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Abstract

Biomass crops grown on marginal soils are expected to fuel an emerging bioenergy industry in the United States. Bioenergy
crop choice and position in the landscape could have important impacts on a range of ecosystem services, including natural
pest-suppression (biocontrol services) provided by predatory arthropods. In this study we use predation rates of three
sentinel crop pests to develop a biocontrol index (BCI) summarizing pest-suppression potential in corn and perennial grass-
based bioenergy crops in southern Wisconsin, lower Michigan, and northern Illinois. We show that BCI is higher in perennial
grasslands than in corn, and increases with the amount of perennial grassland in the surrounding landscape. We develop an
empirical model for predicting BCI from information on energy crop and landscape characteristics, and use the model in
a qualitative assessment of changes in biocontrol services for annual croplands on prime agricultural soils under two
contrasting bioenergy scenarios. Our analysis suggests that the expansion of annual energy crops onto 1.2 million ha of
existing perennial grasslands on marginal soils could reduce BCI between 210 and 264% for nearly half of the annual
cropland in the region. In contrast, replacement of the 1.1 million ha of existing annual crops on marginal land with
perennial energy crops could increase BCI by 13 to 205% on over half of the annual cropland in the region. Through
comparisons with other independent studies, we find that our biocontrol index is negatively related to insecticide use
across the Midwest, suggesting that strategically positioned, perennial bioenergy crops could reduce insect damage and
insecticide use on neighboring food and forage crops. We suggest that properly validated environmental indices can be
used in decision support systems to facilitate integrated assessments of the environmental and economic impacts of
different bioenergy policies.
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Introduction

A considerable portion of the biomass required for a bioenergy

industry in the United States is expected to come from energy

crops [1] grown on marginal land [2,3]. Bioenergy cropping

systems are expected to vary considerably in their support of

ecosystem services [4]. Annual crops used for bioenergy, such as

corn, provide large amounts of sugar, starch, and cellulose, but are

expected to perform poorly with respect to climate stabilization

[5], water quality regulation [6], pollination services [7], and

biodiversity support [7–11]. In contrast, perennial energy crops,

such as mixed-species grasslands, often yield less biomass per unit

area than annual energy crops like corn [12,13], but provide

greater support for a wide variety of other ecosystem services

[4,14–18].

Suppression of invertebrate crop pests by predatory arthropods

(hereafter ‘‘biocontrol’’) is a valuable ecosystem service in

agricultural landscapes. At the farm scale, biocontrol of aphids

in Midwestern soybean fields has been valued at $32 ha21 yr21

[19,20]. At a national scale, biocontrol services by predatory

arthropods across the United States have been valued at more

than $4 billion per year [21]. Both of these estimates are based on

direct costs to farmers, such as yield loss and input costs, and not

externalities, such as potential negative environmental or health

impacts of insecticide use. As such, these are likely to be

conservative estimates of the value of biocontrol services [19].

Our recent work suggests that annual and perennial bioenergy

cropping systems differ in their support of biocontrol services. For

example, predatory arthropods are more taxonomically diverse,

have higher relative biomass, and consume more crop pests in

perennial grasslands when compared to annual energy crops,

particularly corn [10,22]. Further, predation of crop pests by

predatory arthropods is increased in both annual energy crops

[19,22] and perennial grasslands [22] when they are located in

landscapes with increasing amounts of perennial habitats such as

grasslands and forests. This suggests that increases in the area of

perennial bioenergy crops could enhance biocontrol services in

both food and energy crops across the broader landscape. To date,

our biocontrol studies have been limited to a single life stage of

a single species of sentinel pest.

In this study, we test the prediction that the predation rates of

multiple crop pests will be dependent on crop type and landscape

context, with the greatest biocontrol services occurring in

perennial crops and in landscapes with a high proportion of
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perennial crops and semi-natural habitats. We develop a biocontrol

index (hereafter ‘‘BCI’’) based on predation of three sentinel-prey

species, representing two major life stages of crop pests (eggs and

larvae), in two microhabitats where pests occur (within plant

canopies and on the ground). We then develop an empirical model

for predicting BCI from information on crop and landscape

characteristics and use the model to make qualitative predictions

about changes in biocontrol services in annual croplands given

land cover change associated with two contrasting bioenergy

scenarios. Understanding how biocontrol services will vary across

a range of different bioenergy scenarios is critical for shaping

compatible bioenergy and agricultural policies.

