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Rapid detection of sensory changes is important for survival. We have previously used
change-related cortical responses to study the change detection system and found
that the generation of a change-related response was based on sensory memory
and comparison processes. However, it remains unclear whether change-related
cortical responses reflect processing speed. In the present study, we simultaneously
recorded the auditory steady-state response (ASSR) and change-related response using
magnetoencephalography to investigate the acceleration effects of sensory change
events. Overall, 13 healthy human subjects (four females and nine males) completed an
oddball paradigm with a sudden change in sound pressure used as the test stimulus,
i.e., the control stimulus was a train of 25-ms pure tones at 75 dB for 1,200 ms,
whereas the 29th sound at 700 ms of the test stimulus was replaced with a 90-
dB tone. Thereafter, we compared the latency of ASSR among four probabilities of
test stimulus (0, 25, 75, and 100%). For both the control and test stimulus, stronger
effects of acceleration on ASSR were observed when the stimulus was rarer. This
finding indicates that ASSR and change-related cortical response depend on physical
changes as well as sensory memory and comparison processes. ASSR was modulated
without changes in peripheral inputs, and brain areas higher than the primary cortex
could be involved in exerting acceleration effects. Furthermore, the reduced latency
of ASSR clearly indicated that a new sensory event increased the speed of ongoing
sensory processing. Therefore, changes in the latency of ASSR are a sensitive index of
accelerated processing.

Keywords: ASSR, change-related response, latency, MEG, phase resetting

INTRODUCTION

For survival, rapid detection of changes in the sensory environment is essential. Therefore,
one of the most important functions of sensory systems is the detection of changes. Neural
networks sensitive to sensory changes have been identified in humans (Downar et al., 2000; Tanaka
et al., 2009b). Because a change detection system spontaneously operates to orient individuals

Abbreviations: AEF, auditory-evoked magnetic fields; ASSR, auditory steady-state response; AUC, area under the baseline
curve; EEG, electroencephalography; MEG, magnetoencephalography.
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to new sensory conditions, investigating change-related brain
activity may help us elucidate the mechanisms of preattentive
activation processes in the brain in response to sensory changes.
To study this neural change detection system, we have previously
examined change-related cortical responses that were specifically
evoked by a new sensory event (Tanaka et al., 2008, 2009a;
Inui et al., 2010a,b, 2012, 2013, 2018; Nishihara et al., 2011;
Takeuchi et al., 2017, 2018). Similar change-related responses
are identified in the auditory system (Jones, 1991; Akiyama
et al., 2011; Yamashiro et al., 2011a; Ohoyama et al., 2012;
Otsuru et al., 2012; Nakagawa et al., 2014), visual system
(Urakawa et al., 2010a,b), and tactile system (Yamashiro et al.,
2008, 2009, 2011b; Otsuru et al., 2011; Kodaira et al., 2013).
Because change-related responses depend on the magnitude
of the change in the sensory stimulus (Inui et al., 2010a,b;
Nishihara et al., 2011; Yamashiro et al., 2011a), the length of
the preceding control stimulus being compared (Inui et al.,
2010a; Akiyama et al., 2011; Yamashiro et al., 2011a), and the
probability of the control and change stimulus (Inui et al.,
2010b; Ohoyama et al., 2012), the generation of change-
related responses is based on sensory memory and comparison
processes. An individual’s change-related cortical response can
be distinctly observed using electroencephalography (EEG) or
magnetoencephalography (MEG) without the individual’s active
involvement. Therefore, these are useful tools for investigating
higher brain function. Although such EEG or MEG responses are
anticipated to relate to faster reactions to new sensory events, it
remains unclear whether change-related cortical responses reflect
processing speed.

