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A B S T R A C T

Mechanistic/mammalian target of rapamycin (mTOR) has emerged as a new potential therapeutic target for
gastric cancer. Rapamycin and rapamycin analogs are undergoing clinical trials and have produced clinical
responses in a subgroup of cancer patients. However, monotherapy with rapamycin at safe dosage fails to induce
cell apoptosis and tumor regression which has hampered its clinical application. This has led to the exploration
of more effective combinatorial regimens to enhance the effectiveness of rapamycin. In our present study, we
have investigated the combination of rapamycin and a reactive oxygen species (ROS) inducer EF24 in gastric
cancer. We show that rapamycin increases intracellular ROS levels and displays selective synergistic antitumor
activity with EF24 in gastric cancer cells. This activity was mediated through the activation of c-Jun N terminal
kinase and endoplasmic reticulum stress (ER) pathways in cancer cells. We also show that inhibiting ROS
accumulation reverses ER stress and prevents apoptosis induced by the combination of rapamycin and EF24.
These mechanisms were confirmed using human gastric cancer xenografts in immunodeficient mice. Taken
together, our work provides a novel therapeutic strategy for the treatment of gastric cancer. The work reveals
that ROS generation could be an important target for the development of new combination therapies for cancer
treatment.

1. Introduction

Gastric cancer is the second leading cause of cancer-related deaths
worldwide [1]. Surgery is the only curative treatment for early-stage
gastric cancer. However, most patients are asymptomatic in the early
stages and more than half of the cases are diagnosed clinically with
distant metastasis. Such metastatic cases are largely incurable with a 5-
year survival rate of less than 10% [2,3]. Adjuvantand targeted
chemotherapy show remarkable benefits in reducing disease recur-
rence and increasing long-term survival [4]. However, severe side
effects and complications including hematological and gastrointestinal

toxicities of the current anticancer drugspose a major clinical challenge
[5,6]. Therefore, new drugs and/or new therapeutic combinations are
needed for the treatment of patients with gastric cancer.

Rapamycin, a non-ATP-competitive inhibitor of mTOR complex 1,
is a bacterial macrolide with antifungal and immunosuppressant
activities [7,8]. Rapamycin and its analogs have demonstrated efficacy
in cancer treatment by inhibiting the mTOR pathway and inactivating
the vital downstream kinases, p70S6 kinase and eukaryotic initiation
factor 4Ebinding protein-1(4E-BP-1) [9]. Dephosphorylation of S6K1
and 4E-BP1 inhibits the expression of genes involved in cell cycle
regulation and cell proliferation. Rapamycin and its analogs have been
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shown to exhibit anti-tumor activities in gastric cancer both in vitro
and in animal models [10]. However, results of recent studies indicate
that mTOR inhibitors lead to disease stabilization rather than regres-
sion for most cancer types [11]. It has, therefore, been suggested that
mTOR-targeted therapy and other chemotherapy may be used in
combination therapy to induce a cytotoxic response rather than a
cytostatic response in cancer treatment.

We have recently shown that reactive oxygen species (ROS)
production in cancer cells is one of the mechanisms underlying
synergetic cytotoxicity seen with combination anti-tumor treatments
[12–14]. ROS are a normal by product of numerous cellular processes,
such as mitochondrial metabolism and protein folding [15]. Compared
to normal cells, cancer cells have intrinsically higher levels of ROS and
are under oxidative stress due to an imbalanced redox status [15,16].
As a result, cancer cells are believed to be unable to cope with
additional oxidative stress and become sensitive to agents that increase
ROS levels [17]. Targeting ROS is an important therapeutic strategy for
cancer as exemplified by cancer drugs such as trisenox [18], paclitaxel
[19], and2-methoxyestradiol [20]. Our previous studies have found
that auranofin and piperlongumine induce ROS-dependent synergistic
cytotoxicity in gastric cancer cells [12]. Hence, novel ROS-based
combination therapeutic strategies have been suggested for further
improving the outcome of gastric cancer patients.