Methods

Estimating BCI
Fieldwork was conducted at 32 study sites, 16 in southern

Wisconsin and 16 in lower Michigan (Figure 1), during the

summer of 2010. In each state, 8 study sites were located in corn

fields, representing high-input, low-diversity, annual bioenergy

crops, and 8 study sites were located in moderately-diverse

grasslands, representing low-input, moderate-diversity, perennial

bioenergy crops. Sites were selected so that they fell along

a gradient of annual- to perennial-dominated landscapes. Char-

acteristics of corn and grassland sites are described in detail in

Werling et al. [22]. Field work was conducted on private land with

permission from land owners. Sites were not protected in any way.

Field work did not involve endangered or protected species, and

no special permissions were needed for the methods described

below.

To evaluate biocontrol potential at a site, we measured removal

rates of sentinel pests during two field campaigns, one during the

middle of June and the other during the middle of July, 2010.

During each field campaign, sentinel prey removal rates were

measured over a two-day period at four sampling stations per site.

Each sampling station consisted of a canopy platform and a ground

cage (Figure S1).

The canopy platform was used to measure predation of corn

earworm (Helicoverpa zea) eggs and fall armyworm (Spodoptera

frugiperda) larvae. Corn earworm and fall armyworm are econom-

ically important pests of food crops that reside in the canopies of

host plants and feed on leaf tissues [23]. The fall armyworm is also

a potential pest of perennial grass energy crops [24]. The canopy

platform consisted of a plastic pole with a lower platform

(30630 cm area, 50 cm above soil) that held sentinel prey and

an upper platform (75 cm above soil) that provided sentinel prey

with protection from sun and rain. The lower platform had 1 egg

card (a paper index card with approximately 50 individual

earworm eggs) affixed to the underside and 3 armyworm larvae

pinned (through the cuticle of a rear leg and then through a 5-cm

diameter cabbage leaf disc) to the topside. Canopy platforms were

enclosed with plastic netting (1.961.9 cm mesh size) to prevent

vertebrate predators from reaching sentinel prey.

The ground cage was used to measure predation of wax moth

(Galleria mellonella) larvae. Wax moth larvae are not significant pests

of food or energy crops, but were used to represent economically

important pest larvae and pupae that spend substantial time on the

soil surface, such as the western bean cutworm [25]. The ground

cage consisted of a steel wire-mesh (1.361.3 cm mesh size)

cylinder that was 10 cm in diameter and 7 cm tall. The cylinder

was placed on the ground, coarse organic matter was removed

from inside the cylinder, and a petri dish was placed on the

remaining bare soil. Four wax moth larvae were glued to the petri

dish and partly covered with moist sand. A plastic dinner plate was

secured to the open top of the cylinder using landscaping staples to

prohibit access by vertebrate predators. Canopy platforms and

ground cages were revisited approximately 48 hours after de-

ployment to record the number of sentinel prey remaining.

After field work was complete, removal rates (the proportions of

initial prey removed during deployment in the field) per sentinel

prey taxon were averaged across the four sampling stations and the

two sampling periods to produce a representative removal rate per

sentinel prey taxon per site. Initial data analysis indicated that

removal rates of different sentinel prey taxa were positively

correlated with one another (see Results). Given these relation-

ships, we averaged rates across sentinel prey per site to produce an

average pest removal rate, which we refer to as BCI. Concurrent

research using video cameras showed that a common set of

arthropods fed on all three sentinel pest types, in both corn fields

and grassland (Werling et al., in prep.). This suggested that

predation rates of the three sentinel pests were affected by

a common set of factors, allowing us to create a synthetic index of

biocontrol without losing important information on predation of

any one pest. Video cameras also verified that the loss of sentinel

prey from sampling stations was almost certainly due to predation,

as no sentinel prey were observed to escape from stations during

roughly 670 hours of footage.

