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Summary

Understanding the diversity of human tissues is fundamental to disease and requires linking 

genetic information, which is identical in most of an individual’s cells, with epigenetic 

mechanisms that could play tissue-specific roles. Surveys of DNA methylation in human tissues 

have established a complex landscape including both tissue-specific and invariant methylation 

patterns1,2. Here we report high coverage methylomes that catalogue cytosine methylation in all 

contexts for the major human organ systems, integrated with matched transcriptomes and genomic 

sequence. By combining these diverse data types with each individuals’ phased genome3, we 

identified widespread tissue-specific differential CG methylation (mCG), partially methylated 

domains, allele-specific methylation and transcription, and the unexpected presence of non-CG 

methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, 

and using this mark, we made novel predictions of genes that escape X-chromosome inactivation 

in specific tissues. Overall, DNA methylation in multiple genomic contexts varies substantially 

among human tissues.

To better understand the variability of DNA methylation across human tissues, we obtained 

post-mortem samples of 18 tissue types from 4 individuals (5 singletons, 8 duplicates, and 5 

triplicates; Fig. 1a; Methods; Supplementary Table 1) and performed deep transcriptome (36 

mRNA-seq samples; 120-475 million reads per sample), base-resolution methylome (36 

MethylC-seq4 samples; 30x-80x genome coverage per sample), and genome sequencing (4 

whole genome sequences; 20x-45x genome coverage per sample). We focused our initial 

analysis on cytosines in the CG context and used a previously published method2 to identify 

differential methylation (Methods). We found that 15.4% (4,073,896 of 26,474,560 sites 

tested) of CG sites in these experiments are strongly differentially methylated (DMS; 

minimum methylation difference ≥ 0.3; Extended Data Fig. 1a), which is similar to a 

previous study2. To identify differentially methylated regions (DMRs), we combined sites 

within 500bp of one another and found 1,198,132 DMRs. Even with these stringent criteria, 

719,837 (60.1%) of the DMRs we identified were novel2,5.

As expected, hypomethylation at DMRs correlated with tissue-specific functions2,6. For 

example, strongly hypomethylated DMRs in aorta overlap with aorta-specific super 

enhancers7 around MYH10, a gene involved in blood vessel function8 (Fig. 1b). To further 

validate our DMRs, we performed hierarchical clustering on their weighted methylation 

levels9 (Methods; Fig. 1c; Extended Data Fig. 1b, c). Tissues that were part of the same 
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organ system clustered together (e.g., heart and muscle tissues). We compared these results 

to a clustering of differentially expressed genes identified in the transcriptomes and found a 

similar separation of organ systems (Methods; Fig. 1d; Extended Data Fig. 1d). 

Furthermore, GREAT10 analysis on the most hypomethylated tissue-specific DMRs 

revealed many tissue-specific functions (Extended Data Fig. 1e, f; Methods; Supplementary 

Information; Supplementary Table 2-3).

To examine the relationship between methylation and transcription, we correlated the 

methylation levels of DMRs and the expression of the closest genes (Fig. 2a; Extended Data 

Fig. 2a, b; Methods). As expected, methylation in DMRs had a negative correlation with 

expression, and this correlation grew stronger closer to the transcription start site (TSS). The 

strongest negative correlation was not in gene promoters but downstream of the promoter up 

to 8kb away (intragenic vs. promoter median spearman correlation coefficient (SCC) 

difference -0.12; Mann-Whitney P-value 6.7e-17; Fig. 2a). This analysis shows that 

transcription is strongly associated with intragenic DMRs in the tissues we examined, 

extending similar observations in cancer methylomes11.

These intragenic methylation differences have previously been hypothesized to mark 

intragenic CG islands (CGIs) or CGI shores5,12–14. However, only a small fraction of 

intragenic DMRs fell in these features (19%; Extended Data Fig. 2c). In addition, predicted 

enhancers and putative promoters only accounted for 23% and 22% of intragenic DMRs, 

respectively, suggesting that the remaining DMRs, which we call undefined intragenic 

DMRs (uiDMRs), represent an unrecognized set of functional elements (35%; Extended 

Data Fig. 2c; Supplementary Information; Methods). The methylation level of these 

uiDMRs correlated strongly with the expression of the genes containing them. To examine 

their regulatory potential, we plotted their histone modification profiles (H3K4me1, 

H3K4me3, H3K27ac, H3K9me3, H3k27me3 and H3K36me3) derived from the same tissue 

samples15 and found five classes: weak enhancer, promoter-proximal, transcribed, poised 

enhancer and unmarked. (Extended Data Fig. 2d-h, Extended Data Fig. 3a, b; Methods). 