In the present study, we have examined a ROS-based combination
therapy for gastric cancer utilizing rapamycin and a novel curcumin
analog EF24. EF24 was identified as selectively toxic to cancer cells in
ROS-dependent manner [13]. Our present study shows that EF24
sensitizes gastric cancer cells to rapamycin in vitro by triggering ROS-
mediated c-jun N terminal kinase activation and inducing endoplasmic
reticulum stress apoptotic pathways. Furthermore, we showed that
rapamycin in combination with EF24 leads to a significant reduction in
tumor growth in vivo. Together, these results suggest that rapamycin in
combination with ROS inducers may provide an effective alternative for
gastric cancer therapy.

2. Materials and methods

2.1. Cell culture and reagents

Rapamycin was purchased from Selleck Chemicals (Houston, TX).
Curcumin analog EF24, N-acetylcysteine (NAC) and catalase were
purchased from Sigma-Aldrich (St. Louis, MO). Human gastric cancer
cell lines SGC-7901 and BGC-823, and normal human gastric epithelial
cells GES-1 were purchased from the Institute of Biochemistry and Cell
Biology, Chinese Academy of Sciences (Shanghai, China). All cell types
were cultured in RPMI 1640 medium (Gibco, Eggenstein, Germany)
supplemented with 10% heat-inactivated fetal bovine serum (Gibco),
100 units/mL penicillin, and 100 μg/mL streptomycin. Antibodies
against Bcl-2, Bax, cleaved poly ADP ribose polymerase (PARP),
murine double minute 2 (MDM2), CDC2, Cyclin B1, and GAPDH were
obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies
against p-mTOR(Ser2448), p-4EBP1(Thr37/46), CHOP (CCAAT/enhan-
cer-binding protein homologous protein), ATF4 (activating transcrip-
tion factor 4), p-JNK (Thr183/Tyr185), JNK, LC3A/B, Beclin-1, p-PERK
(Thr981), Cleaved Caspase-3, Caspase-3, p-S6 (Ser240/244), and p-eIF2α
and eIF2α (eukaryotic initiating factor 2) were purchased from Cell
Signaling Technology (Danvers, MA). Secondary horseradish perox-
idase (HRP)-conjugated antibodies were obtained from Santa Cruz
Biotechnology. Fluorescein isothiocyanate(FITC)-AnnexinV apoptosis
Detection Kit I and propidium iodide (PI) were purchased from BD
Pharmingen (Franklin Lakes, NJ).

2.2. Cell viability assay

Cells were seeded in 96-well plates at the density of 8×103 per well
and allowed to attach overnight in RPMI media containing serum.

Rapamycin was dissolved in DMSO and diluted in 1640 medium to
final concentrations of 0.3125, 0.625, 1.25, 2.5, 5, 10, 20, 40 and
80 μM. EF24 was dissolved in DMSO and diluted in 1640 medium to
final concentrations of 0.1562,0.3125, 0.625, 1.25, 2.5, 5, 10 and
20 μM. Cells were then treated with increasing concentrations of
rapamycin or EF24 as single treatments or in combination for 24 h
before measuring viability by MTT assay.

2.3. Cell apoptosis analysis

Cells were treated with either rapamycin.EF24, or a combination of
rapamycin and EF24 for 24 h. NAC or catalase pretreatment, where
indicated, was carried out for 2 h. Cells were then harvested, labeled
with FITC-conjugated Annexin V and PI, and analyzed by flow
cytometry. Caspase9 activity was also determined in cell lysates using
the Caspase 9 activity assay kit (Beyotime Institute of Biotechnology,
Beijing, China). Activity levels were normalized by the protein con-
centration of the corresponding cell lysate and expressed as percentage
of treated cells to that of control.

