for a given test offers an upper bound on
how well one could expect to be able to quantitatively
predict raw measurements derived from that test.

CSF model fits

Next we fitted raw logCS data with the truncated
log-parabola function. Fitting this model resulted in an
estimate for four functional parameters that specify the
overall shape of the CSF (Figure 1a). The mean group
results for parameter estimates are reported in Table 3.
The best-fitting curves reveal the presence of significant
differences in comparing results across the three tests
(Figure 1b), demonstrated by the systematic shifts in
functional parameters specified by the model, particu-
larly in terms of peak CS, peak SF, and truncation.

Analyzing these differences quantitatively with a
one-way analysis of variance revealed a significant
effect for the peak-sensitivity parameter (CSmax), F(2,
126) ¼ 39.4, p , 0.001, which was due primarily to
much lower values for the qCSF in comparison to the
other two tests. There was a significant effect for peak
SF (sfmax), F(2, 126) ¼ 127.8, p , 0.001, due to
significantly higher values for the CSV-1000 test. The
effect for bandwidth (b) was statistically significant,
F(2, 126) ¼ 29.2, p , 0.001, and the effect for low-SF
truncation (d) was also significant, F(2, 126)¼ 46.2, p ,
0.001, with the Sine test showing significantly higher
values and more variance than the other two tests. The
AULCSF was also significantly different among the
test types, F(2, 126)¼ 61.6, p , 0.001. In particular, the
qCSF showed much lower AULCSF measurements in
comparison to the other two tests. These analyses
highlight the fact that the shape of the CSF differs
systematically as a function of test type (Moseley &
Hill, 1994; Woods & Wood, 1995), and helps to couch
these differences in terms of interpretable functional
parameters.

Test

Spatial frequency (c/8)

1.5 3.0 6.0 12.0 18.0

M&S Sine 0.63 (0.06) 0.55 (0.07) 0.41 (0.06) 0.59 (0.05) 0.49 (0.12)

CSV-1000 0.31 (0.01) 0.29 (0.01) 0.42 (0.04) 0.32 (0.04)

Quick CSF 0.26 (0.02) 0.23 (0.04) 0.24 (0.04) 0.25 (0.05) 0.26 (0.05)

Table 2. Bland–Altman coefficient of repeatability (bias) for test–retest measurements.

Test AULCSF CSmax (logCS) sfmax (c/8) b (c/8) d (logCS)

M&S Sine 2.07 (0.25) 2.19 (0.23) 3.78 (0.91) 1.24 (0.07) 0.39 (0.24)

CSV-1000 2.09 (0.14) 2.16 (0.15) 5.28 (1.01) 1.30 (0.09) 0.23 (0.12)

Quick CSF 1.65 (0.24) 1.89 (0.15) 2.66 (0.62) 1.20 (0.04) 0.14 (0.07)

Table 3. Mean (SD) parameter estimates for each type of CSF test.
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Significance of functional parameters for
individual model fitting

In addition to comparing functional CSF parameters
at the group level among tests, it is important to
benchmark in general how well the truncated log-
parabola model fitted raw data of individual subjects
(Supplementary Figure S1). A related issue that is
pertinent to the current study concerns how important
each individual parameter may be for characterizing
individual differences in CS. To address this question,
we performed a set of analyses in which we would fix a
particular parameter of the truncated log-parabola
model to the group mean value and proceed to fit the
remaining three free parameters to individual data,
resulting in an RMSE estimate for the partial models
(i.e., missing the fixed parameter) expressed in compa-
rable units. Parameters that are most important for
capturing individual differences will result in increased
RMSE relative to the full four-parameter model when
fixed to the group mean. By contrast, a parameter that
captures very little individual variability will not cause
a substantial increase to model-fitting errors when fixed
to the group mean, and will therefore have an RMSE
value similar to the full four-parameter model.

