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Abstract

Learning of complex auditory sequences such as music can be thought of as optimiz-

ing an internal model of regularities through unpredicted events (or “prediction

errors”). We used dynamic causal modeling (DCM) and parametric empirical Bayes on

functional magnetic resonance imaging (fMRI) data to identify modulation of effec-

tive brain connectivity that takes place during perceptual learning of complex tone

patterns. Our approach differs from previous studies in two aspects. First, we used a

complex oddball paradigm based on tone patterns as opposed to simple deviant

tones. Second, the use of fMRI allowed us to identify cortical regions with high spa-

tial accuracy. These regions served as empirical regions-of-interest for the analysis of

effective connectivity. Deviant patterns induced an increased blood oxygenation

level-dependent response, compared to standards, in early auditory (Heschl's gyrus

[HG]) and association auditory areas (planum temporale [PT]) bilaterally. Within this

network, we found a left-lateralized increase in feedforward connectivity from HG to

PT during deviant responses and an increase in excitation within left HG. In contrast

to previous findings, we did not find frontal activity, nor did we find modulations of

backward connections in response to oddball sounds. Our results suggest that com-

plex auditory prediction errors are encoded by changes in feedforward and intrinsic

connections, confined to superior temporal gyrus.
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1 | INTRODUCTION

Predictive coding (PC) is a unifying theory of brain function that for-

mally links human learning and neuroplasticity (Friston, 2002). The

key notion in PC is that the brain embodies an internal model of the

environment, which constantly generates predictions of future sen-

sory inputs and is updated by the discrepancy of predicted and actual

input. When predictions fail, the brain generates “prediction error sig-

nals” that pass from lower to higher levels of the brain's hierarchy

revising the model's predictions (Dietz, Friston, Mattingley,Massimo Lumaca and Martin J. Dietz share co-first authorship.

Received: 29 May 2020 Revised: 6 October 2020 Accepted: 15 October 2020

DOI: 10.1002/hbm.25269

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2021;42:941–952. wileyonlinelibrary.com/journal/hbm 941

https://orcid.org/0000-0002-3432-3911
https://orcid.org/0000-0003-0029-6932
mailto:massimo.lumaca@clin.au.dk
mailto:martin@cfin.au.dk
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm


Roepstorff, & Garrido, 2014). Learning can thus be thought of as a

process of recurrent model updating through prediction error signal-

ing. Here, we focus on tone-pattern learning, that is, the optimization

of an internal model of regularities during the listening of short tone-

patterns.

Sound-patterns are the building blocks of musical and language

structure. In music, tone-pattern learning reflects the update of inter-

nalized probabilities acquired through statistical learning and relates

to melodic continuations (Hansen & Pearce, 2014) at two pitch-

processing levels: (a) “contour”—the rise and fall of pitch changes—and

(b) pitch “interval”—the distance between adjacent tones (Quiroga-

Martinez et al., 2020; Schmuckler, 2016). The maintenance and

updating of melodic predictive models have been studied using audi-

tory oddball paradigms, whereby magnetoencephalographic and/or

electrophysiological (M/EEG) brain activity is recorded while

participants listen to streams of repeated short melodies typically

based on tones from the 12-tone-equal-tempered scale, omnipresent

in Western tonal music (e.g., Hsu, le Bars, Hämäläinen, &

Waszak, 2015; Lappe, Lappe, & Pantev, 2016; Tervaniemi, Maury, &

Näätänen, 1994). The mismatch negativity (MMN) elicited by occa-

sional pitch contour or interval deviations in these patterns is

evidence that a melodic predictive model has been formed during the

auditory stimulation and thought to represent the message passing of

precision-weighted prediction errors in the cortical auditory hierarchy

(Auksztulewicz & Friston, 2015; Dietz et al., 2014; Vuust, Dietz,

Witek, & Kringelbach, 2018; Vuust, Gebauer, & Witek, 2014; Vuust,

Ostergaard, Pallesen, Bailey, & Roepstorff, 2009).

In the past two decades, studies have used dynamic causal

modeling (DCM) of M/EEG data collected from simple oddball tasks

to provide a mechanistic account for the emergence of the auditory

MMN (e.g., Dietz et al., 2014; Garrido, Kilner, Kiebel, &

Friston, 2009; Garrido, Kilner, Kiebel, Stephan, & Friston, 2007;

Kiebel, Garrido, & Friston, 2007). These studies showed that occa-

sional deviations in a stream of repeated tones evoke MMN

responses that are best explained by changes in effective connec-

tivity of a wide temporo-frontal network. This network is typically

defined a priori from previous fMRI oddball studies (e.g., Doeller

et al., 2003; Liebenthal et al., 2003; Opitz, Rinne, Mecklinger, von

Cramon, & Schröger, 2002) and includes HG, STG, and right inferior

frontal gyrus (IFG). A comparison of DCMs with different network

architectures shows that models including intrinsic connections in

HG, and both backward and feedforward connections between

STG and frontal regions, provide the best explanation of brain

responses to deviant events. While simple oddball paradigms have

proven useful for assessing expectations of individual pitches, they

are not adequate in the context of the complex stimulation that

occurs in natural sound environments, such as speech and musical

patterns (McDermott, Schemitsch, & Simoncelli, 2013). Also, an

accurate DCM relies on properly assigned cortical sources

(Friston, 2003). In previous studies, the use of an a priori network,

in combination with the relatively poor spatial resolution of

M/EEG, adds uncertainty to the construct validity of the network

models.