2.4. Measurement of reactive oxygen species generation

Cellular ROS levels were measured by flow cytometry as described
previously [13,14]. Briefly, 5×105 cells were plated on 60 mm dishes
and allowed to attach overnight. Cells were exposed to either rapamy-
cin, EF24, or a combination for the indicated time periods. Cells were
then stained with 10 μM dichlorodihydrofluorescein diacetate (DCFH-
DA;Beyotime Biotech, Nantong, China). DCFH-DA is oxidized to
dichlorodihydrofluorescein (DCF) in the presence of ROS. DCF fluor-
escence was analyzed using FACSCalibur flow cytometry.

2.5. Western blotting analysis

Cell lysates were prepared and protein levels were determined by
the Bradford Assay (Bio-Rad, Hercules, CA). Proteins were separated
by 10% SDS-PAGE and transferred to poly-vinylidene difluoride
transfer membranes. The blots were blocked for 2 h at room tempera-
ture with freshly prepared 5% nonfat milk in TBST and then incubated
with specific primary antibodies over night at 4 °C. HRP-conjugated
secondary antibodies and ECL substrate (Bio-Rad, Hercules, CA) were
used for detection. The density of the immunoreactive bands was
analyzed using Image J software (National Institute of Health, MD).

2.6. Electron microscopy

SGC-7901 cells were treated with vehicle control (DMSO, 3 μL) or a
combination of rapamycin and EF24. NAC and catalase pretreatments
were carried out for 2 h. Following treatment, cells were fixed with
2.5% glutaraldehyde overnight at 4 °C.The cells were then post-fixed in
1% OsO4 at room temperature for 60 min, stained with 1%uranyl
acetate, dehydrated through graded acetone solutions, and embedded
in epon. Areas containing cells were block-mounted and cut into 70 nm
sections and examined with an electron microscope (H-7500, Hitachi,
Ibaraki, Japan).

2.7. Evaluation of mitochondrial membrane potential (Δψm)

The synergistic effect of rapamycin and EF24 on mitochondrial
membrane potential (Δψm) were examined by fluorescence microscope
using JC-1 (Thermo Fisher). JC-1is a cationic carbocyanine dye that
accumulates in the mitochondria. Upon changes to membrane poten-
tial, JC-1 leaks out into the cytosol. Cells were exposed to rapamycin
and EF24 for 14 h. NAC and catalase pretreatments were carried out
for 2 h. Fluorescence images were acquired by using Nikon epifluores-
cence microscope equipped with a digital camera (Nikon, Japan).
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2.8. In vivo xenograft model

All animal experiments complied with the Wenzhou Medical
University's Policy on the Care and Use of Laboratory Animals.
Protocols for animal studies were approved by the Wenzhou Medical
College Animal Policy and Welfare Committee (Approved docu-
ments:2012/APWC/0216). Protocols for animal studies also follow
the National Institutes of Health guide for the care and use of
Laboratory animals (NIH Publications No. 8023, revised 1978). Five-
week-old athymic BALB/c nu/nu female mice (18–22 g) were obtained
from Vital River Laboratories (Beijing, China). Animals were housed at
a constant room temperature with a 12 h:12 h light/dark cycle and feda
standard rodent diet. SGC-7901 cells were injected subcutaneously into

the right flank (5×106 cells in 100 μL of PBS). Mice were treated with
5 mg/kgi.p. rapamycin once per day, 3 mg/kgi p. EF24 once per day, or
with a combination of rapamycin and EF24 according to the same
schedules. Treatment was initiated when tumors reached a volume of
40–50 mm3. The tumor volumes were determined by measuring length
(l) and width (w) and calculating volume by using the formula:
V=0.5×l×w2. At the end of study, animals were sacrificed, and the
tumors were removed and weighed for use in proteins expression
studies.