Figure 2 shows group-averaged RMSE values across
all three CSF test types for each partial model (in which
a specific parameter is fixed) as well as the full model in
which none of the parameters were fixed (i.e., all four
parameters were free to vary) and an extreme case of
the null model in which all of the parameters were fixed
to the group mean (and were thus not free to vary for
any individual subject). The first key observation is that
model fitting suffers most when peak CS is fixed to the
group mean (RMSE increases by about a factor of 2),
because it prevents the model from shifting the CSF
vertically along the logCS axis to account for individual
differences in peak sensitivity. By this account, peak CS
is clearly the most functionally relevant single param-

eter, followed by peak SF and more remotely by
bandwidth and truncation. Comparing distributions of
the RMSE of each partial model to the full model
through t-tests reveals that only peak CS, t(246)¼ 5.38,
p , 0.001, and peak SF, t(246) ¼ 2.51, p ¼ 0.012, had
significantly worse RMSE values. Fixing bandwidth
had a marginal impact, t(246) ¼ 1.72, p ¼ 0.09, and
fixing truncation had a minimal impact on the RMSE
of model fits, t(246)¼ 0.98, p¼ 0.33. The fact that
model fitting is robust to cases in which select
parameters are fixed to the group mean supports the
idea that a template CSF may be adapted from group
data to account for the global shape of the CSF and
then subsequently adjusted according to just the two
most relevant parameters (i.e., peak CS and peak SF)
to potentially provide an accurate fit of individual data
(Chung & Legge, 2016).

Correlations between CSF parameters and
auxiliary visual measures

Finally, a central issue of the study is to assess the
relationship between CSF model parameters and
auxiliary measures of visual function. Table 4 shows
correlation coefficients relating high-contrast near
acuity (40 cm), far acuity (3 m), and letter CS to each
parameter of the best-fitting truncated log-parabola
function, as well as summary statistics (AULCSF and
high-SF cutoff). Far acuity generally had a stronger
relationship to CSF parameters than near acuity, likely
due to the fact that CSF tests were also done at a
distance (�8 ft). However, letter CS tended to have the
highest correlations overall, particularly with the peak-
CS parameter (CSmax). We found a statistically
significant correlation between letter CS and peak CS
for two of the three tests, as shown in Figure 3. Far
acuity had a significant negative correlation with peak
SF and high-SF cutoff values for the Sine and qCSF

CSmax sfmax b d AULCSF SF cutoff

M&S Sine

Acuity: far �0.52** �0.46* 0.07 �0.24 �0.63** �0.52**
Acuity: near �0.43* �0.34 �0.14 �0.48* �0.32 �0.17
Letter CS 0.71** 0.38 0.12 0.38 0.67** 0.37

CSV-1000

Acuity: far �0.37 �0.02 0.1 �0.13 �0.41* �0.17
Acuity: near �0.21 0.08 0.13 �0.21 �0.21 �0.21
Letter CS 0.29 0.22 0.07 0.33 0.19 �0.01

Quick CSF

Acuity: far �0.53** �0.42* 0.65** �0.16 �0.75** �0.78**
Acuity: near �0.25 �0.33 0.38 �0.14 �0.41* �0.46*
Letter CS 0.68** 0.46* �0.51** 0.43* 0.76** 0.68**

Table 4. Pearson correlation coefficients between functional parameters of the truncated log-parabola model fits and auxiliary
measures of visual function (far and near acuity, letter CS). Notes: *p , 0.05; **p , 0.01.
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tests but, again, not for the CSV-1000. While the CSV-
1000 produced parameter estimates that were not
significantly correlated with acuity and letter CS, the
relationship between peak CS and far acuity trended in
the expected direction.

The bandwidth parameter was less consistent than
peak CS and peak SF, and showed no relationship to
auxiliary measures for the Sine and CSV-1000 tests—
but interestingly, it did show a relatively high
correlation to far acuity and letter CS for the qCSF
test. The truncation parameter was also a mixed bag,
showing some significant correlations among tests and
measures, but was generally less consistent than peak
CS and peak SF. The strongest correlations were found
for summary measures—AULCSF and high-SF cut-
off—likely because these measures represent the
composite influence of all four parameters and are

therefore less noisy than any single measure in
capturing visual function. Each summary measure
showed effects similar to peak CS and peak SF,
namely, a negative relationship with acuity and a
positive relationship with letter CS, particularly for the
Sine and qCSF tests. By comparison, the CSV-1000 test
was less consistent, perhaps because it produces highly
quantized values of logCS, owing to the fact that it
represented only eight distinct levels of contrast for
each SF. We return to this point in the Discussion to
help explain potential limitations of the methodology
used by the CSV-1000 in comparison to the other tests
we examined.