Classes with strong, active histone modifications were moderately negatively correlated with 

expression (weak enhancer and proximal promoter uiDMRs; median SCC -0.31 and -0.16, 

respectively); whereas, uiDMRs with less active histone modifications exhibited a weak 

negative correlation (transcribed and poised enhancer uiDMRs). Notably, the correlation 

between expression and methylation at promoter-proximal uiDMRs was as strong as the 

correlation with intragenic DMRs that overlapped strong promoters (Extended Data Fig. 4; 

Methods), indicating that intragenic promoter and promoter-proximal sequences are more 

predictive of changes in methylation than those enriched for enhancer-like chromatin 

modifications.

In contrast, unmarked uiDMRs showed a weakly positive correlation with expression 

(Extended Data Fig. 4d). Interestingly, we found many of the motifs in tissue-specific 

uiDMRs were present in tissue-specific enhancers (e.g., HNF4a16 in liver-specific uiDMRs), 

suggesting that these DMRs are tissue-specific regulatory elements (Methods; 

Supplementary Table 4-5). Recently, hypomethylated regions that appear inactive in adult 

tissues but active during fetal development were identified in mice6. We examined the 

DNase I hypersensitivity profiles of unmarked uiDMRs in matched fetal tissues17 and found 
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an enrichment of hypersensitivity (Extended Data Fig. 5; Supplementary Table 6), 

suggesting that hypomethylation of inactive DMRs can be maintained at regions active 

earlier in development.

We next examined whether variation in methylation is associated with genetic variation 

across individuals, which has not been widely characterized in healthy primary tissues or 

using whole genome bisulfite sequencing18,19.To identify individual-specific DMRs, we 

used a method20 that is sensitive to these differences unlike the methodology employed 

above (Methods). We first restricted our analysis to our triplicated samples and ranked 

DMRs by a tissue-specific methylation outlier score (MOS). We found a ~1.6-fold 

enrichment of SNPs associating with methylation changes in the top 2,500 MOS ranked 

DMRs in all tissues (Methods). We then used the Epigram pipeline21 to predict tissue-

specific methylation from DNA motifs in these DMRs and found them highly predictive 

(average area under the curve (AUC) 0.79; Methods). These full models used an average of 

156 motifs; however, an average AUC of 0.74 was achieved using only 20 core TF motifs 

per tissue.

We then identified groups of corresponding motifs by clustering the sets of tissue-specific 

motifs (Methods). The motif groups were clustered by their tissue hypo- and 

hypermethylation specificities (Fig. 2b). 42 of 95 motifs only had hypomethylation 

specificity; for example, MEIS, which is involved in heart development22, is 

hypomethylated in left ventricle, right atrium and right ventricle. We also identified 34 

motifs with tissue-dependent methylation specificity. Three of these motifs match TF 

families (FOX, HOX and GATA) and are most significantly enriched in hypomethylated 

regions, suggesting they are primarily involved in regulating hypomethylation.

Mammalian cells have high genome-wide levels of mCG, with the exception of a cultured 

human fetal fibroblast cell line (IMR90)4, cancer cells23,24 and placenta (PLA)25. 

Surprisingly, large regions of the pancreatic methylomes (PA-2 and PA-3) were 

significantly hypomethylated (Extended Data Fig. 6a). We developed a method to identify 

PMDs genome-wide (Supplementary Tables 7-8; Methods) and found pancreatic PMDs 

were smaller than those in IMR90 and PLA (Extended Data Fig. 6b) and covered a smaller 

fraction of the genome (Fig. 2c). All pairs of PMDs overlapped significantly indicating that 

these regions are largely shared (>40% overlap; P-value < 0.001; Extended Data Fig. 6c).

