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Abstract: Reactive oxygen species (ROS) and other free radicals cause oxidative damage in cells
under biotic and abiotic stress. Endophytic microorganisms reside in the internal tissues of plants
and contribute to the mitigation of such stresses by the production of antioxidant enzymes and
compounds. We hypothesized that the endophytic actinobacterium Streptomyces sp. strain DBT34,
which was previously demonstrated to have plant growth-promoting (PGP) and antimicrobial
properties, may also have a role in protecting plants against several stresses through the production
of antioxidants. The present study was designed to characterize catalase and superoxide dismutase
(SOD), two enzymes involved in the detoxification of ROS, in methanolic extracts derived from six
endophytic actinobacterial isolates obtained from the traditional medicinal plant Mirabilis jalapa.
The results of a preliminary screen indicated that Streptomyces sp. strain DBT34 was the best
overall strain and was therefore used in subsequent detailed analyses. A methanolic extract of
DBT34 exhibited significant antioxidant potential in 1,1-diphenyl-2-picrylhydrazyl (DPPH) and
2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. The cytotoxicity of DBT34
against liver hepatocellular cells (HepG2) was also determined. Results indicated that methanolic
extract of Streptomyces sp. strain DBT34 exhibited significant catalase and SOD-like activity with
158.21 U resulting in a 55.15% reduction in ROS. The IC50 values of a crude methanolic extract of
strain DBT34 on DPPH radical scavenging and ABTS radical cation decolorization were 41.5 µg/mL
and 47.8 µg/mL, respectively. Volatile compounds (VOC) were also detected in the methanolic extract
of Streptomyces sp. strain DBT34 using GC-MS analysis to correlate their presence with bioactive
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potential. Treatments of rats with DBT34 extract and sitagliptin resulted in a significant (p ≤ 0.001)
reduction in total cholesterol, LDL-cholesterol, and VLDL-cholesterol, relative to the vehicle control
and a standard diabetic medicine. The pancreatic histoarchitecture of vehicle control rats exhibited a
compact volume of isolated clusters of Langerhans cells surrounded by acinies with proper vaculation.
An in-vivo study of Streptomyces sp. strain DBT34 on chickpea seedlings revealed an enhancement in
its antioxidant potential as denoted by lower IC50 values for DPPH and ABTS radical scavenging
activity under greenhouse conditions in relative comparison to control plants. Results of the study
indicate that strain DBT34 provides a defense mechanism to its host through the production of
antioxidant therapeutic agents that mitigate ROS in hosts subjected to biotic and abiotic stresses.

Keywords: Streptomyces; ROS; antioxidant; cytotoxicity; GC-MS; antidiabetic

1. Introduction

Plants have close interactions with a wide array of microorganisms that colonize the rhizosphere,
phyllosphere, and endosphere of plants. Endophytes are microorganisms that reside within plant
tissue without causing disease and establish a synergistic affiliation with their host plants. Plants
have developed an information transfer system with endophytic microorganisms that contributes to
enhanced tolerance to stresses that induce the generation of reactive oxygen species (ROS), and the
synthesis of plant growth-promoting substances [1–3]. When present in excessive amounts, common
reactive oxygen species (ROS), such as O2

−, H2O2and OH, can cause extensive oxidative damage to
cells and generally have an adverse effect on cell metabolism. They are generated as a byproduct of
normal metabolism, including respiration and photosynthesis [2,4].

Endophytic actinobacteria affiliated with medicinal plants have been shown to have the
potential to inhibit or kill pathogenic bacteria, fungi, and viruses. Thus, they are considered as
a significant source for the development of new antimicrobial products [3,5]. In our earlier studies,
we demonstrated that endophytic bacteria could be a potent source for secondary metabolites with
bioactive potential [6–9]. Additionally, bioactive compounds with cytotoxic and antioxidant properties
produced by endophytic actinobacteria associated with plants have also been reported. Among these
are endophytic actinobacteria, which exhibit cytotoxicity against several cancer cell lines [10,11].
Tanvir et al. [12], reported antioxidant activity in most of the endophytic actinobacteria (66.6%) that
were recovered from different medicinal plants. Presently, researchers are continuing to search for
novel actinobacteria with antioxidant properties for therapeutic use. Mirabilis jalapa L., a member of
the Nyctaginaceae, is a traditional medicinal plant whose plant parts can be used to make a drink that is
orally consumed 2–3 times a day (10–15 mL) for the treatment of kidney and urinary infections [13].
Rozina [14] reported that M. jalapa had several pharmacological functions, including antimicrobial,
antimalarial, antioxidant, cytotoxicity, and antifungal properties.

In the previous study, six endophytic isolates (Streptomyces sp. strain DBT33; Streptomyces sp. strain
DBT34; Brevibacterium sp. strain DBT35; Streptomyces thermocarboxydus strain DBT36; Actinomycete
strain DBT37 and Streptomyces sp. strain DBT39) obtained from M. jalapa were tested for antimicrobial
activities against three bacterial pathogens (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia
coli, and Candida albicans). Isolate DBT35 showed significant antimicrobial activities against S. aureus
(13.7 mm) and P. aeruginosa (10.1 mm), whereas BPSAC39 (10.6 mm) and BPSAC37 (9.6 mm) exhibited
acute activities against P. aeruginosa and C. albicans, respectively. Although isolate DBT34 showed
lower antimicrobial activities against all bacterial pathogens, isolate DBT34 showed strong antifungal
activities against plant fungal pathogens Rhizoctonia solani, Fusarium graminearum and Fusarium
oxysporum. In addition, isolate DBT34 showed maximum PGP activity in comparison to other
isolates. The potent isolate DBT34 was used for an in-vivo plant growth promotion study under
greenhouse conditions in an effort to enhance the growth of Capsicum annuum L. [6,7]. Notably, however,
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no systematic study has been conducted to understand the cytotoxicity, antioxidant, and antidiabetic
potential of the endophytic actinobacteria associated with M. jalapa. Hence, we have selected the strain
DBT34 to be evaluated for its antioxidant potential to alleviate the oxidative stress in their host plants
by scavenging the ROS. Additionally, DBT34 was also selected to experimentally assess its anticancer
ability against liver hepatocellular cancer cells (HepG2) lines and also antidiabetic capabilities. Also,
a methanolic extract of isolate DBT34 was used to identify the volatile compounds (VOCs) that are
potentially related to functional mitigation of stress in plants. The majority of researchers have reported
antioxidant and antidiabetic potential from diverse bacteria, but there have been few reports from
actinobacteria. Hence, we have added to evaluate an endophytic Streptomyces sp. isolate which has the
potential for antioxidant, cytotoxicity, and antidiabetic capabilities. The results of this study provide
in-depth information about the role of endophytic Streptomyces sp. in alleviated oxidative stress in
their plant hosts through the production of antioxidant enzymes and compounds.