So far, a millimetric localization of the cortical generators that

underpin melodic MMNs has been addressed in one functional mag-

netic resonance imaging (fMRI) study (Habermeyer et al., 2009).

Habermeyer et al. (2009) used fMRI in combination with an event-

related melodic oddball paradigm (Tervaniemi, Rytkönen, Schröger,

Ilmoniemi, & Näätänen, 2001) to test the effect of musical expertise

on melodic pattern deviations. Based on previous observations

(e.g., Opitz et al., 2002), they hypothesized that temporal and frontal

cortices would be recruited during preattentive encoding of complex

violations, with stronger effects in professional musicians compared

to naive listeners. They found regions of the middle and superior tem-

poral gyrus, in combination with frontal cortices, as the main cortical

generators of melodic MMN. Their study was the first to show an

involvement of temporo-frontal regions in the processing of melodic

contour changes. However, frontal activations were only reported in

the group comparison (musicians vs. nonmusicians) by contrasting

deviant responses with the silent baseline. The more traditional con-

trast between deviant and standard conditions yielded no significant

activations within groups. This limits the interpretability of their find-

ings in two regards: (a) the localization of the brain regions that selec-

tively respond more strongly to melodic oddballs than to standard

melodic stimuli and (b) the contribution of frontal cortices in deviance

detection for musically naive individuals (Deouell, 2007).

To investigate the mechanisms of effective connectivity between

these cortical regions during pattern learning, we used DCM of fMRI

data acquired in human volunteers (nonmusicians; N = 52) presented

with an unfamiliar musical tuning system, the Bohlen–Pierce

(BP) scale (Mathews, Pierce, Reeves, & Roberts, 1988) (Figure 1a). This

artificial scale has the advantage of preserving intervallic properties

from the 12-tone equal-tempered scale without being contaminated

by prior knowledge about pitch categories and intervals. This ensures

a more controlled setting to test hypotheses about the generation and

revision of an internal predictive model. First, we identified an MMN

auditory network using a melodic oddball paradigm (Lumaca &

Baggio, 2016). Participants listened to streams of five-tone BP

melodic patterns (Figure 1b). Occasionally, the fourth tone was pitch-

shifted to violate the contour (“contour” deviant; 10%) or the melodic

interval structure (“interval” deviant; 10%) of the “standard” sequence.

Brain imaging studies on preattentive pitch deviance detection have

consistently found activity in the bilateral STG, with only few of them

observing activations in frontal areas (Molholm, Martinez, Ritter,

Javitt, & Foxe, 2005; Opitz et al., 2002; see Deouell, 2007 for a more

comprehensive review). Thus, we expected to find activations in a

bilateral temporal network including HG and PT. Based on the role of

frontal cortices in melodic processing (Habermeyer et al., 2009;

Zatorre, Evans, & Meyer, 1994), we further hypothesized to find acti-

vation in prefrontal areas. We then used a DCM to analyze changes in

the effective connectivity within and between the cortical regions

identified during deviant stimuli, relative to standard stimuli. Specifi-

cally, we used Bayesian model reduction and parametric empirical

Bayes (PEB) (Friston et al., 2015) to compare, at the group level, dif-

ferent hypotheses about effective connectivity during auditory pat-

tern learning that encode differences between deviant and standard
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conditions in those cortical areas, including changes in both

feedforward and feedback connections, as well as their intrinsic

(inhibitory) connections.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 52 participants (33 females, mean age 24.5 years, range

20–34, right-handed) with normal hearing took part in the fMRI

experiment. Participants were all nonmusicians (i.e., none of them had

three or more years of formal musical training) and all gave informed

consent before the experiment. The neuroimaging data used in this

work were acquired as part of another project approved by the local

ethics committee of the Central Denmark Region (nr. 1083).