2.9. Malondialdehyde (MDA) assay

Tumors samples from mice were homogenized and sonicated.
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Fig. 1. Rapamycin causes cytotoxicity inhuman gastric cancer cells and normal cells. (A) Cytotoxic effect of rapamycin in human gastric cancer cells and normal GES-1 cells as assessed
by cell viability. SGC-7901, BGC-823 and GES-1 cells were incubated with increasing doses of rapamycin (0.31–100 μM) for 24 h. Cell viability was determined by MTT assay. (B)
Induction of apoptosis in human gastric cancer cells was determined by Annexin V/PI flow cytometry following treatment with rapamycin (10, 20 or 40 μM) for 24 h. (C) Quantification
of apoptotic cells presented as percent total [*p < 0.05, **p < 0.01]. (D) Western blot analysis of apoptosis-related proteins in SGC-7901 and BGC-823 treated with rapamycin (10, 20 or
40 μM) for 20 h [Cle-PARP=cleaved PARP; GAPDH=loading control]. The densitometric quantification bar graphs are shown in Supplementary file. Representative data were shown
from three independent experiments.
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Tissue lysates were then centrifuged at 12,000×g for 10 min at 4 °C to
collect the supernatant. Total protein content was determined by using
the Bradford assay. Malondialdehyde (MDA) levels were measured by

using Lipid Peroxidation MDA assay kit (Beyotime Institute of
Biotechnology).
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Fig. 2. EF24 enhances the anti-tumor activity of rapamycin in gastric cancer cell lines. (A-B) SGC-7901,BGC-823 and GES-1 cells were pretreated with 0.5 μM EF24 and then exposed
to increasing doses of rapamycin (0.31–100 μM) for 24 h. Cell viability was determined by MTT assay. (C) EF24 enhances rapamycin-induced apoptosis in SGC-7901 and BGC-823 cells
as assessed by AnnexinV/PI staining. (D) Quantification of apoptotic cells [*p < 0.05, **p < 0.01]. (E) Western blot analysis of apoptosis-related proteins following EF24 and rapamycin
combination treatment. (F) Western blot analysis of autophagy-associated proteins in SGC-7901 and BGC-823 treated with rapamycin. The densitometric quantification bar graphs are
shown in Supplementary file. Representative data were shown from three independent experiments.
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2.10. Statistical analysis

All experiments were assayed in triplicate (n=3). Data are expressed
as means ± SEM.The density of the immunoreactive bands was ana-
lyzed using Image Jcomputer software (NIH). All statistical analyses
were performed using GraphPad Pro. Prism5.0 (GraphPad, San Diego,
CA). Student's t-test and two-way ANOVA were employed to analyze
the differences between sets of data. A p value < 0.05 was considered
statistically significant.

3. Results

3.1. High dose of rapamycin non-selectively decreases viability of
human gastric cancer cells and normal cells

We first wanted to determine the effect of rapamycin on gastric
cancer and normal gastric cell growth. We treated cells with different
concentrations of rapamycin and performed viability test through the
MTT assay. We show that rapamycin decreased viability of BGC-823,
SGC-7901 and normal GES-1 cells with IC50 values of 26.1, 33.7 and
27.9 μM, respectively (Fig. 1A). These results show that rapamycin
treatment non-selectively reduced viability of gastric cancer cells and
normal cells at high concentrations. When used at lower concentrations
(non-cytotoxic to normal GES1 cells), rapamycin showed no effect on
gastric cancer cells. We next examined whether rapamycin reduced
viability through inducing cell apoptosis. To do this, we stained cells
with Annexin V/propidium iodide (PI) following rapamycin treatment.
As shown in Fig. 1B and C, both of gastric cancer cell lines exhibited
apoptosis after 24 h rapamycin treatment. This effect was dose-
dependent with significant apoptosis evident at 20 µM rapamycin. To
confirm these results, we determined the levels of apoptosis-related
proteins in SGC-7901 and BGC-823cells. Our results show increased
levels of Bax and cleaved poly ADP ribose polymerase (PARP), as well
as decreased Bcl-2 in cells treated with rapamycin (Fig. 1D and
Supplementary Fig. S1B).