2. Results

2.1. Catalase-Like and SOD-Like Activity

All of the methanolic extracts obtained from the different strains of Streptomyces sp. were evaluated
for catalase-like activity based on their ability to degrade hydrogen peroxide (H2O2). Results indicated
that extracts of six strains exhibited catalase-like activity, ranging from 19.40 U to 158.21 U at a
concentration of 50 µg/mL. Among the tested strains, Streptomyces sp. strain DBT34 had the highest
catalase-like activities at 158.21 U. Extracts of the six isolates were also evaluated for SOD-like activity.
Results again revealed that the extracts of all six strains exhibited SOD-like activity ranging from
53.505% to 61.899% (Table 1). Isolate Streptomyces sp. strain DBT34 showed a free radical scavenging
ability of 55.15%.

Table 1. Catalase and SOD like activity in a 50 µg/mL methanolic extract obtained from six different
endophytic strains (DBT 33–39) of Actinobacteria (Streptomyces sp.).

ROS/Strain DBT33 DBT34 DBT35 DBT36 DBT37 DBT39

Catalase-like activity (Unit) 64.31 158.21 49.27 19.49 65.5 39.4
SOD-like activity (% of inhibition) 53.51 55.15 59.84 61.89 56.47 61.75

2.2. Identification and Phylogenetic Analysis

The 16S rRNA sequence of strain DBT34 was compared with reference strains obtained from the
GenBank database. Strain DBT34 was identified as Streptomyces sp. A phylogenetic tree was built
using the neighbor-joining method. The estimated transition/transversion bias (R) was 1.38, and the
overall pairwise mean distance was 0.081. The phylogenetic tree indicated that the 16S rRNA gene
sequence of strain DBT34 was highly similar to Streptomyces glauciniger type strain CGMCC 41858
(99.51%), followed by Streptomyces erringtonii type strain I36 (98.92%), and Streptomyces avellaneus type
strain NBRC13451 (97.35%). Notably, strain DBT34 formed a distinct clade with Streptomyces rubrus
type strain Sp080513KE34 (96.96%), Streptomyces baliensis type strain ID030915 (96.96%), Streptomyces
malaysiensis type strain NBRC16446 (96.96%), Streptomyces sparsus type strain YIM 90018 (96.86%),
Streptomyces spongiicola type strain HNM0071 (96.7%), Streptomyces wuyuanensis type strain CGMCC
4.7042 (96.76%), Streptomyces xanthocidicus type strain NBRC13469 (96.75%), Streptomyces tateyamensis
type strain DSM41969 (96.67%), Streptomyces lactacystinicus type strain OM6519 (96.67%), Streptomyces
coeruleoprunus type strain NBRC15400 (96.67%), Streptomyces griseoplanus type strain NRRL B3064
(96.67%), and Streptomyces cocklensis type strain BK168 (96.57%) with a bootstrap value of 57% (Figure 1).
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Figure 1. Phylogenetic relationship between Streptomyces sp., strain DBT34 and other strain types 
retrieved from the EZ-Taxon database, based on partial 16S rRNA gene sequences. The phylogenetic 
tree was constructed using the neighbor-joining method with the Tamura 3-parameter model with 
1000 bootstrap replicates. Value mentioned at nodes is bootstrap values and our strain is mentioned 
against red triangle.  

2.3. Total Phenolics and Flavonoids  

The total phenolic content (TPC) in the methanolic extract of Streptomyces sp. strain DBT34 was 
as high as 94.21 µg of GAE per mg of DW, while the total flavonoid contact (TFC) was slightly higher 
(112.6 µg of QE per mg of DW) than the TPC content (Figure 2). Based on these data, it was 
concluded that Streptomyces sp. strain DBT34 might have antioxidant activity.  

 
Figure 2. Total phenolic content and total flavanoid content in the methanolic extract of Streptomyces 
sp. strain DBT34. Data represents the mean ± SD. 

  

Figure 1. Phylogenetic relationship between Streptomyces sp., strain DBT34 and other strain types
retrieved from the EZ-Taxon database, based on partial 16S rRNA gene sequences. The phylogenetic
tree was constructed using the neighbor-joining method with the Tamura 3-parameter model with
1000 bootstrap replicates. Value mentioned at nodes is bootstrap values and our strain is mentioned
against red triangle.

2.3. Total Phenolics and Flavonoids

The total phenolic content (TPC) in the methanolic extract of Streptomyces sp. strain DBT34 was as
high as 94.21 µg of GAE per mg of DW, while the total flavonoid contact (TFC) was slightly higher
(112.6 µg of QE per mg of DW) than the TPC content (Figure 2). Based on these data, it was concluded
that Streptomyces sp. strain DBT34 might have antioxidant activity.
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Figure 2. Total phenolic content and total flavanoid content in the methanolic extract of Streptomyces sp.
strain DBT34. Data represents the mean ± SD.