2.2 | MRI procedure

2.2.1 | BP scale

The auditory stimulation used in our fMRI oddball paradigm was

adopted from an EEG paradigm by Lumaca and Baggio (2016). Tone

0 1 2 3 4 5 6 7 8 9 10 11 12
400

500

600

700

800

900

1000

1100

1200

1300

F = 440 * 3 n/13  

F = 440 * 2 n/12  

Increments (n)

F
re

q
u

en
cy

 (
H

z)

Bohlen Pierce

Equal-tempered 12 tone

(a)

(b)

F IGURE 1 Musical scale and auditory patterns used in the current study. (a) Illustration of pitch frequencies along the Western equal-
tempered 12-tone scale (in gray) and the BP scale (in black). Red arrows point to the BP frequencies used to build melodic material (k = 440 Hz;
n = 0, 2, 3, 4, or 6). (b) Schematic illustration of the melodic patterns presented to participants during the auditory oddball paradigm (adapted from
Lumaca, Kleber, Brattico, Vuust, and Baggio (2019)). Participants were scanned while listening to these melodic patterns. Each pattern was
450-ms long, and consisted of five 50-ms sinusoidal tones separated by 50-ms silent intervals. Melodic patterns were presented with 750-ms of
interstimulus interval (ISI) randomly at three frequency levels (lowest frequency: 440, 478, 567 Hz) belonging to the BP musical scale. Standard
patterns (80%) followed the abstract rule EBCAD. In deviant patterns, the fourth tone was changed in frequency compared to its standard
position, either producing a change in the melodic interval (I-deviants; 10%) or in the pitch contour (C-deviant; 10%). Pairs of deviant stimuli
occurred in close temporal succession (jittering stimulus-onset asynchrony [SOA] range, 2,400–4,800 ms) and were randomly interleaved with
standard stimuli
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sequences were constructed using tones from the equal-tempered

version of the BP scale (Loui, Wu, Wessel, & Knight, 2009; Mathews

et al., 1988), a microtonal tuning system with 13 logarithmic even divi-

sions of a tritave (corresponding to a 3:1 frequency ratio). In the

equal-tempered version of the scale, frequencies (F) are defined by

the following:

F = k x3 n=13ð Þ

where n is the number of steps along the scale, and k is a constant

that corresponds to the fundamental frequency. Based on this equa-

tion, we defined n = 0, 2, 3, 4, or 6 and k = 440 Hz (Figure 1a).

2.2.2 | Stimuli

The pattern deviance paradigm and stimuli were adapted from an EEG

paradigm by Lumaca and Baggio (2016), and have been shown to pro-

duce an MMN evoked potential (Näätänen, Gaillard, &

Mäntysalo, 1978). Stimuli were five-tone melodic patterns presented

in a single block, consisting of collections of five 50 ms sinusoidal

tones (5 ms rise and fall; 50 ms intertone intervals) with the frequen-

cies 440, 521, 567, 617, and 730.6 Hz (henceforth referred to as

ABCDE in the context of the low register) (Figure 1b). During stimula-

tion, sequences were randomly transposed to three different baseline

frequencies (henceforth referred as “A”), corresponding to three dif-

ferent registers of the BP scale (baseline tones: 440, 478, 567 Hz).

This design feature is critical to avoid that differences between

activity evoked by standard and deviant tones were driven by acoustic

differences between the standards and deviants, rather than by

model-based expectations (Lumaca & Baggio, 2016). The patterns

were presented with an “inter-stimulus interval” of 750 ms. Standard

patterns (80%) were randomly interspersed with “contour” (10%) and

“interval” (10%) deviant sequences for a total of 1,260 stimuli. In

abstract terms, the standard pattern always followed the sequence

EBCAD across the three different registers. In contour deviant stimuli,

the fourth tone changed the surface structure (“ups” and “downs”) of

the standard stimuli without changing the interval (i.e., EBCED); vice

versa for the interval deviants (i.e., EBCBD). Deviant stimuli were

pseudorandomized in order to present deviant tones of the same type

in close temporal succession (jittering stimulus-onset asynchrony

[SOA] range 2,400–4,800 ms) and to induce an increase of the blood

oxygenation level-dependent (BOLD) response by superposition. The

use of multiple deviants in close succession can be found in other

fMRI oddball studies (Cacciaglia et al., 2015).

2.2.3 | Image acquisition

The fMRI data were acquired on a 3 T MRI scanner (Siemens Prisma).

The subjects' head was fixated with cushions to minimize movement

during the experiment. The participants wore earplugs, MR-

compatible headphones, and ear bandages to attenuate the scanner

noise. A sham scan with auditory stimulation was also used to assess

their levels of hearing. All participants reported a perfect hearing of

auditory stimulation and a drastic attenuation of scanner noise.

Finally, participants were instructed to be still and to watch a subtitled

silent movie projected on a MRI-compatible screen located at the rear

of the scanner. During MRI acquisition, auditory stimulation was deliv-

ered by MR-compatible headphones using Presentation software

(www.neurobs.com). A total of 1,535 volumes were acquired over

25 min using a fast T2*-weighted echo-planar imaging (EPI) multiband

sequence (TR, 1,000 ms; TE, 29.6 ms; voxel size, 2.5 mm3). A T1-high

resolution image was also acquired using an MP2RAGE sequence (TR,

5,000 ms; TE = 2.87 ms; voxel size, 0.9 mm3).

2.2.4 | Preprocessing and analyses

Image time-series were preprocessed and analyzed using SPM12

(r7487), implemented in MATLAB R2016b (MathWorks). EPI images

were first spatially realigned to the first EPI volume. Then, individual

high-resolution T1-images were coregistered to the mean EPI image

and segmented using the standard tissue probability maps of SPM12.