Modeling BCI
We derived a function for estimating BCI for unsampled

locations across the study region. This was done by modeling BCI

as function of both patch and landscape characteristics. Patch

characteristics were described by the variable ‘‘crop type’’, which

had two levels, corn and grassland. Landscape characteristics

Figure 1. Study sites. Location of study sites (gray circles, B) in
relation to landcover characteristics (B), and location of study region
(dark gray polygons, A) in relation to the Midwest (medium gray, A) and
the continental United States (light gray, A).
doi:10.1371/journal.pone.0041728.g001
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included information on the proportion of the surrounding

landscape (within 1.5 km) [26] that was covered in annual crops

(mostly corn and soybeans), grasslands (including herbaceous

grasslands, old fields, pasture, alfalfa fields, mixed hayfields,

shrublands, and herbaceous wetlands), and forests (all deciduous,

conifer, and mixed forest, as well as wooded wetland). These three

land cover types dominate landscapes in our study region (average

sum of land cover proportions 6 SD across study

sites = 0.9360.12). Land cover data was from the 2009 Cropland

Data Layer (CDL), a remotely sensed land cover layer with 56 m

resolution [27]. Previous studies have demonstrated that the CDL

does an adequate job of detecting our three land cover classes in

our study region [22].

We used a linear mixed-effects model [28] to model BCI as

a function of crop type (corn = 0 and grassland= 1) and the

proportions of the surrounding landscape in annual cropland,

grassland, and forest. State (Michigan or Wisconsin) was included

as a random effect to allow for variation in model intercepts across

states due to unidentified biological or methodological factors. The

importance of the fixed effects was evaluated by creating a full,

linear mixed-effects model, with the one crop-type variable and

the three landscape variables, and then ranking the full and

nested-subset models using AICc [29]. The importance of the

random effect was evaluated by comparing the AICc value of the

full mixed-effects model to a model with all fixed effects but no

random effect [30].

Projecting BCI
The empirical relationships between BCI, crop type, and

landscape characteristics were used in a geographic information

system (GIS) to estimate BCI for annual croplands across the study

region under current landscape conditions. BCI was estimated for

each annual cropland pixel using a moving window approach,

where landscape composition was calculated within a 1.5 km

radius and BCI was calculated for the focal pixel using the AICc-

best BCI model (see Eq. 1 in Results).

Next, we used the BCI model to make qualitative predictions of

changes in biocontrol services in annual cropland under two

contrasting bioenergy production scenarios involving marginal

land. In these scenarios, marginal land was defined as cropland

with ‘‘severe limitations’’ (land capability class 3) to ‘‘very severe

limitations’’ (land capability class 4), as well as other open land

considered unsuitable for crop production (land capability classes 5

through 8) [31]. These limitations, coded into the U.S. De-

partment of Agriculture’s SSURGO database [32], are based on

soil quality, erosion potential, and water saturation.

In the ‘‘annual bioenergy scenario’’, all 1,219,138 ha of

perennial grassland occurring on marginal soils in our study area

were converted to annual croplands in the GIS. This scenario

represents land cover change that could potentially occur if

commodity prices or government policies strongly favor further

expansion of annual crops, such as corn, at the expense of

perennial habitats. In the ‘‘perennial bioenergy scenario’’, all

1,090,320 ha of annual cropland occurring on marginal soils were

converted to perennial grasslands in the GIS. In our study region,

the area of annual cropland on marginal soils is approximately

34% of all annual cropland. Meanwhile, approximately 40% of

the U.S. corn crop is currently used for biofuel production [33].

Thus, the perennial bioenergy scenario represents land cover

change that could occur if government policies promoted re-

placement of annual energy crops on marginal lands with

perennial energy crops. Given certain assumptions about crops

yields [34] and conversion efficiencies [35], we estimate that these

scenarios would generate between 3 and 6 billion L of ethanol,

with the perennial bioenergy cropping scenario on the low end

and the annual bioenergy crop scenario on the high end of the

range.