2.4. Antioxidant Activity

Analysis of the methanolic extract of Streptomyces sp. strain DBT34 indicated that it had strong
antioxidant activity as demonstrated by its DPPH and ABTS radical scavenging activity, producing
IC50 values of 41.5 µg/mL and 47.8 µg/mL, respectively. These results indicate that low concentrations
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of the methanolic extract of strain DBT34 are capable of reducing DPPH and ABTS radicals, further
demonstrating that strain DBT34 represents a potent source of antioxidant compounds that will
degrade ROS (Figure 3).
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2.5. Cytotoxicity against Three Cancer Cell Lines

The cytotoxicity of a methanolic extract of strain DBT34 was screened against three cancer cell
lines (HepG2, MCF7, AGS) at a concentration of 500 µg/mL. The preliminary screening indicated that
the extract had a significant effect on the viability of HepG2 (human hepatocarcinoma) cells. Based on
this result, the extract of strain DBT34 was tested for cytotoxicity at different concentrations (10, 25, 50,
100, and 250 µg/mL) against HepG2 cells using the MTT assay. Results indicated that the methanolic
extract obtained from strain DBT34 exhibited the highest level of cytotoxicity against HepG2 cells
at a low concentration, having an IC50 value of 49.2 µg/mL. Figure 4 illustrates the decrease in cell
viability resulting from the induction of apoptosis induced by the methanolic extract of Streptomyces sp.
DBT34. These results demonstrate that the crude methanolic extract of strain DBT34 may contain some
bioactive compounds that are cytotoxic to HepG2 cancer cells.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 28 
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2.6. Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis

Volatile compounds (VOCs) present in the methanolic extract of DBT34 were identified by GC-MS.
A total of 11 VOCs was predicted using the NIST library based on the peak area, molecular weight,
and formula, the percentage of area and retention time (Table 2). The maximum percentage of peak area
(17.427) was obtained for 4-Chlorobenzoic Acid, 4-Hexadecyl Ester, which exhibited a retention-time of
22.295. The minimum percentage peak area (5.629) was obtained for Benzeneacetic Acid, Alpha-Oxo,
Trimethylsilyl Ester, which had a retention-time of 28.488. Among the 11 identified VOCs, two of
the compounds, Cathinone (RT: 21.635) and Acetamide, 2-Amino (RT: 22.530) have been reported to
possess antioxidant activity [15,16].

2.7. DPP-4 Inhibition In Vitro

The DBT34 extract and standard drugs exhibited significant (p ≤ 0.001) DPP-4 inhibition with
values of 67.1% and 95.3%, respectively. The IC50 of the microbial extract was 0.87 µg/mL (Figure 5A,B).
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Table 2. Identification ofvolatile compounds (VOCs) in a methanolic extract of Streptomyces sp. strain DBT34.

Sl.No Compound Name Formula MW RT Height Area % Norm % Structure Activities &
References

DBT34

1

ETHYL 6-[P-
Chlorophenacylamino]-
4-[[Diphenylmethyl]

Amino]-5-Nitro-2

C29H26O5N5Cl 559 21.390 1,814,810 6.514 37.38
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Table 2. Cont.

Sl.No Compound Name Formula MW RT Height Area % Norm % Structure Activities &
References

DBT34

5 Acetamide, 2-Amino C2H6ON2 74 22.530 1,669,673 7.104 40.76

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 28 

 

5 
Acetamide, 

2-Amino 
C2H6ON2 74 22.530 1,669,673 7.104  40.76 

 

Antioxidant activity 
[16] & anticancer 

activity [18] 

6 

1,4-Cyclohexadien
e, 1,3,6 

Tris(Trimethylsily
l) 

C15H32Si3 296 23.171 
 

1,601,816 
11.259  64.61 

 

- 

7 

Benzeneethanami
ne, 

N-[(Pentafluoroph
enyl)Methylene]-B

eta,4-Bis 
[(trimethylsilyl)ox

y]  

C21H26O2NF5

Si2 
475 28.408 1,640,921 10.878  62.42 

 

- 

8 

Benzeneacetic 
Acid, Alpha-Oxo 

Trimethylsilyl 
Ester 

C11H14O3Si 222 28.488 2,008,596 5.629  32.30 

 

 

Antioxidant
activity [16] &

anticancer activity
[18]

6 1,4-Cyclohexadiene, 1,3,6
Tris(Trimethylsilyl) C15H32Si3 296 23.171 1,601,816 11.259 64.61

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 28 

 

5 
Acetamide, 

2-Amino 
C2H6ON2 74 22.530 1,669,673 7.104  40.76 

 

Antioxidant activity 
[16] & anticancer 

activity [18] 

6 

1,4-Cyclohexadien
e, 1,3,6 

Tris(Trimethylsily
l) 

C15H32Si3 296 23.171 
 

1,601,816 
11.259  64.61 

 

- 

7 

Benzeneethanami
ne, 

N-[(Pentafluoroph
enyl)Methylene]-B

eta,4-Bis 
[(trimethylsilyl)ox

y]  

C21H26O2NF5

Si2 
475 28.408 1,640,921 10.878  62.42 

 

- 

8 

Benzeneacetic 
Acid, Alpha-Oxo 

Trimethylsilyl 
Ester 

C11H14O3Si 222 28.488 2,008,596 5.629  32.30 

 

 

-

7

Benzeneethanamine, N-
[(Pentafluorophenyl)
Methylene]-Beta,4-Bis
[(trimethylsilyl)oxy]

C21H26O2NF5Si2 475 28.408 1,640,921 10.878 62.42

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 28 

 

5 
Acetamide, 

2-Amino 
C2H6ON2 74 22.530 1,669,673 7.104  40.76 

 

Antioxidant activity 
[16] & anticancer 

activity [18] 

6 

1,4-Cyclohexadien
e, 1,3,6 

Tris(Trimethylsily
l) 

C15H32Si3 296 23.171 
 

1,601,816 
11.259  64.61 

 

- 

7 

Benzeneethanami
ne, 

N-[(Pentafluoroph
enyl)Methylene]-B

eta,4-Bis 
[(trimethylsilyl)ox

y]  