Predictive model

The results outlined so far can be distilled to three
key insights. First, there are various approaches to
estimating the CSF of an individual subject, and each
type of test produces a distinct estimate of CSF
parameters according to a test-specific template, as seen
by group averages in Figure 1. These generalized test-
specific differences in the shape of the CSF likely relate
to methodological differences in task, threshold esti-
mation procedure, and visual-target characteristics,
among other factors (Woods & Wood, 1995). Second,
some functional parameters of the truncated log-
parabola model, such as peak CS and peak SF, appear
to be more important than others for characterizing

Figure 3. Scatterplots showing, for three different CSF tests, the

relationships (a) between letter CS and fitted peak CS parameter

and (b) between far acuity and fitted peak SF parameter. Lines

represent least-squares linear model fits to the data.

Figure 2. Bar plot showing the group mean of model-fitting errors, quantified as the root-mean-squared error, between logCS data

and the best-fitting truncated log-parabola function in which select parameters were fixed to the group mean. ‘‘All’’ represents the
case in which all parameters are fixed to group mean and none are free to vary in fitting individual-subject data (an upper bound on

modeling errors). ‘‘None’’ represents the case of the full model with four free parameters (a lower bound on modeling errors). Each

other case represents a partial model with three free parameters in which the designated parameter was fixed to the group mean.

Error bars represent standard error of the mean. *p , 0.05, **p , 0.01.
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individual differences in CS. Our data show that the
bandwidth and truncation parameters are relatively
uninformative across subjects, consistent with the
previous finding that bandwidth is effectively invariant
between groups with normal and low vision (Chung &
Legge, 2016). In other words, individual-subject data
can be well captured even when these two parameters
are no longer free to vary, leaving peak CS and peak SF
as the only necessary model parameters to fit individual
data. Lastly, peak CS and peak SF show a significant
linear relationship with other independent empirical
measures of visual function, including (respectively)
letter CS and high-contrast visual acuity. Taken
together, these findings offer a concrete recipe for
predicting the full CSF on an individual basis with a
deterministic predictive model that has essentially zero
free parameters.

Method and procedure

The procedure of the predictive model is to first
establish a standard template CSF derived from
normative group data that is distinct for a given test
type (due to aforementioned mean differences among
tests), and then to shift this template left, right, up, or
down according to performance on other auxiliary
measures of visual function. Here, the template CSF is
defined by the truncated log-parabola model (see
Equations 1 and 2), in which parameters for bandwidth
and truncation are fixed via mean estimation from
normative group data:

StemplateðfÞ ¼ Sðf jCSmaxT
; sfmaxT

;bT; dTÞ ð3Þ

bT ¼
1

n

� �Xn

i¼1

bi dT ¼
1

n

� �Xn

i¼1

di; ð4Þ

where n is the total number of subjects, subscript i
represents the ith subject in the group, and subscript T
indicates the parameter set defining the CSF template.
Template parameters for peak CS and peak SF are not
fixed to the group mean but instead vary according to
independent measurements of letter CS and far visual
acuity, respectively, following the linear models:

CSmaxT
¼ mCSmax

xletterCS þ cCSmax

sfmaxT
¼ msfmax

xacuity þ csfmax
; ð5Þ

where xletterCS and xacuity represent empirical measure-
ments of performance on the Pelli–Toronto letter CS
and ETDRS high-contrast acuity tests, m is the slope of
the best-fitting linear function, and c is the intercept
term. Least-squares regression is used to estimate the
slope and intercept terms from group data, and hence

used to predict template parameters of peak CS and
peak SF for any subject not contained within the
normative group data set. As such, the entire predictive
model is determined by just six parameters—bT, dT,
mCSmax

, msfmax
, cCSmax

, and csfmax
—which capture group-

level patterns and relationships in the data. Thus,
predicting individual data from this model is deter-
ministic and involves effectively zero free parameters.
More generally, once a CSF template and its six
parameters are estimated from normative data, the
input to the model to predict the full CSF curve of an
individual is simply two empirically measured values:
letter CS and high-contrast acuity.

To evaluate the performance of the predictive model
on each individual subject, we use a leave-one-out
procedure that estimates six template parameters from
the group cohort that includes all subjects except the
one to be predicted. The model is then evaluated for the
left-out subject according to that subject’s individual
measurements of letter CS and far acuity to predict
parameters of the subject’s CSF. By evaluating the
parameterized log-parabola function at the SFs spec-
ified by the original test (i.e., 1.5, 3.0, 6.0, 12.0, and 18.0
c/8), we derive predictions to be compared directly to
the raw logCS measurements.