The resulting deformation fields were used to normalize functional

EPI images to a standard Montreal Neurological Institute (MNI) refer-

ence brain. Normalized functional images were then resliced to

2 × 2 × 2 mm3 and smoothed with an isotropic 6 mm Gaussian ker-

nel. Low frequency noise was removed through the use of a high-

pass filter (cutoff 1/128 Hz), and time-series were corrected for

serial autocorrelations using a first-order autoregressive (AR(1))

model.

First-level analysis consisted of a general linear model (GLM) with

standard (STD; implicitly modeled), deviant contour (C-deviant), and

deviant interval (I-deviant) regressors convolved with a canonical

HRF, plus realignment parameters to account for head motion. To

assure a balanced contrast in the second-level GLM, we used the

same number of events (i.e., onsets of the fourth tone in a pattern) for

the STD, C-deviant, and I-deviant conditions (n = 126). For the STD

condition, we first produced a list of the standard events that were

preceded and followed by at least 25 other standard events. Then,

126 events were bootstrapped from this list, with the further selec-

tion constraint that at least two consecutive of them were not further

apart than 4,800 ms (SOA, range 1,200–4,800 ms). These standard

events were implicitly modeled in the GLM design matrix. The

remaining standard events (n = 882) (STD882), together with

C-deviant (n = 126) and I-deviant events (n = 126) were explicitly

modeled in the GLM design matrix. Finally, we used the contrast

[0 1 0] (STD882 C-deviant I-deviant) in SPM. This GLM approach is

equivalent to modeling the standard events (the ones far away from

deviant events) explicitly as a regressor, and contrasting them to the

contour deviant events. At the second level, we used a whole-brain

random-effects analysis using t-test for the main contrasts

C-deviant > STD and I-deviant > STD at p < .001 familywise error

(FWE) corrected at voxel level.
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2.2.5 | Volume-of-interest extraction

We summarized the BOLD signal in each participant using the first

eigenvariate (principal component) of voxels within a sphere of 8 mm

radius centered on each participant's local maximum within Heschl's

gyrus (HG) and planum temporale (PT) in their left and right hemi-

spheres. This subject-specific local maximum was identified within a

sphere of 20 mm radius centered on the group-level peak within HG

and PT at p < .001, FWE corrected at peak level using random field

theory.

2.3 | Dynamic causal modeling

DCM uses a biologically inspired generative model of neuronal

dynamics to estimate the directed coupling between brain regions and

how this coupling changes with stimulus or behavioral context. This

context-dependent coupling is referred to as effective connectivity

(Friston, Harrison, & Penny, 2003). DCM models the hierarchical orga-

nization of the brain using forward and backward connections

between regions, as well as intrinsic connections within a region. We

used a two-state DCM for fMRI (DCM12, revision 7487) to estimate

the effective connectivity between HG and PT within the left and

right hemispheres, as well as the intrinsic connectivity within each

region, given observed hemodynamic measurements (Friston

et al., 2003). In two-state DCM, each region comprises one excitatory

and one inhibitory population of neurons. This allows us to model the

intrinsic connectivity within each cortical area as an increase or

decrease in cortical inhibition (Marreiros, Kiebel, & Friston, 2008) (see

Figure 5a for a schematic).

Although fMRI is an indirect measure of neuronal activity based

on the observed BOLD signal, the biophysical model employed in

DCM is equipped with a detailed hemodynamic forward model that

describes how neuronal activity translates into changes in regional

blood flow (Friston, Mechelli, Turner, & Price, 2000), blood volume

and deoxyhemoglobin concentration (Buxton, Wong, & Frank, 1998)

that combine nonlinearly to produce the BOLD signal (Stephan,

Weiskopf, Drysdale, Robinson, & Friston, 2007). This means that the

neuronal model comprised of excitatory and inhibitory populations

can be used to make inferences about both long-range excitatory con-

nectivity between brain regions as well as local connectivity within a

region that reflects changes in excitatory and inhibitory activity

(Logothetis, 2008).

Hemodynamic responses to all auditory stimuli (standard stimuli

and contour deviants) were mean-centered and modeled as a driving

input to HG in both hemispheres (C-matrix). Using parametric modula-

tion of the regressor encoding all stimuli, responses to contour devi-

ants compared to standard stimuli were modeled as a change

(increase or decrease) of the intrinsic and extrinsic connection

strengths (B-matrix) in relation to the average connectivity estimated

from the mean-centered responses to all auditory stimuli (A-matrix).