In the present study, we simultaneously recorded auditory
steady-state response (ASSR) and change-related response to
investigate acceleration effects of sensory change events. Steady-
state responses (SSRs) are electrophysiological responses driven
by a train of stimuli delivered at a sufficiently high rate, and
ASSRs reportedly reach maximum amplitude at approximately
40 Hz (Galambos et al., 1981; Ross et al., 2000). Previous
research using MEG (Herdman et al., 2003; Ross, 2008)
and positron emission tomography (Pastor et al., 2002) has
reported that ASSRs originate in primary auditory cortical areas.
Although the generation mechanisms of ASSRs have not yet
been completely elucidated (Presacco et al., 2010), there are
two main interpretations: (i) ASSRs are the superposition of
auditory middle latency response components (Plourde et al.,
1991; Galambos and Makeig, 1992a,b; Suzuki et al., 1994;
Bohórquez and Ozdamar, 2008) and (ii) ASSRs relate to
oscillatory gamma band activity representing auditory object
representation (Santarelli et al., 1995; Santarelli and Conti, 1999;
Ross et al., 2002, 2005). The effect of a salient sensory stimulus on
an SSR is known as phase resetting, and it induces the modulation
of the amplitude and phase of the SSR. Rohrbaugh et al. (1989,
1990a,b) examined the effects of a foreground auditory or visual
stimulus on 40-Hz ASSR evoked by a background rhythmic probe
stimulus and observed a reduction of both the amplitude and
latency of ASSR. Makeig and Galambos (1989) reported that
similar phase resetting occurred in 40-Hz ASSR with sudden
changes in the frequency or intensity of the train of stimuli. In
a study using an auditory oddball paradigm, button pressing in

response to a rare stimulus caused phase resetting in 40-Hz ASSR
(Rockstroh et al., 1996). Ross et al. investigated phase resetting
in greater detail, revealing that ASSR was modulated by stimulus
onset (Ross et al., 2002), changes in periodicity of the sound
stimulus (Ross and Pantev, 2004), and presence of an interfering
stimulus (Ross et al., 2005). They suggested that such perturbing
stimuli reset the oscillations and shift back the ASSR phase to that
of the driving source (Ross et al., 2005).

In the present study, we aimed to investigate whether the ASSR
phase resetting—particularly its temporal aspect—was influenced
by the probability of the perturbing sound stimulus under an
oddball paradigm. Because of its steepness, ASSR is superior
to the middle latency components of auditory-evoked magnetic
fields (AEFs) for observing subtle changes in processing timing.
In our recent study, the acceleration of sensory processing was
distinctly observed using the tactile-evoked steep transient N20
(Sugiyama et al., 2018). MEG can clearly record ASSR at the
millisecond range, rendering it a useful approach for investigating
the effects of acceleration on ASSR. We hypothesized that ASSR
is affected by physical sound changes as well as the probability
of sound changes, indicating that ASSR depends on sensory
memory and comparison processes, similar to change-related
responses. Furthermore, we believed that ASSR might be useful
for elucidating the processing speed that could not be clarified
by studies using change-related responses. In a study on change-
related responses, the latency of the response to a rare stimulus
tended to be shorter than that to a frequent stimulus (Ohoyama
et al., 2012). Using ASSR, we anticipated that the effect of the
stimulus probability on the processing speed would be clearly
shown as the latency shift due to phase resetting.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Ethics Committee of the
National Institute for Physiological Sciences, Okazaki, Japan, and
was conducted in accordance with the Declaration of Helsinki.
Written informed consent was obtained from all the participants
before experimentation.

Subjects
A total of 13 healthy volunteers (four females and nine males)
aged 21–54 years (mean, 30.4 ± 9.2) participated in the present
study. The participants had no history of mental or neurological
disorders or substance abuse in the last 2 years and were not
taking any medication at the time of testing. All participants
exhibited a hearing threshold <30 dB at 1,000 Hz, as assessed by
an audiometer (AA-71, RION, Tokyo, Japan).

Auditory Stimulation
Repeats of a pure tone were used as auditory stimuli. The pure
tone was 800 Hz in frequency, 70 dB in sound pressure level
(SPL), and 25 ms in duration (rise/fall, 5 ms). The oddball
paradigm comprised a control stimulus of a train of 48 pure
tones (total duration, 1,200 ms) and a test stimulus of a similar
train of 48 pure tones in which the 29th tone at 700 ms
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was increased by 15 dB (Figure 1A). Therefore, the present
interest was the effects of the 29th sound on auditory-evoked
responses. The sound stimulus was presented binaurally via

earpieces (E-A-RTONE 3A, Aero Company, Indianapolis, IN,
United States), and the sound pressure was controlled by an
audiometer (AA-71, RION, Tokyo, Japan).