Finally, we computed BCI for each annual cropland pixel

located on prime agricultural land in our study area (land

capability classes 1 and 2) [31] under the annual and perennial

bioenergy scenarios using the moving window approach described

above. Then, for each scenario, we calculated the percent change

per pixel between current (y1) and projected (y2) BCI values using

the equation: percent change = ((y22y1)/y1)6100. We restricted

our analysis of biocontrol change to annual cropland pixels located

on prime agricultural land because these pixels remained un-

changed across the two bioenergy scenarios, giving us a uniform

set of pixels for comparisons.

Results

Estimating BCI
Removal rates of the three sentinel pests showed considerable

variation across study sites. The proportions of corn earworm eggs,

armyworm larvae, and wax moth larvae removed over a two-day

period varied from 0.09 to 0.99, 0 to 0.92, and 0.09 to 1,

respectively. As mentioned above (see Methods), variation in

removal rates for the different pest taxa were positively correlated.

For example, earworm egg removal rates were positively related to

armyworm removal rates (Spearman’s r = 0.65, P,0.001) and

armyworm removal rates were positively correlated with wax

moth removal rates (Spearman’s r = 0.50, P = 0.004). Given these

correlations, we averaged rates across sentinel prey taxa per site to

produce a generic pest removal rate. The resulting BCI ranged

from 0.17 to 0.91 across sample sites.

Modeling BCI
BCI was significantly related to both the crop in which the

predation assay occurred and the composition of the surrounding

landscape. The fixed-effect portion of the AICc-best model (Akaike

model weight = w1 = 0.58, Figure 2) was

BCI~0:25z0:19(crop type)

z0:62(proportion grassland in landscape)
ð1Þ

The standard errors for the crop type and grassland terms were

0.04 and 0.17, respectively. The best model explained approxi-

mately 69% of the variation in BCI (based on the squared

correlation between observed and predicted BCI values). The

standard error of predictions for the best model was approximately

0.10.

The second-best model (DAICc = 2.16, pseudo-R2= 0.70)

included positive effects of crop type (slope 6 SE =0.1960.04),

grassland (0.6460.16), and forest (0.0860.09), though the effect of

forest was not statistically significant. The third-best model

(DAICc = 2.85, pseudo-R2= 0.69) included positive effects of

crop type (0.1960.04) and grassland (0.6060.17), and a negative

effect of annual cropland (20.0460.08), though the effect of

cropland was not statistically significant. The fourth best model

(the full model) and remaining nested models were not nearly as

competitive as the top three models (DAICc $4.95).

Projecting BCI
Figure 3 depicts BCI estimates for annual cropland occurring on

prime agricultural soils under current land cover conditions. The

figure shows that regions dominated by annual crops have

Pest Suppression in Bioenergy Landscapes
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relatively low predicted BCI values, whereas regions dominated by

perennial habitats have relatively high predicted BCI values. The

BCI values predicted for the study region ranged from 0.25 to

0.79. This range was not substantially different from the range of

0.17 to 0.65 observed in the experimental data (Figure 2),

suggesting that the model was appropriate for interpolating BCI

values beyond our original study sites.

Figure 4 shows that future expansion of annual versus perennial

energy crops on marginal lands could have very different

implications for biocontrol in agricultural landscapes. Under the

first scenario (Figure 4A), there was a general decline in BCI in

annual croplands as surrounding grasslands on marginal soils were

converted to annual bioenergy crops. Declines in BCI ranged from

0 to264% and averaged210%. Annual croplands expected to be

most affected were those in landscapes where grasslands on

marginal soils are common, such as in southwestern Wisconsin

and western Michigan. Annual croplands predicted to be the least

affected were those in landscapes where grassland cover is already

rare or where prime agricultural soils are common, such as in

southeastern Wisconsin, south-central Michigan, and the thumb of

Michigan.