We analyzed the intrinsic and extrinsic connectivity between HG and

STG in each hemisphere under four different hypotheses about how

connection strengths change during auditory contour deviancy: The

first DCM comprised a full network, where changes in both

feedforward and feedback connections between HG and PT, as well

as their intrinsic (inhibitory) connections, encode the differences

between deviant and standard conditions. Within PC, this hypothesis

states that both forward prediction errors and backward predictions

mediate the statistical learning of melodic regularities and that the

intrinsic connectivity may encode the precision with which prediction

error is broadcasted during belief updating. The second DCM was for-

mulated as a reduced model where only feedforward and feedback

connections between HG and PT encode the differences between

deviant and standard conditions. According to this hypothesis, both

prediction errors and predictions mediate the statistical learning of

melodic regularities, in the absence of notable changes in the intrinsic

connectivity encoding the precision. The third hypothesis was formu-

lated as another reduced model where only the forward connections

from HG to PT encodes the differences between deviant and standard

conditions. The hypothesis is here that only forward prediction errors

mediate the statistical learning of melodic regularities, in the absence

of notable changes in feedback and intrinsic connections. The fourth

hypothesis was a null model, where no cortical connections are

thought to change during statistical learning of melodic regularities

(see Figure 3a for a schematic of different hypotheses). We then

inverted the full model using variational Laplace (Friston, Mattout,

Trujillo-Barreto, Ashburner, & Penny, 2007). This provides the poste-

rior probability of connection strengths and the free-energy approxi-

mation to the Bayesian model evidence. The reduced models and the

null model were then estimated using Bayesian model reduction

(Friston et al., 2016).

2.3.1 | PEB analysis of group effects

We then used PEB (Friston et al., 2016; Zeidman et al., 2019) to iden-

tify increases or decreases in extrinsic (excitatory) connections

between HG and PT and intrinsic (inhibitory) connections within each

region at the group level. PEB is a hierarchical Bayesian model in

which empirical priors on the connection strengths at the first (single-

subject) level are estimated empirically from the data themselves

using a Bayesian GLM at the group level. In this way, PEB provides

both the posterior probability of connection strengths and the Bayes-

ian model evidence for Bayesian inference and model comparison at

the group level. The model evidence of the PEB model is given by the

sum of DCM accuracies for all participants, minus the complexity of

both the first-level DCMs and the second-level Bayesian GLM. During

PEB estimation, we used the updated DCM parameters where the

connection strengths had been reevaluated using the group means as

priors to obtain the most robust estimates (Zeidman et al., 2019). An

advantage of PEB, as opposed to classical random-effects (RFX) analy-

sis, is that PEB takes not only the mean, but also the uncertainty of

individual connection strengths into account. This means that

LUMACA ET AL. 945



participants with more uncertain parameter estimates will be down-

weighted, while participants with more precise estimates receive

greater influence (Zeidman et al., 2019).

3 | RESULTS

3.1 | Auditory-cortex functional localizer

Contour deviant stimuli produced significantly greater activation than

standard stimuli in bilateral STG (Table 1). Specifically, the contrast

C-deviant > STD revealed four clusters of activation (pFWE < .001):

two localized in the left and right HG (cytoarchitectonic areas Te

1 and Te 1.2) and two more posterior localized in the PT

(cytoarchitectonic area Te 3) (Morosan, Schleicher, Amunts, &

Zilles, 2005) (Figure 2). Conversely, the contrast between interval

deviant stimuli and standard stimuli (I-deviant > STD) did not produce

any significant activation (pFWE > .05).

3.2 | DCM of effective connectivity in the auditory
system

The coordinates of the four peak activations observed for the contrast

C-deviant > STD were used to define volumes of interest in the DCM

analysis (Figure 3b). Bayesian model comparison (Figure 3a) showed

high evidence for a full DCM, where the intrinsic (inhibitory) coupling

within regions and the extrinsic (excitatory) coupling between regions

were modulated during deviant stimuli, relative to frequent standard

stimuli (model posterior probability >.99). Within this bilateral net-

work, we observed a left-hemispheric increase in (excitatory)

feedforward connectivity from HG to PT (posterior probability >.99)

and a concomitant decrease in the intrinsic (inhibitory) connectivity

within left HG (posterior probability >.99) during deviant melodic

stimuli (Figure 4). See Figure 5 for a schematic of the two-state DCM

used in this study.

4 | DISCUSSION

Using DCM on fMRI oddball data, we found BOLD responses for

deviant sounds in complex tone patterns to be best explained by a

fully connected bilateral auditory network. Within this network, hier-

archical Bayesian inference revealed a decrease in inhibitory connec-

tivity within left HG and an increase in feedforward connectivity from

left HG to PT. Unlike previous studies, we did not find frontal activity,

nor did we find modulations of backward connections in response to

oddball sounds.

Our findings can be interpreted in the light of PC, which is a

framework for understanding the computational mechanisms of per-

ception and learning in the brain. The key notion in PC is that the

brain creates a hierarchical generative model of its environment. Here,

higher levels provide predictions or expectations about the hidden

causes of sensory inputs. These causes are hidden in the sense that

they are not directly observed, but can only be inferred from sensory

data, given a generative model of how they were caused. When a sen-

sory input does not conform to prior expectations, the ensuing predic-

tion errors generated at lower levels serve to update beliefs at higher

levels to optimize predictions (Friston & Kiebel, 2009).