FIGURE 1 | Methods for calculating the phase shift. Data for the left hemisphere of a representative participant to the test stimulus under an oddball paradigm with
the 75% control stimuli and 25% test stimuli. (A) Stimulation paradigm. There were four different probabilities of the test stimulus—0, 25, 75, and 100%. (B) The
upper trace shows the source strength waveforms of auditory-evoked magnetic fields (AEFs). The lower trace shows the source strength waveforms of ASSR. The
latency of ASSR at 700 ms was defined as the interval to the peak of the first upward wave after 700 ms. The ASSR latencies at 600, 625, 650, and 675 ms were
similarly obtained, averaged, and used as the standard. The ASSR latencies for all sampling points were expressed as the deviation from the standard. (C) The peak
latency of ASSR sine waves is plotted for each time point. The peak negative latency and area under the baseline curve (AUC) are shown in the figure.
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MEG Recordings
Magnetic signals were recorded using a 306-channel whole-head
MEG system (Vector-view, Elekta Neuromag, Helsinki, Finland)
comprising 102 identical triple sensor elements. Each sensor
element included two orthogonal planar gradiometers and one
magnetometer coupled with a multi-superconducting quantum
interference device, thereby providing three independent
measurements of the magnetic fields. MEG signals were recorded
using 204 planar-type gradiometers that were sufficiently
powerful to detect the largest signal over local cerebral sources.
Before recording, a current was fed to four head position
indicator (HPI) coils placed at known sites for obtaining the
exact location of the head with respect to the sensors, and the
resulting magnetic fields were measured using the magnetometer;
this approach allowed for aligning the individual head coordinate
system with the magnetometer coordinate system. The four HPI
coils attached on the individual’s head were measured with
respect to the three anatomical landmarks using a 3D digitizer.
The X-axis was fixed with the preauricular points, with right
being the positive direction. The positive Y-axis passed via the
nasion, and the Z-axis pointed upward. Signals were recorded
using a band-pass filter of 0.1–300 Hz and digitized at 4,000 Hz.
Epochs with MEG signals of >2.7 pT/cm were excluded from the
averaging. The waveform was digitally filtered with a band-pass
filter of 37.5–42.5 Hz when we focused on the 40-Hz SSRs and
was otherwise filtered with a band-pass filter of 1–200 Hz and
notch filter of 37.5–42.5 Hz.

Procedure
Experiments were performed in a quiet, magnetically shielded
room. Throughout the experiment, participants sat in a chair
and watched a silent movie on a screen placed 1.5 m in front
of them. To investigate the effects of the probability of a
sudden change in sound pressure under an oddball paradigm on
ASSR, we used four different probabilities of the test stimulus,
namely 0, 25, 75, and 100%. Throughout the manuscript, the
probability of a condition described is that for the test stimulus.
The MEG signals for each condition were recorded in different

blocks. To minimize order effects, approximately half of trials
per condition were performed in a block, and the order of the
eight blocks was randomized among participants. In the 25 and
75% probability conditions, the control and test stimulus were
randomly presented. The intertrial interval, i.e., the stimulus
onset asynchrony, was 1,500 ms. Analysis was conducted from
100 ms before to 1,200 ms after the onset of auditory stimulation.
A minimum of 100 artifact-free epochs were averaged for the
cortical responses to each stimulus per participant.

Analysis
The Brain Electrical Source Analysis software package (BESA
GmbH, Germany) was used to perform dipole analyses. First,
AEFs were analyzed. Under a band-pass filter of 1–200 Hz
and notch filter of 37.5–42.5 Hz, the MEG waveforms for the
test stimulus under the three conditions of 25, 75, and 100%
were combined. The equivalent current dipole for the main
component of N100m was estimated for each hemisphere as
described previously (Inui et al., 2006). The two-dipole model
thus obtained was applied to the MEG signals for the three
abovementioned conditions. The test stimulus with a sudden
sound pressure increase at 700 ms evoked a change-related
response with peaks at approximately 765 (P50) and 815 (N100)
ms, and we measured the peak amplitudes in time windows
of 750–780 and 780–850 ms, respectively, using the source
strength waveforms. Peak-to-peak amplitudes were calculated
for P50m–N100m response and compared across conditions
using two-way repeated-measures analysis of variance (ANOVA)
with the probability of the test stimulus and hemisphere
as independent variables. The hemisphere was included in
independent variables because there have been some previous
studies showing right hemisphere predominance for change-
related responses (Inui et al., 2010b, 2012, 2013). To assess
differences between conditions, post hoc multiple comparisons
were performed using Bonferroni-adjusted t-tests. All statistical
analyses were performed with the level of significance set at 0.05.