Genes in samples with PMDs are transcriptionally repressed25,26, but these regions also 

show reduced expression in all of the tissues we surveyed whether or not a PMD is present 

(Fig. 2d). In both IMR90 and PA-2, these regions showed an enrichment in repressive 

modifications (H3K27me3 and H3K9me3; median difference 0.025 – 0.168 RPKM (reads 

per kilobase per million); Mann-Whitney P-value < 2.51e-161) and a depletion in active 

modifications (H3K4me1, H3K27ac, and H3K36me3; median difference 0.050 – 0.012 

RPKM; Mann-Whitney P-value < 2.03e-53) compared to shuffled regions (Fig. 2e, f; 

Extended Data Fig. 6 d, e; Methods), which provides a potential mechanism for their 

repression. To try to account for this global hypomethylation, we plotted the expression 

levels of DNMT1, DNMT3A, DNMT3B and DNMT3L but found no systematic expression 

difference between samples with and without PMDs (Extended Data Fig. 7 a-d).
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Previous studies have highlighted the existence of methylation outside of the CG context 

(mCH) in human embryonic stem cells4, brain1,20 and at the promoter of the PGC-1α gene 

in skeletal muscle27. We found evidence for appreciable amounts of mCH in many of these 

tissues (Fig. 3a; Extended Data Fig. 8a). A 5bp motif split the samples into two groups, one 

with mCH enriched in a TNCAC motif and another with mCH enriched in an NNCAN motif 

(where N is any base) (Methods). The TNCAC motif is highly similar to the one previously 

identified in purified glia (GLA) and neurons (NRN) (TACAC). These motifs are 

significantly different than the motif found in H1 embryonic stem cells (H1) and induced 

pluripotent stem cells (TACAG)4,26 (Fig. 3b-d). We quantified the extent of mCH across 

these samples by plotting the distribution of methylation levels at mCH sites in the 25 

samples with a TNCAC motif, which revealed a methylation level similar to that of GLA, 

NRN and H1 (Extended Data Fig. 8b)4,20. Most of the tissue types were consistently 

enriched for the TNCAC or NNCAN motif, but several (esophagus, lung, pancreas and 

spleen) had replicates which disagreed, suggesting that mCH is not homogenously 

distributed across these tissues.

To examine the potential functional effect of mCH in adult tissues, we plotted the 

distribution of expression levels for various quantiles of gene body mCH as it was 

previously reported to be positively correlated with expression in H14 and negatively 

correlated with expression in neurons20. This analysis revealed a negative correlation 

between expression and mCH (Extended Data Fig. 8c; Methods). Next, we combined our 

replicates and clustered genes by the patterns of CAS methylation (where S is a G or C) in 

and around their gene body (Fig. 3e; Methods; Supplementary Information). To characterize 

the genes assigned to each cluster, we performed DAVID functional annotation clustering 

(Supplementary Table 9; Methods), which revealed several different classes. Clusters 1, 2, 

11, 16 and 19 contained genes highly enriched for terms involved in basic cellular processes 

and had an active methylation state (i.e., hypermethylation in embryonic samples and 

hypomethylation in tissue and brain samples) across all samples. Clusters 5 and 6 were 

dominated by terms related to neuronal function and genes in this class were differentially 

methylated between neurons and glia and have inactive methylation states in other samples 

(i.e., hypomethylation in embryonic samples and hypermethylation in tissue and brain 

samples). Cluster 12 was enriched for heart and muscle related terms and its genes had an 

active methylation state in the three heart tissues as well as a weakly active methylation state 

in psoas but appeared inactive in other samples. Lastly, cluster 14 possessed an active 

methylation state in brain and tissue samples but were inactive in embryonic samples. 

Despite being inactive in the H1 samples, this class of genes was highly enriched for terms 

related to development.

To better define the transition of mCH motifs over development, we examined the ratio of 

the methylation level of CAC and CAG (mCAC and mCAG) sites in a variety of 

differentiated (tissues, NRN, and GLA), embryonic (H1), and embryonic derived cells 

(neural progenitor cells, NPC; mesendoderm MES; trophoblast-like TRO; mesenchymal 

stem cells, MSC)28 samples (Fig. 3f). With the exception of brain cells, mCH levels drop 

during differentiation, and the mCAC/mCAG ratios revealed a shift in motif usage across 

developmental time (Fig. 3f); although, mCAC and mCAG within the same gene remain 

Schultz et al. Page 5

Nature. Author manuscript; available in PMC 2016 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tightly correlated in both early embryonic and differentiated tissues (Extended Data Fig. 8d, 

e).