3.2. Curcumin analog EF24 increases the sensitivity of human gastric
cancer cells to rapamycin by enhancing apoptosis

Cancer treatment is limited by our inability to maintain dose-
intensification because of non-selective cytotoxicity. Therefore, current
research efforts are focused on finding combination of therapies to
yield enhanced cancer cell toxicity at low doses. Recent studies have
shown that a novel curcumin analog EF24 sensitizes cancer cells to
anti-cancer agents through multiple mechanisms [21,22]. One such
mechanism is production of ROS which has been shown in prostate
and breast cancer cells [23]. Therefore, we tested whether EF24
enhances the effect of rapamycin on human gastric cancer cells. At a
concentration of 0.5 μM, EF24 alone did not affect the viability of SGC-
7901 and BGC-823 cells (Supplementary Fig. S1A). We then treated
gastric cancer cells with increasing concentrations of rapamycin in
combination with 0.5 µM EF24 and examined cell viability. Our results
show that co-treatment with EF24 and rapamycin selectively enhances
the cytotoxicity of rapamycin in gastric cancer cells and not normal
cells (IC50=2.7 µM for SGC-7901, 8.3 μM for BGC-823, and 23.8 μM
for GES-1; Fig. 2A and B). This remarkable finding prompted us to
understand the mechanism underlying reduced viability following the
combined treatment. We used low concentrations of rapamycin (2.5
and 5.0 μM) which still inhibit the mTOR signaling pathway (Fig. 2F
and Supplementary Fig. S2B) but do not produce overt toxicity so as to
mask the underlying mechanisms. In addition, western blot analysis
showed that EF24 treatment alone had no effect on the mTOR
signaling pathway (Supplementary Fig. S2C). We determined the pro-
apoptotic effect of the combined treatment using Annexin V/PI
staining and show significant enhancement in apoptosis in cells treated
with EF24 and rapamycin (Fig. 2C and D). This was confirmed by

cleavage of PARP and expression levels of Bcl-2 and Bax (Fig. 2E and
Supplementary Fig. S2A). We next assessed cell cycle status as reduced
cell viability seen in gastric cancer cells may be caused induction of
apoptosis as well as cell cycle arrest. Indeed, we noted marked
accumulation of gastric cancer cells in G2/M phase with a concomitant
decrease in the number of cells in the S and G1 phase after treatment
with rapamycin and EF24 (Supplementary Fig. S3A and B). Consistent
with these results, protein levels of G2/M phase related factors murine
double minute 2 (MDM-2), cyclin B1 and cell division cycle protein 2
(Cdc2) were reduced in gastric cancer cells treated with EF24 and
rapamycin compared with rapamycin alone (Supplementary Fig. S3C).
Furthermore, colony formation assays confirmed that EF24 enhanced
the sensitivity of gastric cancer cells to rapamycin (Supplementary Fig.
S3D). Collectively, our results indicate that EF24 sensitizes gastric
cancer cells to rapamycin by enhancing apoptosis and reducing cell
growth.