Further, the 40-Hz ASSR was analyzed. Under a band-pass
filter of 37.5–42.5 Hz, the MEG waveforms of all conditions

FIGURE 2 | Effects of probability on change-related cortical responses. Grand-averaged waveforms of auditory-evoked magnetic fields (AEFs) following the test
stimulus across 13 participants are shown. Probability refers to that for the test stimulus.
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TABLE 1 | Mean amplitude of N100m for the test stimulus under the three
probability conditions.

Condition Amplitude (nAm)

Test (100% condition) 26.86 (9.07)

Test of 75% condition 32.17 (10.06)

Test of 25% condition 49.78 (17.15)

Data are shown as mean (SD) values.

were combined. The equivalent current dipole for the main
component of ASSR was then estimated per hemisphere in a
time window of 300–700 ms. The goodness-of-fit value of all
participants was 92.4 ± 4.2% using the two-dipole model. The
obtained two-dipole model was applied to the MEG signals from
all conditions. Using the source strength waveform, the peak
of each 40-Hz wave was measured. We defined the peak of
the first upward wave (anterior-directing intracellular current)
after 700 ms as the latency at “700 ms” (Figure 1B) and
measured the peak latencies of ASSR from 0 to 1,150 ms at
25-ms intervals. The measured latencies were subtracted from
each latency point, and the baseline was adjusted by the mean
latency at 600, 625, 650, and 675 ms. Because a sudden change
in sound pressure hastened the ASSR phase, the peak latency of
a wave after the change in sound pressure was typically negative
relative to baseline. Therefore, a greater reduction of peak latency
indicated a greater effect. For comparisons among conditions,
the minimum or peak negative latency after 700 ms and the
area under the baseline curve (AUC) from 700 to 1,100 ms
were used (Figure 1C). Both analyses were conducted using
two-way repeated-measures ANOVA with the probability of the
test stimulus and hemisphere as independent variables. To assess

differences between conditions, post hoc multiple comparisons
were performed using Bonferroni-adjusted t-tests. All statistical
analyses were performed with the level of significance set at 0.05.

RESULTS

In the initial analysis of AEFs, the sudden increase in sound
pressure elicited clear triphasic responses. Figure 2 shows the
grand-averaged waveforms. The results of the two-way ANOVA
(Probability × Hemisphere) showed that the probability of
the test stimulus significantly affected the N100m amplitude
(F2,11 = 28.08; p = 4.8 × 10−5; partial η2 = 0.84), whereas the
hemisphere did not (F1,12 = 0.24; p = 0.63; η2 = 0.02). Post
hoc tests revealed that the N100m amplitude was significantly
higher when the probability of the test stimulus was lower
(p < 0.017; Table 1).

In the second analysis, the train of pure tones elicited clear
sine waves. Figure 3 shows the grand-averaged waveforms for all
conditions. As shown, the test stimulus shifted the ASSR phase
regardless of the probability. Figure 4A presents a comparison
of the effects of the test stimulus under the three probability
conditions and shows that the phase shift was greater for the 25,
75, and 100% conditions in that order (Table 2). The two-way
ANOVA showed a significant main effect for probability of the
test stimulus (F2,11 = 10.05; p = 0.003; η2 = 0.65) but not for
the hemisphere (F1,12 = 0.57; p = 0.47; η2 = 0.05). Post hoc tests
revealed that the latency for the 25% condition was significantly
shorter than that for the 100% (p = 0.008) and 75% (p = 0.002)
conditions; however, there was no significant difference between
the latter two probabilities (p > 0.99). Concerning the AUC from
700 to 1,100 ms, the two-way ANOVA indicated that probability

FIGURE 3 | Effects of the probability on auditory steady-state response (ASSR). Grand-averaged waveforms across 13 participants are shown. Probability refers to
that for the test stimulus.
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FIGURE 4 | Time course of the peak latency of 40-Hz auditory steady-state response (ASSR). Mean peak latency of each ASSR sine wave is plotted for each time
point. Results for ASSR to the test stimulus (A) and control stimulus (B) are shown. Probability refers to that for the test stimulus.

TABLE 2 | Mean latency shift of auditory steady state response for all conditions.