Under the second bioenergy scenario (Figure 4B), there was

a general increase in BCI in annual crops on prime farmland as

annual crops on marginal soils were converted to perennial

grasslands. Increases in BCI ranged from 0 to 205% and averaged

20%. Annual croplands predicted to see the largest increases in

biocontrol potential included those in landscapes where annual

crops on marginal soils are common, such as in southwestern and

central Wisconsin, and throughout lower Michigan. Agricultural

landscapes predicted to be the least affected were those in

southeastern Wisconsin and in the thumb of Michigan, where

there is relatively little annual cropland on marginal soils that can

be converted to perennial bioenergy crops.

Discussion

It is expected that biomass production for a bioenergy

industry will drive considerable land cover change in agricul-

tural landscapes of the Midwestern United States [15,36].

Bioenergy crop choice and position in the landscape could

largely determine the impact that this land cover change has on

a broad range of ecosystem services [7,16,19,37]. Results from

our field work provide further empirical support for the

hypothesis that pest control services provided by predatory

arthropods are likely to decrease with expanding annual energy

crop cover, and increase with expanding perennial energy crop

cover [17,22].

Figure 2. Observed versus predicted biocontrol index. Gray
symbols represent sites in Wisconsin and black symbols represent sites
in Michigan. Triangles represent corn sites and circles represent
grassland sites. Symbol size represents the proportion of the landscape
in grassland, where the smallest symbol represents 0.09 and the largest
represents 0.70. The solid diagonal line represents unity.
doi:10.1371/journal.pone.0041728.g002

Figure 3. Projected biocontrol index. Biocontrol index from Eq. 1 for cropland pixels across the study region given the current landscape
configuration. White pixels represent non-croplands (e.g. forest, urban etc.).
doi:10.1371/journal.pone.0041728.g003
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The mechanisms for these patterns were not examined

directly in this study, but there is a considerable body of

literature showing that natural enemies of crop pests are more

abundant in perennial-dominated than in annual-dominated

landscapes [38,39]. In our study region, in particular, recent

work showed that the abundances of two common generalist

predators, pirate bugs (Anthocoridae) and hoverflies (Syrphidae),

were relatively high in corn fields with an abundance of

perennial grasslands in the landscape [40]. In addition, video

data collected alongside the current study showed that

omnivores such as ants, grasshoppers, and slugs may also play

an important role in the control of pests in energy crops

(Werling et al., in prep). These omnivores were more active and

killed more prey in grasslands compared to corn fields (Werling

et al., in prep.). Thus the expansion of annual versus perennial

energy crops may affect a diverse suite of arthropod predators

and omnivores, and alter the biocontrol services that they

provide to food and forage crops. Note, however, that our index

of biocontrol services did not reflect the activity of parasitoids. It

is possible, though not probable [39], that parasitoids respond

to bioenergy crops differently from other natural enemies.

Further, parasitoids could compensate for a lack of other

natural enemies, such that biocontrol services are not affected

Figure 4. Change in projected biocontrol index. The percent change in the biocontrol index (BCI) between the current landscape configuration
and that of two different bioenergy scenarios. The annual bioenergy scenario (A) assumes that existing grasslands on marginal soils are converted to
annual bioenergy crops. The perennial bioenergy scenario (B) assumes that existing annual crops on marginal soils are converted to perennial
bioenergy crops.
doi:10.1371/journal.pone.0041728.g004

Pest Suppression in Bioenergy Landscapes

PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e41728



by expansion of energy crops. This possibility is the subject of

ongoing field work, and is explored further, below.

Our study shows how an index of biocontrol services responds

to variation in crop type and landscape composition, and provides

a qualitative assessment of how this index will change under two

specific bioenergy scenarios. While the biocontrol index was based

on removal rates of economically relevant crops pests, and

reflected the activity of a variety of predacious and omnivorous

arthropods, it is not clear how our measure of biocontrol potential,

as indexed by BCI, translates to changes in pest densities, crop

yields, or insecticide use. To explore this issue, we used Eq. 1 to

calculate an average BCI value for 562 counties across the

Midwest, and then compared this average to relative insecticide

use per county (RIU, the proportion of cropland in a county

treated with insecticide) reported by Meehan et al. [17]. We found

that average BCI per county was negatively correlated with RIU

(Spearman’s r =20.53, P,0.001, Figure 5A, Text S1). This

negative correlation is consistent with the idea that the pest

removal rates indexed by BCI translate to agronomic and

economic decisions by farmers about the need to control crop

pests with insecticide application.