Crucially, the relative influence of prior expectations and predic-

tion errors on perceptual inference is controlled by their relative preci-

sion or confidence (i.e., inverse variance). This means the brain has a

first-order system for expectations and prediction errors that encodes

hidden causes in terms of their first-order statistics, and a second-

order system that encodes the precision of first-order expectations

and prediction errors in terms of their expected precision and ensuing

prediction errors on the precision. Biologically, the hierarchical archi-

tecture of predictive processing is likely implemented in the brain via

feedback and feedforward connections that mediate prediction and

prediction errors (Bastos et al., 2012) (Figure 5).

Our DCM results can be mapped onto the above-mentioned PC

scheme (Koelsch, Vuust, & Friston, 2019). Bayesian model selection

shows that melodic deviance processing occurs throughout a hierarchy of

bilateral superior temporal regions, with a left-hemispheric lateralization

TABLE 1 MNI coordinates of brain regions activated in the C-deviant > STD contrast (height threshold: T = 6.76, pFWE < .001; extent
threshold: k = 0 voxels)

T statistic MNI coordinate Anatomical region Probabilistic atlasa

8.83 [54 2 -4] Right superior

Temporal gyrus

Area TE (1.2) 28%

OP4 (PV) 17%

8.54 [66 -16 4] Right superior

Temporal gyrus

Area TE (3) 57%

7.93 [-52 -14 4] Left superior

Temporal gyrus

Area TE (1) 46%

Area TE (1.2) 13%

7.88 [-66 -22 6] Left superior

Temporal gyrus

Area TE (3) 73%

Note: C-deviant = contour deviant; STD = standard; r = right hemisphere; l = left hemisphere.

Abbreviation: MNI, Montreal Neurological Institute.
aAnatomical classification using the SPM anatomy toolbox (Eickhoff et al., 2005).
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in the modulation of connection strengths during melodic deviance

processing. Specifically, we provide strong evidence that mismatch

responses were generated by a decrease in intrinsic (inhibitory) connec-

tivity within left HG and an increase in feedforward (excitatory)

connectivity from left HG to PT. From a PC perspective, an increase in

feedforward connectivity corresponds to the passing of prediction error

from lower to higher areas of the hierarchical processing network, so that

it can effectively update the internal generative model (Lieder, Daunizeau,

Garrido, Friston, & Stephan, 2013; Wacongne, Changeux, &

Dehaene, 2012). Similarly, the decrease in intrinsic (inhibitory) connectiv-

ity in HG can be interpreted as a precision-related increase in the gain of

the superficial pyramidal cells encoding prediction error (Feldman &

Friston, 2010; Kiebel et al., 2007) (Figure 5).

In two-state DCM, this gain modulation arises from the excita-

tion/inhibition balance of excitatory pyramidal cells and inhibitory

interneurons. This interpretation entails that, besides generating pre-

diction error signals, melodic deviants are afforded a higher precision

than standards, which is consistent with the role of salient stimuli in

the orientation of attention (Hannon & Trainor, 2007; Parr &

Friston, 2017; Polich & Criado, 2006). Thus, unexpected sounds

would point to the sources in the auditory scene that are most infor-

mative and relevant and need to be prioritized for processing through

gain mechanisms. This interpretation is also in agreement with studies

showing an attentional enhancement of auditory prediction error

responses (Garrido, Rowe, Halász, & Mattingley, 2018), which has

been associated with an intrinsic gain modulation in superficial pyra-

midal cells, mediated by a decrease in the input of inhibitory interneu-

rons (Auksztulewicz & Friston, 2015).

F IGURE 3 Different hypotheses about effective connectivity. (a) The dynamic causal models comprise a bilateral “input,” four “sources,” and
ipsilateral “connections” among (extrinsic connections) and within (intrinsic connections) these sources. HG, Heschl's gyrus; PT, planum temporale.
The four models tested had the same anatomical architecture but differed in terms of the embedding connections: intrinsic and extrinsic (forward
and backward) in the full model (FM), only forward and backward in the reduced model 1 (RM1), only forward in the reduced model 2 (RM2), and
no connections in the null model (NM). (b) Sources (red squares) were defined by using peak activations of the auditory oddball localizer, and are
here projected onto an anatomical Montreal Neurological Institute (MNI) standard template

F IGURE 2 Cortical areas responding to contour deviants in
melodic patterns (C-deviant > STD). Shown in the figure are the
cortical loci where event-related activity was greater for contour
deviant events (C-deviants) compared to the standard events
occurring in the same position of the pattern (i.e., the fourth tone)
(p < .001, familywise error [FWE] corrected). Activated areas are
shown projected onto a Montreal Neurological Institute (MNI)
standard template, and include bilateral Heschl's gyrus (HG) and
planum temporale (PT). Color map intensities indicate t-values
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Earlier DCM work on the auditory MMN using M/EEG data

(e.g., Dietz et al., 2014; Garrido et al., 2007, 2009; Kiebel et al., 2007)

found that temporal (A1 and STG) and frontal sources (IFG) in the

DCM models, with forward, backward and intrinsic modulations, were

the best to explain MMN evoked responses to frequency deviants.