Condition 750 ms 775 ms 800 ms 825 ms 850 ms 875 ms 900 ms 925 ms

Test (100% condition) 1.09 (0.79) 1.35 (0.85) 1.42 (0.98) 1.44 (1.03) 1.27 (1.15) 1.02 (1.23) 0.69 (1.34) 0.25 (1.45)

Test of 75% condition 1.23 (0.87) 1.44 (0.97) 1.63 (1.06) 1.71 (1.12) 1.53 (1.09) 1.19 (1.02) 0.78 (1.03) 0.36 (1.01)

Test of 25% condition 1.35 (1.00) 1.89 (1.25) 2.35 (1.41) 2.64 (1.47) 2.68 (1.56) 2.41 (1.47) 1.97 (1.41) 1.56 (1.33)

Control (0% condition) 0.30 (0.46) 0.32 (0.50) 0.32 (0.54) 0.42 (0.60) 0.50 (0.63) 0.55 (0.64) 0.57 (0.64) 0.61 (0.62)

Control of 75% condition 0.68 (0.69) 0.75 (0.69) 0.81 (0.67) 0.97 (0.74) 1.08 (0.75) 1.20 (0.74) 1.22 (0.80) 1.35 (0.80)

Control of 25% condition 0.27 (0.43) 0.33 (0.47) 0.31 (0.60) 0.35 (0.69) 0.33 (0.73) 0.47 (0.76) 0.50 (0.79) 0.56 (0.84)

Data are shown as mean (SD) values.

was a significant factor (F2,11 = 8.59; p = 0.006; η2 = 0.61),
whereas the hemisphere was not (F1,12 = 0.94; p= 0.35; η2 = 0.07).
Post hoc tests revealed that the area for the 25% condition was
significantly larger than that for the 75 and 100% conditions
(p < 0.017); however, there was no significant difference between
the areas for the latter two conditions (p > 0.99; Table 3).

The effects of the control stimulus were then assessed.
Figure 4B presents a comparison among the three probability
conditions. Regarding minimum latency, the two-way ANOVA
showed a significant main effect for probability (F2,11 = 10.31;
p = 0.003; η2 = 0.65) but not for hemisphere (F1,12 = 0.90;
p = 0.36; η2 = 0.07). Post hoc tests revealed that the latency for the
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TABLE 3 | Mean area under the baseline curve (AUC) from 700 to 1,100 ms
for all conditions.

Condition AUC

Test (100% condition) 13.35 (7.60)

Test of 75% condition 13.46 (8.65)

Test of 25% condition 25.06 (13.78)

Control (0% condition) 10.14 (6.64)

Control of 75% condition 19.47 (9.55)

Control of 25% condition 10.79 (6.77)

Data are shown as mean (SD) values.

75% condition was significantly shorter than that for the control-
alone (p = 0.003) and 25% (p = 0.003) conditions; however, there
was no significant difference between the latter two conditions
(p > 0.99). The ASSR latency for the 75% condition was shorter
than that for the control-alone condition by an average of 0.78 ms.
Similarly, probability was a significant factor for determining
the AUC (F2,11 = 19.46; p = 2.5 × 10−4; η2 = 0.78), whereas
hemisphere was not (F1,12 = 1.09; p = 0.32; η2 = 0.08). Post
hoc tests demonstrated that the AUC for the 75% condition was
significantly larger than those for the control-alone and 25%
conditions (p < 0.005), whereas the AUC between the latter two
conditions was not significantly different (p > 0.99).

DISCUSSION

The present study examined the effect of the probability of
the test and control stimuli under an oddball paradigm on
change-related cortical responses and ASSR. As the probability
decreased, i.e., the strength of the memory trace for the control
stimulus to be compared increased, the amplitude of the P50m–
N100m response to the test stimulus increased, confirming the
results of a previous study (Ohoyama et al., 2012). This finding
indicated that change-related cortical responses do not depend
solely on physical change. Instead, ASSR was modulated in a
similar manner by sound onset and a sudden change in sound
pressure. The observed features of phase resetting are consistent
with those reported in previous studies (Makeig and Galambos,
1989; Rohrbaugh et al., 1989, 1990a,b). Specifically, the latency of
ASSR was reduced by sound onset as well as changes in sound
pressure approximately 300 ms after event onset. The latency
shift from the baseline of the 100% condition (test alone) was
approximately 4 ms for sound onset and 1.4 ms for change in
sound pressure, which are consistent with the findings of previous
reports (Ross et al., 2002, 2005; Ross and Pantev, 2004). Moreover,
these findings are in agreement with the fact that onset response
is a type of change-related response (Nishihara et al., 2011). As
for the effect of the probability of the test stimulus, the latency
shift of ASSR for the 25% condition was significantly larger than
that for the 75 and 100% conditions, indicating that ASSR and
change-related cortical response depend on physical changes as
well as on sensory memory and comparison processes (Inui et al.,
2010b; Ohoyama et al., 2012).