Methylation has previously been shown to be predictive of genes escaping X chromosome 

inactivation (XI) in neurons20. We investigated this phenomenon in these samples by 

comparing the promoter mCG and gene body mCH of genes that had previously been 

identified to escape X chromosome inactivation29 in 11 tissues with mCH (Fig. 4a). Female-

specific promoter mCG hypomethylation and gene body mCH hypermethylation was 

present at escapee genes at a similar level as in neurons (Extended Data Fig. 9a)20. Utilizing 

these tissue methylomes, gene body mCH was appreciably predictive of biallecially 

expressed genes (AUC 0.89; Extended Data Fig. 9b; Methods). To a lesser extent, we 

observed female-specific promoter mCH and gene body mCG hypermethylation at escapee 

genes (Extended Data Fig. 9a, c, d). Although female-specific promoter mCG 

hypomethylation, promoter mCH hypermethylation and gene body mCG hypermethylation 

are somewhat predictive of XI escapees, female-specific gene body mCH hypermethylation 

is the most predictive feature of XI escapees (Extended Data Figure 9a, b-e). We detected 

significant female-specific mCH hypermethylation in 109 of 612 X-linked genes, including 

9 genes hypermethylated in all 11 tissues and 72 genes that were significantly 

hypermethylated in only one tissue (Fig. 4b). Several genes such as FUNDC1 showed 

female-specific hypermethylation in several tissues but not in neurons, suggesting a tissue-

dependent regulation of the escape from X inactivation.

Allele-specific methylation (ASM) and expression (ASE) may also play a role in the 

regulation of autosomal genes. To examine these phenomena in human tissues, we 

combined the RNA-seq and MethylC-seq data sets with phased genotypes for each 

individual in this study3,15 (Extended Data Fig. 10a; Methods). Using the triplicate tissue 

samples (FT, GA, PO, SB, and SX), we identified 8,464 - 48,560 ASM events in the CG 

context and 48 - 403 ASE genes across these tissues (Supplementary Table 10-11; 

Methods). We next looked for ASM events that varied across individuals within a tissue-

type (tissue variable) and those that varied across a tissue-type within an individual 

(individual variable). Of the ASM events that varied, 4.1 – 7.5% and 54.5 – 70.0% were 

individual- and tissue-variable, respectively; whereas, of the ASE events that varied, 0.0 – 

20.0% were individual-variable and 13.3 – 48.8% were tissue-variable (Fig. 4c; Methods). 

Of the ASE events, 38.4 – 87.4% had an ASM event within 100 kilobases, and of these sites, 

76% had an ASM and ASE event that was matched (i.e., a DMR was hypomethylated on the 

same haplotype as the more highly expressed allele). Furthermore, we found that a larger 

fraction of ASE genes were observed near ASM events whether or not the events matched 

(Extended Data Fig. 10 b, c; Methods). These results demonstrate a link between allele 

specific methylation and expression in human tissues.

Here we have presented the deepest set of base resolution maps of mCG and mCH to date 

along with chromatin modification states, haplotype-resolved genome sequences and 

transcriptional profiles for a large set of human tissues. These data sets allowed us to 

accurately identify cis-regulatory elements. Additionally, they revealed the existence of 

mCH genome-wide in a subpopulation of cells from differentiated human tissues, which 

appears to be repressive. Our analysis of genic mCH indicates that these genes are distinct 
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from those that were previously identified in embryonic stem cells and the brain and showed 

enrichment for a variety of functions, most surprisingly those involved in development. 

These analyses raise the intriguing possibility that mCH is utilized in adult stem cells30 and 

could help to repress these genes as the cells transition into their differentiated role.

Extended Data

Extended Data Figure 1. Identification of differentially methylation regions (DMRs) and 
Multidimensional Scaling Analysis
a, Line plot showing the fraction of differentially methylated CG sites (DMSs, dynamic 

CGs) out of all CG sites under various methylation difference cutoffs. The methylation 

difference of a CG site is defined in Ziller et al.2 b, A plot of the first two principal 

components from the methylation level multi-dimensional scaling. Tissues are shaded by the 

organ group they belong to as in Figure 1c and 1d. c-d, Bar charts of the cumulative amount 

of variance explained by the first N principal components from the multi-dimensional 

scaling performed on the methylation levels of all DMRs (c) and the expression levels of all 

differentially expressed genes (d). e, A representative example of enriched GO biological 

process terms based on the most hypomethylated DMRs from LV-1. f, A representative 

example of enriched mouse phenotype terms based on the most hypomethylated DMRs from 

LV-1.
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Extended Data Figure 2. DMRs and their correlation with transcription
a, A browser screenshot of an example DMR downstream of the TSS. b, Expression level of 

the BIN1 gene which contains the DMR in (a). c, The percentages of hypomethylated 

intragenic DMRs in each class of genomic features. c-h, Histone modification profiles of 

five categories of uiDMRs.