Model performance was evaluated according to
RMSE between raw and predicted values (Equation 6),
which was compared directly to test–retest errors
(Equation 7) and errors in fitting the full CSF model
with four free parameters (Equation 8):

RMSEpredicted ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� �Xn

f

�
StemplateðfÞ � xðfÞ

�2

vuuut

ð6Þ

RMSEtest�retest ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� �Xn

f

�
xtestðfÞ � xretestðfÞ

�2

vuuut

ð7Þ

RMSEfitted ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� �Xn

f

�
SðfÞ � xðfÞ

�2

vuuut ; ð8Þ

where n is the number of measured frequency-specific
data points (i.e., 1.5, 3.0, 6.0, 12.0, and 18.0 c/8), f is an
integer index for stepping through SF levels, x(f)
represents actual measured data, S(f) represents fre-
quency-specific values of the fitted CSF function (see
Equations 1 and 2) and Stemplate(f) represents frequen-
cy-specific values estimated from the predictive model
(see Equations 3–5).
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Results

Not surprisingly, there was variability across the
group in terms of how well the zero-free-parameter
model could predict individual CSF curves. Figure 4
shows example subjects with relatively low error
(Figure 4a) and relatively high error (Figure 4b). The
source of this variability is not immediately clear,
because the presence or absence of diagnosed oph-
thalmologic disease was not a predictive factor for
RMSEpredicted. For example, two-sample t-tests re-
vealed no significant difference (all ps . 0.20 for each
CSF test type) in RMSEpredicted between subjects with a
prior history of ophthalmologic disease (OD; n ¼ 14)
and subjects (n ¼ 29) without a prior history (HV; n ¼
29). There are several examples of low- and high-error
predictions within each subgroup, as shown by
organization in rows within Figure 4.

As discussed previously, a key benchmark for
interpreting the degree of error in model predictions
across subjects is to compare them directly to both
RMSEtest-retest (the consistency of the test on repeated
measurements), which would determine whether they are
within the same range of reliability as the instrument or
test itself, and RMSEfitted (with four free parameters to
vary), which provides an effective upper bound on how
well the truncated log-parabola functions can fit the data
in the first place. The scatterplot in Figure 5a shows that
all values of RMSEpredicted fall above the unity line with
RMSEfitted, highlighting the fact that the ability to
predict individual performance with this model is
constrained inherently by the quality of fit for the full
four-parameter CSF model. In other words, individuals
with high RMSEfitted will necessarily have greater
RMSEpredicted values due to the fact that the zero-free-
parameter model is couched in the same parametric form
(i.e., the truncated log parabola), and this model is shown
to fit the particular subject only so well in the first place.
The variability in the ability of the full CSF model to fit
individual subjects is clearly a driving factor in explaining
variability in the performance of the predictive model.

By comparison, as shown in Figure 5b, the
RMSEpredicted and RMSEtest-retest values are uncorre-
lated across individuals, and in fact have a similar
underlying mean distribution. For example, for the
Sine test the mean RMSEtest-retest across individuals
was 0.25 (SD¼ 0.13) and the mean RMSEpredicted was
0.23 (SD ¼ 0.08), and a t-test revealed no significant
difference between these distributions, t(42)¼ 1.02, p¼
0.32. Likewise, for the CSV-1000 the mean RMSEtest-

retest across individuals was 0.15 (SD¼ 0.09) and the
mean RMSEpredicted was 0.14 (SD ¼ 0.07), and a t-test
revealed no significant difference between these distri-
butions, t(42) ¼ 0.45, p¼ 0.65. For the qCSF test the
mean RMSEtest-retest across individuals was 0.11 (SD¼
0.07) and the mean RMSEpredicted was 0.14 (SD¼ 0.08),

and a t-test revealed marginal statistical significance
between the distributions, t(42)¼�2.0, p¼ 0.051. Even
accounting for the fact that error is introduced to
model predictions directly via errors in parametric
function fitting, as demonstrated in Figure 5a, this
result demonstrates that predictive errors are nonethe-
less within the same range as measurement errors
assessed on test and retest (Figure 5c).

It is important to underscore the point here that this
level of prediction accuracy is achieved with a template
CSF that is shifted according to independent measures
of visual function, and is not achieved via optimized
least-squares fitting of the parametric CSF model to
individual-subject data. In theory, the CSF for any
number of future subjects can be predicted with this
same model by simply collecting measurements for
letter CS and high-contrast acuity under similar testing
conditions and plugging them into Equations 3–5. Of
course, for future application a larger set of normative
data would be desirable to produce even more precise
estimates of test-specific CSF templates. For reference,
the six-parameter template CSF values for each test
type are reported in Table 5.