C21H26O2NF5

Si2 
475 28.408 1,640,921 10.878  62.42 

 

- 

8 

Benzeneacetic 
Acid, Alpha-Oxo 

Trimethylsilyl 
Ester 

C11H14O3Si 222 28.488 2,008,596 5.629  32.30 

 

 

-

8
Benzeneacetic Acid,

Alpha-Oxo Trimethylsilyl
Ester

C11H14O3Si 222 28.488 2,008,596 5.629 32.30

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 28 

 

5 
Acetamide, 

2-Amino 
C2H6ON2 74 22.530 1,669,673 7.104  40.76 

 

Antioxidant activity 
[16] & anticancer 

activity [18] 

6 

1,4-Cyclohexadien
e, 1,3,6 

Tris(Trimethylsily
l) 

C15H32Si3 296 23.171 
 

1,601,816 
11.259  64.61 

 

- 

7 

Benzeneethanami
ne, 

N-[(Pentafluoroph
enyl)Methylene]-B

eta,4-Bis 
[(trimethylsilyl)ox

y]  

C21H26O2NF5

Si2 
475 28.408 1,640,921 10.878  62.42 

 

- 

8 

Benzeneacetic 
Acid, Alpha-Oxo 

Trimethylsilyl 
Ester 

C11H14O3Si 222 28.488 2,008,596 5.629  32.30 

 

 



Int. J. Mol. Sci. 2020, 21, 7364 9 of 26

Table 2. Cont.

Sl.No Compound Name Formula MW RT Height Area % Norm % Structure Activities &
References

DBT34

9

Benzeneacetic Acid,
4-Methoxy-Alpha-
[(Trimethylsilyl)Oxy]-

Methyl

C13H20O4Si 268 28.688 1,468,754 5.683 32.61
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2.8. Glucose Levels, Insulin, and HOMA Indices

The administration of a corticosteroid and high sucrose diet to the test rats caused a significant
(p ≤ 0.001) elevation in glucose and insulin levels. The treatment of the test rats with either the
methanolic extract of DBT34 or the standard drug sitagliptin had a significant impact on the elevation
of glucose and insulin levels. Additionally, the HOMA-IR also significantly increased in the induced
diabetic rats; however, treatment of the diabetic rats with either the DBT34 extract or sitagliptin caused
a reduction in the HOMA-IR. More specifically, the HOMA-β and insulin sensitivity (IS) were lowered
in the diabetic rats treated with either the DBT34 extract of sitagliptin and HOMA-β and IS were
significantly (p ≤ 0.001) improved (Figure 6).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 1 of 3 
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Diabetic rats treated with either the DBT34 microbial extract or the drug sitagliptin exhibited 
significant (p ≤ 0.001) reductions in total cholesterol, LDL-cholesterol, and VLDL-cholesterol in 
comparison to rats serving as the vehicle control and diabetic control. In contrast, HDL-cholesterol 
levels were not significantly altered (Figure 7).  
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2.9. Alterations in the Lipid Profile of Treatment Groups

Diabetic rats treated with either the DBT34 microbial extract or the drug sitagliptin exhibited
significant (p ≤ 0.001) reductions in total cholesterol, LDL-cholesterol, and VLDL-cholesterol in
comparison to rats serving as the vehicle control and diabetic control. In contrast, HDL-cholesterol
levels were not significantly altered (Figure 7).

2.10. Changes in Serum Antioxidant Levels

Rats that were induced to be diabetic exhibited significantly abnormal levels of SOD, catalase,
GSH, and LPO. In contrast, diabetic rats that were treated with the microbial extract or sitagliptin
showed significantly lower levels of LPO (lipid peroxidation). The levels of GSH, SOD, and catalase
were also improved considerably in the treatment groups of rats (Figure 8).
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2.11. Pancreas Histopathology

The histology of the pancreas of vehicle control rats was characterized by a compact volume of
isolates of Langerhans surrounded by acini with proper vaculation. The islet of Langerhans exhibited
a polymorphic cellular status (Figure 9A). In contrast, degenerative changes were observed in the
islet of Langerhans in the pancreas of diabetic rats with areas of peripheral patches of cells in which
β-cells were dominant and were characterized by pyknosis, necrosis, and a high level of apoptosis.
The pancreas of diabetic rats also exhibited damage to blood vessels and diminished vascularization
(Figure 9B). The pancreas of diabetic rats treated with the DBT34 microbial extract or sitagliptin showed
regenerative activity in regard to the cellular morphology of islet of cells (Figure 9C,D).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 14 of 28 
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Figure 9. (A) Histopathology of a pancreas (400X HE) from an untreated non-diabetic rat (control): 
The arrows indicate a cellular mass of normal peripheral β-cells (PBC), distribution in islet (ISLT), 
and normal morphology of the arranged acini (ASN). (B) Histopathology of a T2DM control 
pancreas (400X HE) in untreated diabetic rats. The arrows indicate peripheral β-cells, rounded arrow 
indicates a congestion of RBC and the star indicates a vacuolated area in the pancreatic islet (ISLT) 
cells with abnormal appearance of the nucleus and abnormally arranged acini (ASN). (C) 
Histopathology of the pancreas of diabetic rats treated with an extract derived from DBT34 strain 
extract (400X HE): The arrows indicate a recovery of normal looking peripheral β-cells in islet (ISLT) 
and an increased cellular mass with normally arranged acini. (D) Histopathology of a pancreas of 
diabetic rats treated with sitagliptin (400X HE): The arrows indicate the regeneration of a damaged 
area of peripheral β-cells (PBC) and a compact arrangement of acini. 