Unlike previous studies, we did not find a modulation of backward

connections, which may be due to a number of reasons. First, we

have taken advantage of the recently developed PEB approach

(Friston et al., 2016; Zeidman et al., 2019), which allows more precise

inferences at the single parameter level, informed by empirical priors

taken from group-level estimates, as compared to classical random-

fixed effect modeling. The lack of a modulation of feedback connec-

tivity is consistent with the hypothesis proposed by Koelsch

et al. (2019) according to which predictions in auditory oddball para-

digms are so precise that prediction errors keep being elicited at lower

hierarchical levels, without generating a major update of the predic-

tive model at higher levels, something typically associated with feed-

back loops. Second, the stimulation used in past studies is inherently

different from ours. In past DCM studies, participants were presented

with “classical” oddball stimulation, whereby trains of standard tones

were randomly interleaved with frequency deviants. The more com-

plex stimulation of the present study might have affected the connec-

tivity of the auditory temporal network differently. To our knowledge,

our study is the first to look at the neural dynamics underlying the vio-

lation of complex regularities during listening to melodic patterns.

Another reason for the discrepancies might be that the neural

“architecture” employed in past DCM models included approximate
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F IGURE 4 (a) Bayesian model selection of different hypotheses
revealed that the full model with extrinsic and intrinsic connections
outperforms the other models, both at the first- and the second levels
of model inference. (b) Posterior probabilities of the excitatory
feedforward connection strength from left Heschl's gyrus (HG) to
planum temporale (PT) and the intrinsic inhibitory connection strength
within left HG. This shows the posterior distribution of the increase in
feedforward connection strength (red probability density) and the
posterior distribution of the decrease in self-inhibition (blue density)
as they moved away from their prior distribution (black density) after
model inversion

F IGURE 5 (a) Representation of the two-state dynamic causal
modeling (DCM) with one excitatory (E) and one inhibitory
(I) population of neurons. In this cortical network, Heschl's gyrus
(HG) receives input from the medial geniculate nucleus (MGN) of the
thalamus and is connected to the planum temporale (PT) through
(excitatory) forward and backward connections. (b) Message passing
scheme proposed by predictive coding. Prediction units (in black)
encode expectations (μ) about hidden causes (v) and hidden states (x).
The gain of prediction error (ξ) units (in blue) is modulated by their
expected precision (Π). Superindices indicate the level of processing
in the hierarchy. Time-dependent sensory input (s(t)) is indicated
in gray
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locations of the MMN generators, which may have reduced their con-

struct validity (Friston, 2003). At present, there has been a lack of ana-

tomical accuracy in the characterization of cortical networks recruited

during deviance detection. In most DCM studies, cortical sources are

defined a priori, based on previous fMRI studies using different exper-

imental setups and stimuli (e.g., see Garrido et al., 2007, 2009; Kiebel

et al., 2007). This may have led to the inclusion of sources, such as the

right IFG, that fit the measured MMN waveform but that were not

actual generators for the sample at hand. In some M/EEG studies, this

issue was addressed with source reconstruction (Auksztulewicz &

Friston, 2015; Fardo et al., 2017). However, the lower spatial resolu-

tion and inherent spatial inverse problem of M/EEG techniques, rela-

tive to fMRI, make it harder to resolve MMN cortical generators from

neighboring neural populations, thus producing coarser maps at which

these computational units operate. To our knowledge, this study is

the first to use DCM on auditory networks functionally defined within

the same fMRI sample in an event-related design.

The fMRI oddball localizer in the present study indicates that

melodic contour mismatch responses are encoded in two core regions

of the bilateral superior temporal plane: HG and PT. No significant

modulation of brain activity was observed for interval changes. Con-

tour processing is more fundamental and basic than melodic interval

processing. It is critical in the perception of music as well as speech

(Patel, Peretz, Tramo, & Labreque, 1998), develops earlier in the

ontogeny of individuals (Lamont, 2016), and changes in its content are

more easily detected than interval changes (Edworthy, 1985). Con-

versely, encoding of interval information requires more intensive

training and long retention intervals (Dowling & Bartlett, 1981). In the

current experiment, the use of the BP scale ensures that there is no

contamination of prior knowledge from earlier music life exposure

(Ross & Hansen, 2016). The fact that a tonal hierarchy is not readily

available to the participants may have hindered the detection of inter-

val changes. It is thus not surprising that the modulation of responses

to interval changes was not strong enough to produce detectable

effects.