Note, however, that Meehan et al. [17] found that RIU was

associated with multiple variables, including the proportion of

cropland in corn, the proportion of cropland in soybeans and

small grains, the proportion of cropland in fruits and vegetables,

the net income of producers, and unspecified spatial factors. We

adopted their methods and used spatial regression to relate

average BCI to RIU after accounting for the effects of these other

important variables (Text S1). In this context, we found that the

slope (SE) of the BCI term was 20.32 (0.08), indicating that as

BCI goes from 0 (no sentinel prey disappear in 48 hr) to 1 (all

sentinel prey disappear) the proportion of cropland treated with

insecticides decreases by 0.32 (Figure 5B). Interestingly, substitut-

ing average BCI per county for the landscape simplification

measures used in Meehan et al.’s (2011) analysis improved the

model fit substantially (DAICc = 6.00). Thus, there is observa-

tional evidence to support the idea that BCI from the current study

reflects important biological drivers with relevance to agronomic,

economic, and environmental outcomes. However, much work

needs to be done before we can accurately calibrate this index of

biological control to actual pest densities, yield losses, and

chemical inputs. In the meantime, changes in biocontrol potential

arising from our scenario analyses must be viewed as preliminary

and qualitative.

The pest removal rates measured during this study were used

to generate a model that estimates biocontrol potential in crops

given crop type and landscape characteristics. We used the

model to do spatially-explicit assessment of changes in bio-

control services under two contrasting, but not unrealistic,

bioenergy scenarios. The maps resulting from this analysis are

a direct reflection of the assumptions behind the scenarios.

However, the empirical BCI model can be employed to

evaluate the effects of any variety of bioenergy scenarios. Thus,

the model could be a useful component of a decision support

system that facilitates an integrated assessment of the effects of

different bioenergy policies and deployment scenarios on a range

of important ecosystem services, including biomass production,

climate regulation, water quality regulation, pollination, bio-

control, and provisioning of wildlife habitat. Models of multiple

ecosystem services could be bundled together to evaluate

tradeoffs and synergies created by different land use scenarios

[41–45]. In the past, ecologists have often documented land-use

driven changes in services like biocontrol after the fact [19]. We

now have the unique opportunity to harness this understanding

and create tools that allow for the proactive design of

agricultural landscapes that conserve the multiple ecosystem

services that underpin sustainable agricultural production and

contribute to broader social welfare.

Supporting Information

Figure S1 Sampling stations. Prototype of the canopy

platform and ground cage placed at each of four sampling

stations, at each of 32 study sites, twice during the growing season

Figure 5. Biocontrol index and insecticide use. (A) Negative
relationship between the empirical biocontrol index, averaged across
pixels in a county, and relative insecticide use, expressed as the
proportion of cropland in a county that is treated with insecticides. Data
are for 562 counties in seven states of the Midwestern United States,
including Wisconsin, Michigan and neighboring states (medium gray
polygons in Figure 1A). (B) Insecticide use has been adjusted to account
for other associated factors, such as the proportion of cropland in corn,
soybean and small grains, and fruits and vegetables, producer net
income per ha, and unspecified spatially-structured factors.
doi:10.1371/journal.pone.0041728.g005
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of 2010. Note in panel (A) the (1) bottom platform raised

approximately 50 cm off of the ground, (2) location of the corn

earworm egg card (on underside of platform), (3) locations of the

cabbage leaf disks (substituted here with squares of paper), (4)

locations of the pinned fall armyworm larvae, (5) top platform

raised approximately 75 cm off of the ground, and (6) netting used

to prevent access by vertebrate predators. Note in panel (B) the (7)

steel mesh cylinder, (8) Petri dish containing wax moth larvae and

moist sand, and (9) dinner plate fastened to the top of the mesh

cylinder using a landscape staple.