Extended Data Figure 3. Classification of uiDMR histone profiles and uiDMR properties
a, heatmap of the histone modification profiles for the five types of uiDMRs. The profiles 

were plotted for each mark across the DMR and the 5kb upstream and downstream and the 

colors of each cell indicate the input normalized ChIP-seq RPKM. The colors on the left 
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indicate the group of each profile assigned by k-means clustering (red, weak enhancer; 

orange, promoter-proximal; green, transcribed; blue, unmarked; black poised enhancer). b, 
A pie chart of the distribution of uiDMRs across the classes defined by k-means clustering.

Extended Data Figure 4. Classification of promoter histone profiles
a, A heatmap of the histone modification profiles across strong (rows labeled with red) and 

unmarked (rows labeled with orange) promoters. The profiles were plotted for each mark 

across the promoter and the 5kb upstream and downstream and the colors of each cell 

indicate the input normalized ChIP-seq RPKM. b-c, The aggregate profiles for strong and 

unmarked promoters (b) and (c), respectively. d, The distribution of the Spearman 

correlation coefficients between the methylation level of different types of hypomethylated 

intragenic DMRs and the expression of the nearest gene. Notches indicate a confidence 

interval estimated from 1,000 bootstrap samples.
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Extended Data Figure 5. uiDMR fetal DNase I profiles
DNase I profiles of various fetal tissues corresponding to the tissues presented in this study. 

The samples are arranged columnwise by age, and row-wise by fetal tissue. The uiDMR – 

unmarked line represents the DNase I profile of uiDMRs without histone modifications. The 

DMR – enhancer line represents the DNase I profile of DMRs that overlapped an enhancer 

in a matched tissue in this study (indicated in the row label in parentheses). The shuffled line 

represents the DNase I profile of uiDMRs randomly shuffled across the genome.
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Extended Data Figure 6. PMD Features
a, A browser screenshot (see Figure 1 for description) of an example PMD found in IMR90, 

PLA, PA-2, and PA-3. RV-1 is included as a representative sample without PMDs. b, The 

distribution of sizes of PMDs in various samples. c, A heatmap representation of the overlap 

between various sets of PMDs. The denominator of the fraction of overlap is determined by 

the sample on the y-axis. d-e, ChIP-seq profiles of the PMD regions defined in PA-2 (c) and 

IMR90 (d) after shuffling.

Extended Data Figure 7. DNMT expression across tissues
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a-d, Bar plots of the expression (measured in log10 FPKMs) of DNMT1 (a), DNMT3A (b), 

DNMT3B (c), and DNMT3L (d) across various samples.

Extended Data Figure 8. mCH distribution and correlation
a, A browser screenshot (see Figure 1 for description) of an example region with non-CG 

methylation (mCH). Purple and pink ticks are methylated CHG and CHH sites, respectively 

(H = A, C, or T). Ticks on the forward strand are projected upward from the dotted line and 

ticks on the reverse strand are projected downward. b, The distribution of methylation levels 

at mCH sites across all samples with a discernible TNCAC motif. Only mCH sites with at 

least 10 reads and a significant amount of methylation were considered. c, Boxplots of the 

expression values across different quantiles of CAC gene body methylation (Gene body 

mCAC). d, Scatterplot of mCAG vs. mCAC inside gene bodies. e, Bar plot of the 

correlation of mCAG and mCAC inside gene bodies (blue) and the theoretical maximal 

correlation (red) if mCAC and mCAG are perfectly correlated. f-h, The methylation levels 

of C (upper panel), CG (middle panel) and CH (lower panel) across the read positions for 

PO-2 (red line) and EG-3 (blue line). Vertical lines indicate the position (10th base from the 

beginning) where trimming was applied. i, mCH motif from PO-2 with the first 10 bases of 

each read trimmed. j, mCH motif from PO-2 without trimming. k, mCH motif from EG-3 

with the first 10 bases of each read trimmed l, mCH motif from EG-3 without trimming. The 

height of each letter represents its information content (i.e., prevalence).
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Extended Data Figure 9. X chromosome inactivation
a, Distributions of promoter CG methylation (mCG) levels (mCG/CG), gene body non-CG 

methylation (mCH) levels (mCH/CH), gene body mCG levels and promoter mCH levels in 

genes previously reported to express from only one allele (inactivated) or biallelically 