3.3. EF24enhances rapamycin-induced reactive oxygen species (ROS)
production, apoptosis, and cell cycle arrest

As mentioned earlier, ROS production in cancer cells underlies
synergetic cytotoxicity seen with select anti-tumor treatments [12,24].
In addition, EF24 has been shown to increase ROS production in
prostate and breast cancer cells [23]. Therefore, we explored whether
ROS generation plays a role in the combined cytotoxic effects of
rapamycin and EF24. Rapamycin alone increased ROS production in
a time- and dose-dependent manner as assessed by the levels of
dichlorodihydrofluorescein (DCF) (Fig. 3A, B, and S4A). Co-treatment
of cells with rapamycin (2.5 and 5.0 μM) and 2 µM EF24 resulted in
significant increases in ROS levels compared to rapamycin or EF24
treatments alone (Fig. 3C, D, and S4B). This increased DCF signals
(ROS levels) were not seen when cells were pre-treated with ROS
scavengers N-acetyl cysteine (NAC) or catalase as expected (Fig. 3C-D,
and S4C-S4D). Since rapamycin is an inhibitor of mTOR complex 1, it
is difficult to determine whether inhibition of mTOR passway could
interfere with rapamycin-induced ROS production. We can, however,
assess the mTOR pathway to get an insight. Rapamycin inhibited
phosphorylation of mTOR and downstream protein 4EBP1 at 12 h
after treatment (Supplementary Fig. S4E). Peak ROS levels are evident
after only 1 h of rapamycin treatment (Fig. 3A) possibly indicating that
inhibition of mTOR pathway is not associated with rapamycin-induced
ROS accumulation. Furthermore, we found that inhibition of the
mTOR pathway by rapamycin is not reversed by NAC pretreatment
(Supplementary Fig. S4F). Scavenging ROS, however, did reverse
apoptosis induced by the combined treatment in both SGC-7901 and
BGC-823 cells (Fig. 4A and B). This was also evident through protein
analysis for cleaved-PARP, Bcl-2 and Bax (Fig. 4C). In addition,
blocking ROS prevented combined treatment-induced G2/M cell cycle
arrest and down-regulation of cell cycle-related proteins MDM-2,
cyclin B1 and Cdc2 in gastric cancer cells (Supplementary Fig. S5A–
S5C). These results revealed a vital role of ROS in the combined effect
of rapamycin and EF24. The results also suggest that the mechanism of
ROS production may be independent of the mTOR signaling proteins,
raising the question whether other targets contribute to rapamycin-
induced oxidative stress.

3.4. Combination of EF24 and rapamycin activates endoplasmic
reticulum stress and mitochondrial dysfunction

Increased ROS levels and perturbed intracellular redox status has
been reported to increase the levels of unfolded proteins and induce
endoplasmic reticulum (ER) stress response [25]. Therefore, we
examined the expression of ER stress-related proteins, including
CHOP (CCAAT/enhancer-binding protein homologous protein), ATF4
(activating transcription factor 4), eIF2α (eukaryotic initiating factor),
and PERK (protein kinase RNA-like endoplasmic reticulum kinase).
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Here, we show that treatment of cells with rapamycin or EF24 alone
slightly induced ER stress markers, whereas combined rapamycin and
EF24 treatment dramatically activated ER-stress pathway as evident by
induced levels of p-eIF2α, ATF4, p-PERK and CHOP (Fig. 5A and

Supplementary Fig. S6A). In this system, both NAC and catalase
pretreatment completely blocked the combined treatment-induced
effects (Fig. 5B and Supplementary Fig. S6B). We next examined ER
morphology in SGC-7901 cells exposed to the combined treatment
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through electron microscopy. Compared with control (DMSO-treated)
SGC-7901 cells, the ER in SGC-7901 cells after 6 h of treatment with
rapamycin and EF24 showed swelling (arrow, Fig. 5C). This morpho-
logical change was not observed with NAC pretreatment. These results
suggest that treatment-induced ROS mediates ER stress response in
gastric cancer cells.

In addition to ER stress, mitochondrial dysfunction is central to the
regulation of apoptosis. Loss of mitochondrial membrane potential
(Δψm) is catastrophic for cells and leads to the release of cytochrome
Cinto the cytosol [26]. We used fluorescence microscopy to confirm
whether combined treatment-induced apoptosis was associated with
disruption of mitochondrial homeostasis by using JC-1 dye. JC-1 is a
cationic carbocyanine dye which accumulates in healthy mitochondria
and leaks out when mitochondrial membrane integrity is compro-
mised. Our results showed that the combined treatment of rapamycin
and EF24 decreases the mitochondrial membranes potential in both
SGC-7901 and BGC-823 cells (Fig. 6A). This mitochondrial deficit is
also directly linked to ROS as pretreatment of cells with NAC prevented
the decrease in membrane potential. Moreover, electron microscopy
revealed that NAC attenuated the combined treatment-induced mito-
chondrial dysfunction including swelling and spheroid formation