(TIF)

Text S1 Comparing biocontrol index to insecticide use.
(DOC)

Acknowledgments

We thank A. Balogh, E. Birru, B. Hedberg, A. Nelson, J. Perrone, L.

Racey, and C. Schwantes for assistance with field and laboratory work.

Thanks also to the many landowners who provided access to field sites. We

thank D. Helmers for rasterized GIS data on land capability class.

Author Contributions

Conceived and designed the experiments: TDM BPW DAL CG.

Performed the experiments: TDM BPW. Analyzed the data: TDM BPW

DAL CG. Wrote the paper: TDM BPW DAL CG.

References

1. US DOE (2011) U.S. billion-ton update: biomass supply for a bioenergy and
bioproducts industry. Perlack RD and Stokes BJ (leads). Oak Ridge, Tennessee

U.S.A.: Oak Ridge National Laboratory. 247 p.

2. Gopalakrishnan G, Negri MC, Wang M, Wu M, Snyder SW, et al. (2009)

Biofuels, land, and water: a systems approach to sustainability. Environ Sci

Technol 43: 6094–6100.

3. Gopalakrishnan G, Negri MC, Snyder SW (2011) A novel framework to classify

marginal land for sustainable biomass feedstock production. J Environ Qual 40:
1593–1600.

4. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input
high-diversity grassland biomass. Science 314: 1598–1600.

5. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, et al. (2008) Use
of U.S. croplands for biofuels increases greenhouse gases through emissions from

land-use change. Science 319: 1238–1240.

6. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises

goal of reducing nitrogen export by the Mississippi River. P Natl Acad Sci USA
105: 4513.

7. Gardiner M, Tuell J, Isaacs R, Gibbs J, Ascher J, et al. (2010) Implications of
three biofuel crops for beneficial arthropods in agricultural landscapes. Bioenerg

Res 3: 6–19.

8. Meehan TD, Hurlbert AH, Gratton C (2010) Bird communities in future

bioenergy landscapes of the Upper Midwest. P Natl Acad Sci USA 107: 18533–

18538.

9. Robertson BA, Porter C, Landis DA, Schemske DW (2011) Agroenergy crops

influence the diversity, biomass, and guild structure of terrestrial arthropod
communities. Bioenerg Res 5: 179–188.

10. Robertson BA, Doran PJ, Loomis LR, Robertson JR, Schemske DW (2011)
Perennial biomass feedstocks enhance avian diversity. GCB Bioenerg 3: 235–

246.

11. Fargione JE, Cooper TR, Flaspohler DJ, Hill J, Lehman C, et al. (2009)

Bioenergy and wildlife: threats and opportunities for grassland conservation.
Bioscience 59: 767–777.

12. James LK, Swinton SM, Thelen KD (2010) Profitability analysis of cellulosic
energy crops compared with corn. Agron J 102: 675–687.

13. Egbendewe-Mondzozo A, Swinton SM, Izaurralde CR, Manowitz DH, Zhang
X (2011) Biomass supply from alternative cellulosic crops and crop residues: A

spatially explicit bioeconomic modeling approach. Biomass Bioenerg 35: 4636–

4647.

14. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and

the biofuel carbon debt. Science 319: 1235–1238.

15. Tilman D, Socolow R, Foley JA, Hill J, Larson E, et al. (2009) Beneficial

biofuels: the food, energy, and environment trilemma. Science 325: 270–271.

16. Costello C, Griffin WM, Landis AE, Matthews HS (2009) Impact of biofuel crop

production on the formation of hypoxia in the Gulf of Mexico. Environ Sci
Technol 43: 7985–7991.

17. Meehan TD, Werling BP, Landis DA, Gratton C (2011) Agricultural landscape
simplification and insecticide use in the Midwestern United States. P Natl Acad

Sci USA 108: 11500–11505.

18. Gopalakrishnan G, Negri C, Salas W (2012) Modeling biogeochemical impacts

of bioenergy buffers with perennial grasses for a row-crop field in Illinois. GCB
Bioenerg.

19. Landis DA, Gardiner M, van der Werf W, Swinton SM (2008) Increasing corn

for biofuel production reduces biocontrol services in agricultural landscapes.
P Natl Acad Sci USA 105: 20552–20557.