(escapee)63. Black ticks show median, and bars indicate 25-75th percentile range. Genes 

more prone to escaping inactivation have lower promoter mCG, higher gene body mCH, 

higher gene body mCG and higher promoter mCH in females. b-e, Discriminability analysis 

using b, gender-specific gene-body mCH, c, promoter mCG, d, promoter mCH and e, gene 

body mCG to predict the escapee status of X-linked gene, respectively. Among them, gene 

body mCH is the most predictive feature of chromosome X inactivation escapees.
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Extended Data Figure 10. Allele-specific Methylation and Expression
a, An example of allele-specific methylation (ASM). Reads that contain a heterozygous SNP 

(red box) are separated by allele. The number of methylated (reads containing Cs) and 

unmethylated (reads containing Ts) at adjacent CG sites (black boxes) and tested for 

differential methylation. b, Fraction of allele-specific expressed (ASE) genes (blue) and bi-

allelically expressed genes (grey) that have at least one ASM event within a certain distance. 

Bi-allelically expressed genes were defined as genes that were covered by at least 10 reads 

and whose p-values given by binomial test for allelic expression were greater than 0.2 (i.e. 

no significance). c, Fraction of ASE genes that were linked to matched ASM event(s) (blue) 

and matched ASM events with their locations shuffled (grey). b-c are aggregated results 

using samples from triplicate tissues.
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Figure 1. The methylomes and transcriptomes of human tissues
a, The tissues analyzed in this study. Samples are denoted by the two letter code in 

parentheses followed by an individual ID. b, Browser screenshot of an example DMR. The 

top track contains gene models. The following four tracks contain green blocks indicating 

the location of super enhancers, enhancers, and hypomethylated DMRs in aorta, 

respectively. The remaining tracks display methylation data from each sample. Gold ticks 

are CG sites with heights proportional to their methylation level. Ticks on the forward and 

reverse strand are projected upward and downward from the dotted line, respectively. c-d, 
Hierarchical clustering of DMR methylation levels (c) and expression levels of differentially 

expressed genes (d). Colors indicate organ systems each sample belongs to.
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Figure 2. DNA methylation and its relationship with gene expression
a, The mean Spearman correlation coefficient at various distances between the methylation 

level of autosomal DMRs and the expression of the nearest gene. These correlations are 

shown for DMRs: overlapping genes (Genebody), overlapping enhancers (Enhancer), 

overlapping promoters or CpG islands (CGIs) or CGI shores (Promoter, CGI, CGI shore), 

not overlapping genes (Intergenic) and all remaining DMRs (Undefined). b, Heatmap 

showing each motif’s tissue-specific methylation preference. The tissues are colored 

according to Fig 1c., and the ordering is listed at the bottom of the figure. The bar plot at the 

end of the panel shows the number of times the motif was present in the 20 motif models. c, 
The number of base pairs covered by PMDs in all samples. d, The distribution of expression 

inside and outside of PA-2 PMDs across various samples. Notches indicate a confidence 

interval estimated from 1,000 bootstrap samples. Each PMD boxplot consists of 3,627 genes 

and each non-PMD boxplot consists of 22,907 genes. e-f, Histone modification profiles in 

and around PMDs in PA-2 (e) and IMR90 (f).
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Figure 3. mCH is prevalent in human tissues
a, The fraction of methylated cytosines in the CH context by sample. b-d, Representative 

mCH motifs from embryonic, (H1; b), tissue (LI-11; c), and brain (NRN; d) samples. The 

height of each letter represents its information content. e, A heatmap of genic mCAS 

patterns normalized to the flanking region. Each gene was assigned to one of twenty 

clusters, which is indicated by the number and tick marks on the y-axis. The tick marks on 

the x-axis indicate the upstream, transcription start, transcription end, and downstream 

segments of each gene. The boxes around various patterns highlight regions referenced in 

the main text. f, Bar plot of the ratio of the genome-wide mCAC to mCAG in various 

samples.
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Figure 4. Allele-specific Methylation and Expression
a, Browser screenshot of the increase in female mCH for a gene known to escape X 

chromosome inactivation (MED14). Sample names are colored by gender (male, black; 

female, red). b, Ratio of mCH level in female vs. male samples across genes with a 

significant difference in at least one sample. Cells boxed in black denote samples with a 

statistically significant difference between females and males. c, The number of ASM and 

ASE sites across the triplicated tissues. The top row depicts ASM events (left) and ASE 

events (right) which are allele-specific in all tissues (black), are variable across tissues 

(white), or do not possess enough data to tell (grey). The bottom row depicts the distribution 

of variable sites from the top row that vary by individual (white), tissue (black), or neither 

(grey).
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