Figure 9. (A) Histopathology of a pancreas (400X HE) from an untreated non-diabetic rat (control):
The arrows indicate a cellular mass of normal peripheral β-cells (PBC), distribution in islet (ISLT),
and normal morphology of the arranged acini (ASN). (B) Histopathology of a T2DM control pancreas
(400X HE) in untreated diabetic rats. The arrows indicate peripheral β-cells, rounded arrow indicates
a congestion of RBC and the star indicates a vacuolated area in the pancreatic islet (ISLT) cells with
abnormal appearance of the nucleus and abnormally arranged acini (ASN). (C) Histopathology of
the pancreas of diabetic rats treated with an extract derived from DBT34 strain extract (400X HE):
The arrows indicate a recovery of normal looking peripheral β-cells in islet (ISLT) and an increased
cellular mass with normally arranged acini. (D) Histopathology of a pancreas of diabetic rats treated
with sitagliptin (400X HE): The arrows indicate the regeneration of a damaged area of peripheral β-cells
(PBC) and a compact arrangement of acini.
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2.12. Plant Growth Promotion in Chickpea Plants

Effect of Streptomyces sp. Strain DBT34 on Chickpea Plants In-Vivo and Antioxidant Activity in
Derived Plant Extracts

The application of Streptomyces sp. strain DBT34 on chickpea plants and subsequent production
of a methanolic extract from the treated and untreated plants resulted in IC50 values of 117.5 µg/mL
(DPPH) and 114.0 µg/mL (ABTS) and IC50 values of 266.2 µg/mL (DPPH) and 169.3 µg/mL (ABTS) in
untreated plants (Figure 10 and Figure S1). The lower IC50 values obtained for the methanolic extracts
(µg/mL) of treated plants, relative to untreated plants, indicates that free radical scavenging in the
treated plants was enhanced due to the presence of Streptomyces sp. strain DBT34 as an endophytic in
the treated chickpea plants.
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Figure 10. ABTS and DPPH radical scavenging activity methanolic extracts obtained from untreated
chickpea plants and chickpea plants treated with bacterial cells of Streptomyces sp. strain DBT34.
Cells were applied to the soil and plants were grown for 4 weeks prior to determining their
antioxidant potential.

3. Discussion

Endophytes subsist inside host plant tissues without causing disease but protect the host by
secreting several secondary metabolites, including antioxidants, which protect against ROS that are
generated in response to stress conditions [2,21]. In their review, Hamilton et al. [2] discussed the role
of endophytic fungi in mitigating ROS injury by increasing the antioxidant activity in the host plant.

Zhou et al. [22] reported that endophytic bacteria induce ROS directly by increasing the
concentration of oxygen sesquiterpenoids content in the Chinese medicinal plant, Atractylodes lancea.
No reports could be found, however, on endophytic Actinobacteria with ROS-scavenging potential.
Recently, an association of endophytic Actinobacteria with medicinal plants from Northeastern India
has been reported and suggested to represent a potential source for bioactive products, as well as
antimicrobial and plant growth-promoting applications [6–9]. In the present study, Streptomyces sp.
strain DBT34, isolated from M. jalapa L. growing in Mizoram, India was demonstrated to possess
significant antioxidant activity, and cytotoxicity against cancer cell lines.
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A phylogenetic tree was constructed using the neighbor-joining method to evaluate the similarity
of Streptomyces sp. strain DBT34 with other species of Streptomyces. Results indicated that sequence
of strain DBT34 was highly analogous to Streptomyces glauciniger type strain CGMCC 41858 (99.51%)
followed by Streptomyces erringtonii type strain I36 (98.92%) and Streptomyces avellaneus type strain
NBRC13451 (97.35%). In a similar analysis, Tan et al. [23] reported that Streptomyces sp. strain MUM256
exhibited a maximum 16S-rRNA gene sequence identity to Streptomyces albidoflavusDSM40455T (99.7%)
and Streptomyces hydrogenansNBRC13475T (99.7%).

Streptomyces sp. strain DBT34 extract was evaluated for its ability to scavenge superoxide anion
(O2
•−)radicals, which can impact the synthesis of other ROS intermediates. SOD-like activity mitigates

the accumulation of ROS intermediates by converting superoxide anion radicals to the lesser toxic
entity, hydrogen peroxide. Hydrogen peroxide can then be neutralized by catalase, which turns into a
neutral form [24]. Therefore, the present study evaluated catalase and SOD-like activity present in the
methanolic extracts of DBT34 at a concentration of 50 µg extract/mL. These results are comparable
to the level of inhibition reported for a microbial extract by Tan et al. [23]. In that study, the level of
SOD-like activity was evaluated in methanolic extracts of Streptomyces sp. (MUM212). Their results
indicated that SOD-like activity in methanolic extracts at a concentration range of 0.25 to 4 mg/mL
exhibited a percentage of inhibition of superoxide radical formation ranging from 17 to 37%. Similarly,
catalase-like activity was observed in methanolic extracts of Gnaphalium polycaulon Pers. plants [25].

Phenolic compounds are a significant group of antioxidants that also scavenge ROS.
Cruz De Carvalho, [26] suggested that microorganisms produce ROS oxygen species as byproducts
during the metabolism process. High levels of free radicals can induce oxidative stress and many other
side effects, including the promotion of cancer [27]. It has been well established that free oxygen radicals
can contribute to the development of a variety of diseases, including cancer, as well as neurodegenerative
and cardiovascular diseases, which can be treated with the use of novel antioxidant compounds. In the
present study, the total phenolic content in the methanolic extract of Streptomyces sp. strain DBT34 was
estimated at 94.21 µg of GAE/mg of DW. These data represent a higher level than what was previously
reported by Kaur et al. [28], who stated that an ethyl acetate extract of Streptomyces sp. strain OEAE
(isolated from the soil) possessed a level of TPC of 84.3 mg of GAE/g DW. Lertcanawanichakul et al. [29]
stated that the maximum amount of total phenolics (0.24 GAE ± 0.02 mg/g DW) was found in an ethyl
acetate extract of Streptomyces sp. strain KB1-ET. Additionally, the maximum TFC in KB1-ET was
112.6 µg quercetin/mg DW. Our results represent the first report of the total phenolic content (TPC)
and total flavonoid content (TFC) in a methanolic extract of Streptomyces sp. with the highest TPC and
TFC exhibit the highest antioxidant activity [30].