Discussion

This study was designed to evaluate several aspects
of CS data within a heterogeneous cohort of subjects
with minimal visual impairment, while focusing on
three distinct tests designed to measure the CSF (M&S
Sine test, CSV-1000, and quick CSF). Our analysis
focused on several factors, including test–retest re-
peatability, parametric CSF model fitting and com-
parisons among test types, reliability of individual
functional parameters for describing individual differ-
ences, and correlations among functional parameters
with auxiliary measures of visual function, and
culminated with the development of a predictive model
built directly from collective findings in these analyses.
This approach was motivated by very recent work by
Chung and Legge (2016), who proposed the idea that
results from any given CSF test may be described by
shifting a generic parametric CSF template horizontally
and vertically along the log-log axes to account for
individual differences in just two dimensions—peak CS
and peak SF.

In general, our choice of parametric curve to model
the CSF (i.e., truncated log-parabola function) was
suitable to account for the shape of the CSF derived
from each test, and produced relatively small errors in
curve fitting for most individuals, consistent with prior
studies (Chung & Legge, 2016; Rohaly & Owsley,
1993). This function contains four free parameters that
represent interpretable aspects of the CSF: peak SF and
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Figure 4. Individual plots of CSF curves either fitted with the full model with four free parameters (solid lines) or predicted with the

zero-free-parameter model (dashed lines) for individuals (labeled S#) exemplary of (a) low error and (b) relatively high error. HV:

healthy vision; OD: previous history of diagnosis of any ophthalmologic disease.

Figure 5. Scatterplot of RMSEpredicted (i.e., the zero-free-parameter model’s predictions) on the y-axis with (a) RMSEfitted (i.e., four free

parameters) on the x-axis and (b) RMSEtest-retest on the x-axis, representing intrinsic test reliability. (c) The group mean RMSEtest-retest
values are comparable to RMSEpredicted for each of three examined CSF tests. Error bars represent standard error of the mean.
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CS of the parabolic curve on the x- and y-axes,
respectively, as well as the width of the curve and the
canonical asymmetric plateau at lower frequencies
(Lesmes et al., 2010; Watson & Ahumada, 2005).
Interestingly, we found that fixing bandwidth and
truncation parameters to the group mean, forbidding
them to vary freely for individual subjects, did little to
impair the overall performance of curve fitting (Figure
2). On the surface, this result supports the idea that an
individual’s CSF can be mostly approximated by shifts
of a generic CSF template along the logCS and log-SF
axes (Chung & Legge, 2016; Pelli et al., 1986).

The positive relationship between peak CS and letter
CS is not a new discovery (Pelli et al., 1986), and in fact
was likely important for early adoption of the Pelli–
Robson chart for clinical testing of CS (Pelli et al.,
1988). The negative relationship between peak SF and
high-contrast acuity measurements represented in
logMAR is a relatively more recent discovery (Chung &
Legge, 2016), which we anticipated replicating in the
present study. Indeed, we replicated both of these key
findings for two out of the three CSF tests, with the
exception of the CSV-1000 test (although it trended in
the expected direction). This may be due to the fact that
contrast levels in this test are highly quantized (only
eight total levels), due to space limitations on the
printed board and the importance of time efficiency for
an examination designed for the clinic. This degree of
quantization also likely played a role in the good test–
retest repeatability for the CSV-1000, but on the other
hand likely made it difficult to characterize subtle
differences in CS across subjects.

Given these statistical relationships among func-
tional parameters and auxiliary visual measures, we
developed a generic modeling framework based on a
template CSF defined by the truncated log-parabola
function. The template CSF for a given test type is
defined by just six parameters determined from
normative group data, for instance, where bandwidth
and truncation parameters are constants estimated
from the group mean and where peak CS and peak SF
vary for each individual by a linear function according
to empirical estimates of letter CS and acuity. We see
the principal innovation of this work as the formal-
ization of a general-purpose parametric model that can
predict an observer’s individual CSF curve on the basis
of standard and more basic clinical measurements with
a suitable degree of accuracy. We supposed that a
predictive model that could achieve accuracy within the

range of test–retest reliability could serve two impor-
tant purposes: (a) As a practical matter, such a model
could be used to predict CSF curves for any arbitrary
CSF test in which normative data were available,
potentially allowing better comparisons among data
sets in the literature and in the clinic; and (b) as a
theoretical matter, it would suggest that there is such
redundancy between CSF measurements and other
common clinical measures that it would obviate the
need to spend time estimating the full CSF curve in
many clinical situations.