The notion that the ASSR phase shift is a higher brain
function was further supported by the results for the control

condition in which there were no sensory changes. Compared
with the control-alone and 25% conditions, a significantly greater
latency shift was observed for the 75% condition. In other words,
regardless of whether the control or test stimulus was used, the
effect of acceleration on ASSR was observed when the stimulus
was rare. This indicates that ASSR is modulated without changes
in peripheral inputs and that brain areas higher than the primary
cortex could be involved in exerting acceleration effects.

Ross (2008) stated that a sensitivity of 40-Hz ASSR to stimulus
changes might be advantageous compared with conventional
AEFs for clinical applications and neuroscience research. In the
present study, the rare control stimulus had a significant effect
on ASSR but showed no effect on AEFs (Figure 5), supporting
the notion that ASSR is a more sensitive measure than AEFs for
observing brain responses to subtle sensory changes. The lack
of change-related response in AEFs to the rare control stimulus
might be because of the high probability of the rare control
stimulus under the oddball paradigm. In the present study, we
adopted a ratio of 1:3 (25% rare control stimulus) to shorten
the measurement time. If the rare control stimulus had been
presented at a lower probability, change-related AEF responses
might have been observed.

Because it reliably measures peak latency, ASSR is superior
to AEF for providing information on processing speed. The
present ASSR results provide evidence of accelerated sensory
processing when a new event occurs, which is consistent
with the idea that change-driven brain responses are used
for orientation. Considering that change-related response is a
defense reaction (Inui et al., 2012), it should enhance processes
for enacting appropriate behaviors. In our previous studies
on change-related responses, the latency decreased with an
increase in the magnitude of change in sound properties (Inui
et al., 2010a,b; Nishihara et al., 2011). Jaskowski et al. (1994)
showed that both reaction time and evoked potential latency
decreased with an increase in stimulus intensity. Therefore,
these findings indicate that both change-related cortical response
and reduction in the latency of ASSR may lead to sensory
facilitation. In the present study, importantly, the reduction in
the latency of ASSR clearly indicated that a new sensory event
increased the rate of ongoing sensory processing. Furthermore,
ASSR reflects an endogenous response rather than a simple
reaction to a physical sensory input as shown in the present
result. This finding is consistent with the notion by Ross
(2008) that ASSR reflects an internal stimulus representation.
Therefore, ASSR is considered a good indicator of an individual’s
inherent responsiveness to sensory changes. We believe that
the present study that focuses on the latency of ASSR
will help clarify the processing speed of the neural change
detection system.

There are some limitations in the present study. Although we
analyzed AEFs under the notch filter of 37.5–42.5 Hz to remove
40-Hz ASSR, other frequency responses affect the 40-Hz ASSR
(e.g., Ross et al., 2003). In fact, as shown in Figure 6A, ASSRs
could be slightly observed even after filtering. Although results
of our preliminary study showed that effects on dipole location
of the filtering was modest (Figure 6B), waveforms as well as the
dipole location might have been affected by ASSR.
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FIGURE 5 | Comparison of auditory-evoked magnetic fields (AEFs) in response to control stimulus between 0% (control alone) and 75% (control 25%) conditions.
Grand-averaged waveforms across 13 participants are shown. Probability refers to that for the test stimulus.

FIGURE 6 | Impact of a notch filter on auditory-evoked magnetic fields (AEFs). Data for the left hemisphere of a representative participant to the test stimulus under
an oddball paradigm with the 75% control stimuli and 25% test stimuli. (A) The source strength waveforms of AEFs with a notch filter of 37.5–42.5 Hz, without a
notch filter, and with a 30-Hz low-pass filter. The response owing to auditory steady-state response (ASSR) was attenuated by the notch filter. (B) Dipole location for
waveforms of each filter condition.

CONCLUSION

Using a change-related paradigm, we revealed, for the first time
to the best of our knowledge, that the latency of ASSR could
be accelerated without changes in peripheral inputs, suggesting
that brain areas higher than the primary cortex could be involved
in acceleration effects and that faster processing in ASSR could
contribute to shorter reaction times. Changes in the latency of
ASSR could be a sensitive index of accelerated processing.
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