Numerous techniques are available to assess the antioxidant capacity of organisms, among which
the DPPH radical scavenging and ABTS radical cation decolorization assays represent rapid assays
that are easy to perform. The free radical scavenging of the hydrogen atom donating antioxidant
compound that allows for the conversion of hydrogen atoms or electrons to DPPH radicals results in
the formation of a yellow-colored product, 1, 1-diphenyl-2-picryl hydrazine [21]. In the present study,
strain DBT34 was found to exhibit significant antioxidant activity against DPPH free radicals with
an IC50 value of 41.5 µg/mL. Kaur et al. [28] also reported that three Streptomyces sp. strains (TEAE,
OCE, and TCE) isolated from soil exhibited the ability to scavenge DPPH radicals with IC50 values of
46.61 µg/mL, 51.88 µg/mL, and 89.03 µg/mL for the three strains, respectively. Tan et al. [31] reported
that an ethanolic extract of Streptomyces sp. strain MUM256 had a potent antioxidant activity with IC50

values of 6.69 ± 0.83% and 12.08 ± 1.05%. The ABTS radical cation decolorization assay can also be used
to assess the antioxidant potential of a test compound [32]. In our study, we found that strain DBT34
had a significant ability to scavenge ABTS radicals, having an IC50 value of 47.8 µg/mL. These data are
in contrast to the results of Kaur et al. [28], who reported that the ABTS IC50 values of three Streptomyces
sp. strains (TEAE, OCE, and TCE) were 121.51 µg/mL, 352.48 µg/mL, and 354.24 µg/mL, respectively.

We initially screened the crude methanolic extract of Streptomyces sp. strain DBT34 at a high
concentration (500 µg/mL) for cytotoxicity against three cancer cell lines (MCF7, AGS and HepG2).
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The maximum anti-proliferative effect (cytotoxicity) was found against the HepG2 cell line with an
IC50 concentration of 49.2 µg/mL. Khieu et al. [33] also reported that Streptomyces sp. strain HUST012
exhibited substantial cytotoxicity against HepG2 cells with an IC50 concentration of 41.63 µg/mL.
Additionally, Lee et al. [34] reported that an ethanolic extract of Streptomyces sp. strain MJM 10778
exhibited cytotoxicity against HepG2 cell lines at an IC50 concentration of 264.7 µg/mL.

GC-MS analysis is an excellent method to detect and identify VOCs and has been used by
several researchers to identify VOCs [35]. VOCs, including alcohol, ketones, esters, acetic acid
groups, amides, and their derivatives, have been detected in genera of Actinobacteria [36]. In the
present study, 11 volatile compounds were detected in the methanolic extract of Streptomyces sp.
strain DBT34 using GC-MS analysis. Cathinone constituted 32.45% of the total amount of VOCs
in strain DBT34. This compound was also reported by Dudai et al. [15], who stated that cathinone
has antioxidant activity. The cathinone compound was reported in our isolate DBT34 and may be
responsible for antioxidant activities. The volatile compound, acetamide, 2-Amino, was also detected
in strain DBT34. Previous research has indicated that acetamide derivatives and their analogs have
bioactive properties, such as antioxidant, anticancer, and anti-inflammatory activity [16,18]. The VOC,
benzene acetic acid, 4-Methoxy-Alpha-[(Trimethylsilyl)Oxy]-Methyl compound, which is a derivative
of 4-methoxyphenylacetic acid, as well as benzene acetic acid, 4-methoxy-p-methoxy-phenylacetic
acid, was identified in the methanolic extract of Streptomyces sp. strain DBT34. Several researchers
state that acetamide, 2-Amino and benzene acetic acid, 4-Methoxy-Alpha-[(Trimethylsilyl)Oxy]-Methyl
compound showed anticancer activity as observed in our isolate DBT34 and could be responsible for
cytotoxic potential against HepG2 cancer cell lines. A derivative of 4-Methoxybenzeneacetic acid has
been reported to be neuroprotective, as well as possessing anticancer activity [19,20].

The historical usage of microbial secondary metabolites dates back to ancient civilizations in
different food recipes and beverages for curing various ailments [37]. Using in-vitro, in-vivo and in-silico
approaches, the present study evaluated the antidiabetic and antioxidant, properties of a microbial
extract. In the present study, type 2 diabetes was induced in test rats by feeding them corticosteroids
and a high sucrose diet, which has been reported to promote gluconeogenesis without adversely
impacting carbohydrate metabolism [38]. Corticosteroids harm insulin signaling and functioning,
resulting in insulin resistance [39]. Based on this effect, glucose homeostasis indices, including insulin
resistance, reduced insulin sensitivity, and β-cell dysfunction, were assessed in test rats that were
induced to be diabetic [40]. Insulin-resistant rats are unable to utilize glucose [41] correctly.

β-cells compensate for insulin resistance by increasing insulin secretion [42], which consequently
results in a reduction of glucose uptake in body cells and promotion of hyperinsulinemia [40,43].
Additionally, alterations in the composition of saturated fatty acids in the plasma membrane result
in reduced insulin signaling, which, in turn, results in a decrease in insulin sensitivity [44]. In our
rat model system, the diabetic rats had abnormal lipid profiles, SOD-like, catalase-like, GSH activity,
and lipid peroxidation.

Treatment of diabetic rats with the DBT34 microbial extract or sitagliptin mitigated the alterations
in insulin resistance, β-cell function, and insulin sensitivity by reducing glucose and insulin levels.
As reported in previous studies [45,46], the mitigation of altered metabolism in diabetic rats may have
resulted from the effect of secondary metabolites present in the microbial extract on DPP-4 and other
free radical scavenging activities. The decrease in DPP-4 accumulation may be due to the interaction
between secondary metabolites in the microbial extract and DPP-4 at active sites [47].