On this matter, our results affirm the notion that
CSF tests are highly redundant and differ from each
other primarily on the surface (e.g., in terms of large-
scale differences in global shape or template) but
deliver essentially the same information as other tests
that are easier to use and more readily available, such
as high-contrast ETDRS acuity and letter CS estimated
from single unfiltered optotypes. Yet CSF tests do
differ from each other in practically relevant ways, such
as test–retest repeatability and the precision of thresh-
old estimates. That these results were found in such a
diverse cohort of individuals suggests that these
findings should extend to most people within the range
of relatively normal visual function. The degree to
which this modeling framework would apply well to
particular patient populations with more severe visual
impairment is an important topic for future study.
However, the study by Chung and Legge (2016) did use
a low-vision population with much greater disability
and found comparable results in terms of reporting that
the bandwidth parameter was invariant between groups
with low and normal vision and finding that peak SF
was significantly correlated with high-contrast acuity.
In their work, a parametric CSF template derived from
observers with healthy vision was similar to that
measured for those with low vision, suggesting
invariance of the shape of the CSF for both groups of
subjects. We presume that the results of the current
method would extend favorably to this population as
well, but this hypothesis remains to be tested.

While the results in the present article do suggest that
in many cases, estimation of the full CSF function may
produce redundant information with the more quickly
and easily measured assessments of acuity and letter
CS, it would be inappropriate to assert that less will
always be more. As can be seen in Figure 1, there may
be some information contained in the bandwidth and
truncation parameters, as they differ substantially

bT dT mcsmax
ccsmax

msfmax
csfmax

M&S Sine 1.29 0.38 0.56 1.51 �0.35 0.62

CSV-1000 1.35 0.20 0.20 1.90 �0.07 0.77

Quick CSF 1.26 0.10 0.32 1.48 �0.57 0.50

Table 5. Template parameters fitted to normative (group) data, according to Equations 3–5.
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according to test type; however, a difficulty is that the
information potentially provided from these measures
may not rise beyond their reliability. Thus, for CSF
tests to provide information beyond acuity and letter
CS that is useful, they should be able to estimate these
additional parameters with precision and reliability and
to additionally show that these parameters are diag-
nostic of patient conditions and predictive of outcomes.
On this count, we believe the quick CSF has proven the
best potential in terms of delivering highly repeatable
measurements and functional parameter estimates with
less apparent noise as demonstrated by their uniquely
strong relationship to auxiliary vision measures (see
Table 4). Future research efforts will benefit by
reproducing these results with respect to other CSF
tests, and by assessing whether or not the predictive
quality of our zero-free-parameter model is affected by
the study of other patient groups with vision impair-
ment or other serious ophthalmologic conditions.

For instance, one potential limitation of the present
approach is the inability to characterize subtle changes
to the shape of the CSF, in particular midfrequency
notches that may result from retinal or optic-nerve
disease, multiple sclerosis, or even optical abnormalities
such as astigmatism (Apkarian, Tijssen, Spekreijse, &
Regan, 1987; Regan et al., 1977; Regan, Bartol,
Murray, & Beverley, 1982). This is due to the fact that
the truncated log-parabola function, and in fact most
parameterized CSFs (Watson & Ahumada, 2005),
embodies a limited number of parameters to charac-
terize key features of the CSF, such as the peak of the
curve, its bandwidth, and the common asymmetry
found at low frequencies. Lacking additional parame-
ters to account for possible midfrequency notches,
these functions would all effectively smooth over such
deviations from the template CSF. As a practical
matter, there is a potential cost to overfitting individual
data, as fitting functions are designed to become more
elaborate and highly parameterized to account for
idiosyncratic deviations from the generalized template.
While the set of commonly used functions that have
four or five free parameters appear to strike a good
balance between generalizability and parsimony, they
may collectively suffer from insensitivity to potentially
functionally relevant deviations from the assumed
functional form. Hence, while we conclude that in
many cases the CSF of an individual can be accurately
measured (Lesmes et al., 2010) or even predicted, as
shown in the present article, on the assumption of a
specific underlying functional form of the CSF, these
methods are not without potential limitations that
should be regarded before use in clinical applications
that aim to measure particular frequency-specific
deficits in CS.

Keywords: contrast sensitivity, visual acuity, contrast
sensitivity function, modeling, individual differences
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