20. Zhang W, Swinton SM (2012) Optimal control of soybean aphid in the presence
of natural enemies and the implied value of their ecosystem services. J Environ

Management 96: 7–16.

21. Losey JE, Vaughan M (2006) The economic value of ecological services provided

by insects. Bioscience 56: 311–323.

22. Werling BP, Meehan TD, Robertson BA, Gratton C, Landis DA (2011)

Biocontrol potential varies with changes in biofuel–crop plant communities and

landscape perenniality. GCB Bioenerg 3: 347–359.
23. Foster R, Flood B (1995) Vegetable insect management, with emphasis on the

Midwest. Willoughby, Ohio USA: Meister Publishing Company. 206 p.
24. Landis DA, Werling BP (2010) Arthropods and biofuel production systems in

North America. Insect Sci 17: 220–236.
25. Hoerner JL (1948) The cutworm Loxagrotis albicosta on beans. J Econ Entomol 41:

631–635.

26. Gardiner M, Landis DA, Gratton C, DiFonzo C, O’Neal M, et al. (2009)
Landscape diversity enhances biological control of an introduced crop pest in the

north-central USA. Ecol Appl 19: 143–154.
27. USDA NASS (2010) Cropland data layer. Available: http://nassgeodata.gmu.

edu/CropScape/. Accessed 2012 Apr 27.

28. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. New
York: Springer. 538 p.

29. Burnham KP, Anderson DR (2002) Model selection and multimodel inference:
a practical information-theoretic approach. New York: Springer. 353 p.

30. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects
models and extensions in ecology with R. New York: Springer. 580 p.

31. NRCS (2010) National Soil Survey Handbook, Part 622. Available: http://soils.

usda.gov/technical/handbook/contents/part622.html#ex2. Accessed 2010 Apr
12.

32. NRCS (2010) Soil Survey Geographic (SSURGO) database. Natural Resources
Conservation Service. Available: http://soils.usda.gov/survey/geography/

ssurgo/. Accessed 2010 Apr 12.

33. USDA ERS (2011) Feed grains data: yearbook tables: corn: food, seed, and
industrial use. Available: http://www.ers.usda.gov/data/feedgrains/Table.

asp?t = 31. Accessed 2011 Dec 19.
34. National Academy of Sciences (2009) Liquid transportation fuels from coal and

biomass: technological status, costs, and environmental impacts. Washington,

D.C.: National Academies Press. 388 p.
35. Kim S, Dale BE (2004) Global potential bioethanol production from wasted

crops and crop residues. Biomass Bioenerg 26: 361–375.
36. Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, et al. (2008)

Sustainable biofuels redux. Science 322: 49–50.
37. Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net

greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17: 675–691.

38. Risch SJ, Andow D, Altieri MA (1983) Agroecosystem diversity and pest control:
data, tentative conclusions, and new research directions. Environ Entomol 12:

625–629.
39. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in

agricultural landscapes: a review on landscape composition, biodiversity and

natural pest control. P Roy Soc B-Biol Sci 273: 1715–1727.
40. Werling BP, Meehan TD, Gratton C, Landis DA (2011) Influence of habitat and

landscape perenniality on insect natural enemies in three candidate biofuel
crops. Biol Control 59: 304–312.

41. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, et al. (2005) Global
consequences of land use. Science 309: 570–574.

42. Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006)

Conservation planning for ecosystem services. PLoS Biol 4: e379.
43. Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, et al. (2008) Global

mapping of ecosystem services and conservation priorities. PNAS 105: 9495–
9500.

44. Daily GC, Polasky S, Goldstein J, Kareiva PM, Mooney HA, et al. (2009)

Ecosystem services in decision making: time to deliver. Front Ecol Environ 7:
21–28.

45. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, et al. (2009) Modeling
multiple ecosystem services, biodiversity conservation, commodity production,

and tradeoffs at landscape scales. Front Ecol Environ 7: 4–11.

Pest Suppression in Bioenergy Landscapes

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e41728