Diabetic rats treated with the microbial extract or sitagliptin showed a reduction in the level of
compounds in the lipid profile of diabetic rats that interfere with proper carbohydrate utilization,
namely, total cholesterol, triglyceride, LDL-cholesterol, and VLDL-cholesterol that reduces free radical
scavenging activity [48]. In support of the biochemical analyses, the histopathology of untreated
diabetic rats indicated degenerative changes in the cellular morphology, all the way up to pyknosis,
in the islet of the Langerhans in pancreatic tissues. It is likely that this may have resulted from reduced
apoptosis as evidenced by the vacuolation and rearrangement of vascular tissues; which may result
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from reduced glucose uptake in pancreatic cells [49]. In contrast, diabetic rats treated with the microbial
extract or sitagliptin exhibited reduced areas of vacuolation and improved vascularization in the islet
of Langerhans in pancreatic tissues. The inhibition of DPP-4 accumulation and free radical scavenging
activity has been reported to promote glucose availability and induce regenerative activity in damaged
cells of insulin resistant tissues [50].

The antioxidant potential (ABTS and DPPH) present in 18 varieties of chickpea plants
cultivated in different parts of the world, including four types from India, were characterized
by Quintero-Soto et al. [51]. They reported antioxidant IC50 readings for DPPH scavenging ranging
from 52 to 1640 µmol Trolox equivalents/100 g DW, while IC50 readings for ABTS ranged from 278
to 2417 µmol Trolox equivalents/100 g DW. These findings are accordance with the results obtained
in the current study, where DPPH and ABTS scavenging activity in chickpea plants were assessed.
Even though numerous in-vivo pot experiments studies have already been reported on the ability of
endophytic Actinobacteria [52] or other bacteria [53] to promote growth in a variety of plants, only a
few of these studies also assessed antioxidant potential. Recently, Wang et al. [54], studied the effect
of endophytic Streptomyces chartreusis WZS021 on two sugarcane varieties under stress conditions
and found that this Actinobacterium improved the stress tolerance of the host plant by regulating
antioxidant levels. They postulated that the ROS production induced in host plants by the drought
conditions was mitigated by the antioxidant activity of SOD, catalase, and peroxidase, which were
enhanced by the endophytic strain, WZS021. Based on our data, we conclude that the endophytic
Streptomyces sp., strain DBT34 has a significant level of antioxidant potential, along with substantial
levels of TPC and TFC which may play a protective role in the host against abiotic and biotic stresses.
Further in-depth studies are needed, however, to fully understand the mechanisms associated with the
beneficial effects of endophytic Actinobacteria on their hosts, as well as the specific compounds and
mechanisms responsible for the bioactive properties present in methanolic extracts of DBT34.

4. Materials and Methods

4.1. Isolation and Identification of Isolates of Actinobacteria

The six strains of Actinobacteria used in the present study were previously isolated and identified [6].

4.2. Extract Preparation

Six endophytic isolates of Streptomyces sp. (DBT 33, 34, 35, 36, 37, and 39) isolated from M. jalapa
were evaluated for their antioxidant capacity and cytotoxicity to cancer cell lines. The same isolates
were previously reported to possess significant antimicrobial and plant growth-promoting activity [6].
All six strains were individually streaked on starch casein agar (SCA) and tap water yeast extract
agar (TWYE) media (obtained from Hi-media, India) and cultured at 28 ◦C for two weeks. Afterward,
the Petri plates, which were completely covered with bacterial growth, were flooded with methanol
solvent to obtain a crude extract as described by Abdalla [55].

4.3. Reactive Oxygen Species (ROS)-Scavenging Assays

Catalase and Superoxide Dismutase-(SOD)-Like Activity

The six crude extracts were dried using a rotary evaporator and diluted to 50 µg/mL in phosphate
buffer (pH-8.0) and evaluated for catalase activity using a UV-Vis spectrophotometer. Hydrogen
peroxide (H2O2) was added to the test to the solution, and catalase activity was measured as
the decrease in H2O2. Absorbance was recorded at 240 nm at time intervals of 0 s; 30 s and
1 min. [25]. The superoxide anion scavenging activity or SOD like activity of DBT34 strain was
evaluated using a UV-Vis spectrophotometer (Thermo scientific, Multiskan GO, MA, USA) to
measure the formation of water-soluble formazan dye resulting from the enzymatic conversion of
[2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4disulfophenyl)-2H-tetrazolium, monosodium salt] anion [23].
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Briefly, a series of different concentrations of methanolic extract of Streptomyces sp. strain DBT34 were
added into a 96-well plate along with [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4disulfophenyl)-2H-
tetrazolium, monosodium salt] anion. Then, the mixture was kept in the dark for 15 min to allow
the formazan to form. Absorbance was subsequently recorded at 560 nm using a Multiscan UV/Vis
spectrophotometer and used to calculate the level of SOD activity present in the extract.

4.4. 16S rRNA Amplification and Phylogenetic Analysis

All six isolates were identified using the amplification of 16S rRNA as previously described [6].
The best isolate, DBT34, based on the level of catalase and SOD activity, was taxonomically identified
through phylogenetic analysis of the 16S sequence of DBT34 with type strains of Streptomyces present
in the GenBank database using CLUSTAL-X software [56]. The sequences of the six isolates were also
compared with the EzTaxon database [57], and a similarity percentage of 96.5–99.5% was revealed.
A phylogenetic tree was built using the neighbor-joining method [58] with MEGA version 6.0 [59].
Tamura-3 parameter model (T92 + G + I) was selected based on BIC (2536.234) and AIC (2318.118)
values with 1000 bootstrap replicates [58,60].