(Fig. 6B).
We next wanted to determine the potential signaling mechanism

underlying the cellular and molecular changes we observed.
Mitochondria-dependent cell apoptosis has been shown to involve an
alteration of the Bcl-2 proteins by c-Jun N terminal kinase (JNK)
[14,27]. Our studies have shown that the combined treatment of
rapamycin and EF24 induces ROS-dependent suppression of Bcl-2
and induction of Bax. Therefore, it is possible that the combined
treatment induces cell apoptosis through JNK activation. Indeed,
treatment of cells with rapamycin and EF24 increased the phosphor-
ylation of JNK compared to single rapamycin or EF24 treatments,
while scavenging ROS completely inhibited JNK phosphorylation
induced by combined treatment (Fig. 6C and Supplementary Fig.
S7A). Collectively these results indicate that combined treatment
induced ROS-dependent JNK activation and mitochondrial dysfunc-
tion in gastric cancer cells.

3.5. EF24 amplifies the therapeutic effect of rapamycin in vivo

To confirm our promising combined treatment results, we evalu-
ated the synergistic effect of rapamycin and EF24 in vivo by performing
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human gastric cancer xenografts in immunodeficient nude mice. As
expected, treatment of mice bearing SGC-7901 tumors showed inhib-
ited growth upon treatment with rapamycin, EF24, or a combination of
the two (Fig. 7). Greatest inhibition of tumor growth was seen in mice
treated with combined rapamycin and EF24 as illustrated by tumor
weights (Fig. 7A) and tumor volumes (Fig. 7B–7C). No effect of any
treatments was noted for body weights (Fig. 7D). Histopathological
analyses of heart, kidney and liver tissues also revealed that combina-
tion of rapamycin with EF24 did not result in significant toxicity (Fig.
S8). Lastly, we determined whether in vivo gastric tumor growth
inhibition by rapamycin and EF24 also involves ROS generation and
cell apoptosis. Tumor tissue lysates were subjected to western blot
analysis to detect caspase-3 and PARP activation. Our results show
significantly increased levels of p-eIF2α, and cleaved caspase 3 and
PARP in mice treated with combined rapamycin and EF24 (Fig. 7E and
G). We also found that combined treatment increased the level of lipid
peroxidation product (MDA) in tumor tissues (Fig. 7F) indicating
increased ROS production. Although the assay of lipid peroxidation
product (MDA) is not specific for ROS level, it can be used as an
indicator of oxidative stress [28]. The absent examinations for specific

bio-markers of ROS level may be a limitation of this study.
Furthermore, immunehistochemical staining for cell proliferation
marker Ki-67 showed significantly reduced ki-67 positive cells in
tumors treated with combined rapamycin and EF24 (Fig. 7G). Taken
together, these results all indicated that EF24 can synergizes the
therapeutic effect of rapamycin in vivo by elevating ROS levels and
inducing cell apoptosis.

4. Discussion

Despite improvements in detection and management, gastric
cancer remains one of the leading causes of cancer death. As
dysregulation of proteins in the mTOR pathway has been reported in
many types of cancers, mTOR is an appealing therapeutic target.
mTOR inhibitors including rapamycin and its analogs deforolimus,
everolimus and temsirolimus are in clinical trials for treating multiple
cancers [29] and some are already approved for metastatic renal cell
carcinoma [30,31]. However, monotherapy with mTOR inhibitors
yields only modest therapeutic activity in advanced gastric cancer
[32]. Emergence of drug resistance further hampers the clinical utility
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of rapamycin and its analogs [33]. Results from our present study as
well as from others show that gastric cancer cells are resistant to low
doses of rapamycin, while high doses of rapamycin cause cytotoxic
effects in both cancer cells and normal cells. Therefore, combinatorial
cancer therapies may provide a more synergistic anticancer effect and
less systemic toxicity [34]. In the present study, we have studied the
effect of combining EF24, a new curcumin analog, with rapamycin in
human gastric cancer. Our findings demonstrate that EF24 sensitizes
gastric cancer cells to rapamycin-induced selective growth inhibition
and apoptosis induction. Furthermore, our study shows that EF24
mediates these effects through ROS-mediated ER-stress activation and
mitochondrial dysfunction in gastric cancer cells.