The auditory network identified in the current experiment is con-

sistent with previous fMRI studies addressing the location of MMN

generators for pitch deviants (e.g., Liebenthal et al., 2003; Molholm

et al., 2005; Opitz et al., 2002; Schönwiesner et al., 2007). All of them

reported a major activity at bilateral locations of the STG to pitch

deviants, including primary and secondary auditory cortices, while

only a minority reported activation of frontal areas (Alho, Rinne,

Herron, & Woods, 2014; Deouell, 2007). In this work, we extend this

finding to more complex auditory patterns. Habermeyer et al. (2009)

were the first to address a high-resolution spatial cortical origin of

preattentive melodic deviance detection, using a paradigm where

streams of five-tone melodic patterns playing in the equal-tempered

scale were randomly interleaved by melodic contour deviations. When

comparing groups on the deviant responses against the silent baseline,

they observed activation of a fronto-temporal auditory network in

musicians that included auditory—middle and superior temporal gyri—

and frontal cortices—left IFG and right ventromedial prefrontal cortex.

This study was the first to show the effects of neuroplastic changes

induced by long musical training on a preattentive deviance detection

auditory network that included frontal generators. Their result sup-

ports previous studies showing an improved and more accurate pre-

attentive processing of deviant stimuli in expert musicians (Kölsch,

Schroger, & Tervaniemi, 1999; Pantev et al., 2003). In contrast to our

study, the authors did not find any significant results for the compari-

son between deviant and standard conditions, neither in the two

groups separately nor across all subjects. This discrepancy between

results could be explained by a number of factors. The first is method-

ological and likely relates to the use of different stimulation paradigms

and analyses. In our study, pairs of contour deviant events were closer

in temporal succession (SOA <4.8 s vs. an SOA of 16.8–19.2 s in

Habermeyer's study). This could allow for an additive effect on the

measured deviant BOLD response and, thus, for a more robust activa-

tion produced by the deviant versus standard contrast. Furthermore,

different strategies in the extraction of standard tones (pseudorandom

sampling vs. random sampling), and the way standard events were

modeled in GLM (partly implicit vs. fully explicit) may have affected

the detection of activity in the traditional deviant vs. standard con-

trast. These hypotheses require further investigation. Another reason

might relate to the power to detect the main contrast, with a signifi-

cantly smaller sample size in Habermeyer's study (N = 16, including

musicians and nonmusicians).

Unlike Habermeyer et al. (2009), we did not find modulation of

frontal lobe activity. A first plausible account is the virtual absence in

our paradigm of top-down “schematic” expectations, which are thought

to be related to frontal areas (Garza Villarreal, Brattico, Leino,

Ostergaard, & Vuust, 2011; Koelsch, 2002). Frontal sources yield in

general a lower signal-to-noise compared to temporal sources, and their

activity is difficult to target with the low temporal resolution of fMRI

techniques. For example, it is known that higher-order cortical areas,

including BA 44 and BA 45, exhibit larger intersubject anatomical vari-

ability than primary and secondary sensory areas (Fischl et al., 2008),

resulting in a poorer alignment during normalization to standard space.

This may account for a decrease in the SNR when traditional whole-

brain group-level analyses are performed (see Fedorenko, Hsieh, Nieto-

Castañón, Whitfield-Gabrieli, & Kanwisher, 2010 for a similar discus-

sion). Also, EEG models suggest that frontal activity relies on a smaller

number of neurons than activity in STG, and that an increase in the

BOLD signal in frontal areas is smaller than in STG regions. Thus, it is

more difficult to detect activity in frontal than in temporal regions,

using the same threshold and contrast (Deouell, 2007). Evidence for a

frontal contribution to MMN is also scarce for fast-tracking techniques

such as M/EEG (Deouell, 2007). For example, EEG frontal dipoles do

not greatly improve the adequacy of inverse models with bilateral supe-

rior temporal dipoles, which alone often explained >90% variance in

brain activity. A second account concerns the recruitment of attention

brain networks. Frontal generators are thought to trigger for attention

location (Näätänen, 1990). According to this view, contour deviants

might not be salient (or large) enough to trigger an attention switch and

thus to reclute the frontal generators (Opitz et al., 2002). Nevertheless,

most participants of our study reported hearing of deviant sounds dur-

ing fMRI recording. Also, the relation between deviant interval-size and
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frontal activation is not straightforward, and small pitch deviants can

recruit IFG more than larger pitch deviants (Doeller et al., 2003).

In conclusion, consistent with PC, our results show that learning

of complex auditory patterns is associated with changes in excitatory

feedforward connections for encoding prediction errors and changes

in intrinsic connectivity for encoding the precision of prediction errors

within the auditory cortex. Contrary to previous literature, our find-

ings support an interpretation whereby intrinsic and extrinsic neuronal

circuitry in the superior temporal gyrus “alone” may establish models

of short-term statistical regularities, generate predictions, and update

the internal model when predictions are not fulfilled. Our findings

highlight the need to account for the type of stimulus and the stimula-

tion paradigm, the methods of spatial localization and the statistical

inference procedures, as factors influencing the generalizability of

DCM findings.
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