ROS play a crucial role in tumorigenesis. Cancer cells exhibit high
levels of ROS and higher antioxidant activities as compared to their
normal counterparts [35]. Elevated ROS levels also render cancer cells
more sensitive to agents that further increase ROS and oxidative stress
[17]. Recent studies have also indicated that synergistic ROS-depen-

dent cytotoxicity of combination therapies is cancer cell-specific [12].
Our previous studies show that EF24 inhibits thioredoxin reductase
activity and induces ROS-mediated apoptosis in gastric cancer cells
[13]. Therefore, we hypothesized that EF24 may represent an inter-
esting target for combinatorial therapy. We found that rapamycin also
induces the accumulation of intracellular ROS in a dose and time-
dependent manner. Moreover, EF24 acted as a ROS inducer to enhance
the anti-tumor activity of rapamycin in gastric cancer cells. To
characterize the importance of ROS in our combined rapamycin and
EF24 treatment, we used two ROS scavengers. Our findings demon-
strate that NAC and catalase completely attenuate the synergistic anti-
tumor effects of rapamycin and EF24 in gastric cancer cells. In
addition, we found that ROS generation was independent of the
mTOR signaling pathway as ROS scavengers failed to normalize
mTOR suppression by rapamycin. Furthermore, time of ROS genera-
tion by rapamycin did not coincide with inhibition of the mTOR
pathway. Further studies are necessary to identify the mechanism of
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ROS generation as well as to identify the direct redox-related targets of
rapamycin.

In response to oxidative stress, accumulation of unfolded or
misfolded proteins triggers a cellular adaptive procedure known as
ER stress [36]. Normally, ER stress is designed to be protective as it
shuts down protein synthesis and increases the production of mole-
cular chaperones [37]. However, sustained ER stress leads to apoptosis
mediated by CHOP [38]. Our findings showed that combined treatment
with rapamycin and EF24 induced ER stress proteins p-PERK, p-eIF2α
and ATF4. We also noted induction of ER stress-specific apoptotic
cascade protein CHOP in gastric cancer cells. Importantly, scavenging
of ROS by NAC and catalase abolished the ER-stress activation
pathway by the combined treatments of rapamycin and EF24. This
suggests that the anticancer effect of rapamycin and EF24 therapy is, at
least, partially mediated by a ROS-dependent ER stress apoptotic
pathway.

Excessive ROS production can lead to mitochondrial dysfunction,
decrease the mitochondrial membrane potential, and release of cyto-
chrome C [39]. Activated caspases subsequently induce proteolytic
cleavage of PARP and finally result in cell apoptosis. Our study
demonstrated that the combined use of rapamycin and EF24 results
in a significant decrease of the mitochondrial membrane potential
(Δψm) in SGC-7901 cells. Moreover, we showed that preventing ROS
accumulation by NAC and catalase reverses rapamycin/EF24 treat-
ment-induced mitochondrial dysfunction, indicating that ROS produc-
tion may be the upstream regulator in mitochondrial deficits.
Collectively, our results highlight that combined treatment-induced
oxidative stress is linked to ER stress and mitochondrial dysfunction,
which can amplify the synergistic anticancer effects of rapamycin and
EF24 in gastric cancer cells.

In summary, we have reported that EF24 synergistically enhances
the anticancer effects of rapamycin, highlighting a novel therapeutic
avenue for gastric cancer. We found that EF24 enhances the anticancer
activity of rapamycin in gastric cancer cells mainly via ROS-dependent
ER stress and mitochondrial dysfunction and apoptosis induction.
Furthermore, we verified the synergistic effect of rapamycin/EF24
combination on suppression of tumor growth in vivo using a xenograft
tumor model. Taken together, we present evidence that combining
rapamycin with EF24 can serve as a potential combination therapy for
the treatment of human gastric cancer.
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