4.5. Phytochemical Analysis

Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)

TPC in the methanolic extract of strain DBT34 was determined spectrophotometrically using
the Folin–Ciocalteu (FC) reagent. Gallic acid was used to generate a standard curve in the range
of 10–1000 mg/mL. A 200 µL volume of assay sample was prepared by combining 10 µL of sample
extract with 90 µL FC reagent. This solution plus 100 µL of 15% of sodium carbonate were added to
individual wells of 96-well plates. TPC was quantified as mg of Gallic acid equivalents (GAE) [61].
The total flavonoids content (TFC) in the methanolic extract of DBT34was determined using the
aluminum colorimetric method. The standard curve of Quercetin solution in methanol was prepared
with concentrations ranging from 0 to 500 µg/mL and absorbance was recorded at 420 nm with a UV-vis
microplate spectrophotometer (MultiscanTM GO, Thermo Scientific, MA, USA). A total of 100 µL of
sample extract (10–100 ug/mL) was mixed with 200 µL of 2% aluminum trichloride and used in the
TFC assay. TFC was quantified as µg of Quercetin equivalents (QE) per mg of DW [62].

4.6. Determination of Antioxidant Potential

DPPH Radical Scavenging Assay and ABTS Radical Cation Decolorization Assay

The antioxidant potential of a methanolic extract of strain DBT34 was determined using a free
radical DPPH scavenging assay and ABTS radical cation decolorization assay.

The ability of a methanol extract of DBT34 to scavenge the DPPH free radical was determined by
using the stable 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH). Briefly, for the DPPH scavenging assay,
100 µL of different concentrations (10–100 µg/mL) of the methanolic extract was placed in 96-well plate
and mixed with 200 µL of DPPH solution (0.1 mM). The samples were kept in the dark for 39 min after
which absorbance was recorded at 517 nm using a multi-scan UV/Vis spectrophotometer ((MultiscanTM

GO, Thermo Scientific, MA, USA). [63]. Ascorbic acid was used as positive control, methanol as
a negative control and extract without DPPH was used as a blank. Results were expressed as a
percentage reduction of DPPH absorption compared to control. In addition, the antioxidant potential
of a methanolic extract of strain DBT34 was also determined with a 96-well plate method using an
ABTS radical cation scavenging assay. Ascorbic acid, methanol, and extract without ABTS were used
as positive, negative, and blank controls, respectively. The ABTS radical cation decolorization activity
was calculated according to the method described by Re et al. [32].
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4.7. Cytotoxicity

4.7.1. Cell Lines and Culture Medium

Three cancer cell lines (HepG2, MCF7, and AGS) were obtained from NCCS, Pune, India.
Cancer cells were grown in Dulbecco’s Modified Eagle’s medium (DMEM) media (Sigma-Alderich,
USA) amended with 10% bovine serum, 100 µg/mL of streptomycin, 5 µg/mL of amphotericin B,
and 100 IU/mL of penicillin and cultured at 37 ◦C in a humid environment and 5% atmospheric CO2.
All of the analyses were carried out as described by Tan et al. [31].

4.7.2. Cytotoxicity Assay

The MTT test was used to measure the cytotoxicity of the methanolic extract of DBT34 against
three cancer cell lines. A total of 1.0 × 104 cells per 100 µL of media were placed in 96-well plates.
The plates were cultured in an incubator at 37 ◦C and 5% CO2 for 24 h. Initial cytotoxicity of a
500 µg/mL concentration of the methanolic extract was tested against all three cell lines and the results
indicated that the extract had significant cytotoxicity against HepG2 cells. Based upon the preliminary
results, the extract was diluted to different concentrations (10, 25, 50, 100, and 250 µg/mL), and their
cytotoxicity against HepG2 cells was evaluated. Untreated cells served as a control. The methodology
of the MTT assay was previously described by Tan et al. [31].

4.8. Determination of Volatile Organic Compounds (VOCs) Using Gas Chromatography-Mass
Spectroscopy (GC/MS)

A methanolic extract of Streptomyces sp. strain DBT34 was used to identify VOCs using GC-MS.
The GC-MS (Clarus 680) column was packed with Elite 5MS and had a size of 30 m× 0.25 mm ID× 250µmdf.
The compounds present in the extract were separated using Helium gas as a carrier at a constant
flow of 1 mL/min. The instrument temperature was 260 ◦C when 1 µL of extract sample was injected.
The oven temperature was set as follows: 60 ◦C (2 min), followed by 300 ◦C, increasing at a rate of
10 ◦C min−1. Samples were exposed to 300 ◦C for 6 min. The mass detector conditions were as follows:
240 ◦C for transfer line and ion source temperature, and the ionization mode electron impact was set at
70 eV, with a scan time and interval of 0.2 s and 0.1 s, respectively. Obtained spectra were compared
with a local copy of the NIST (2008) library database.

4.9. Antidiabetic Assay

4.9.1. Drugs and Chemicals

The commonly prescribed DPP-4 inhibitor drug, sitagliptin, was administered as a 25mg tablet by
calculating dose (2.5 mg/kg/day), along with a tablet containing 4 mg dexamethasone. Both drugs
were purchased from a local pharmacy.

4.9.2. Animals

Healthy Wistar rats, weighing 170–190 gm, were maintained in polypropylene enclosures at a
standard photoperiod (14 h light: 10 h dark) under controlled environmental conditions (26 ± 1 ◦C)
and fed a standard laboratory feed (Gold Mohur feed, Hindustan Lever Limited, Mumbai, India) with
water ad libitum. Animals were maintained as per the guidelines of the CPCSEA (Committee for
Control and Supervision of Experiments on Animals), Ministry of Environment, Forest and Climate
Change, Govt. of India (Reg. No.1646/GO/a/12/CPCSEA, valid up to 27.03.23). Approval date by
CPCSEA was 29.03.2019.

4.9.3. Induction of Type 2 Diabetes

Type 2 diabetes was induced by providing a high sucrose diet and the oral administration of
dexamethasone (corticosteroid) at a calculated dose of 1.0 mg/Kg for three weeks, as described in
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previous studies [64–66]. Levels of glucose and insulin were analyzed from the first day to the end of
the third week. Food intake, daily water consumption, and animal activity were also recorded on days
7, 14, and 21. The diabetic status of the animals was determined using homeostatic model assessment
(HOMA) indices (HOMA-IR, HOMA β%, and HOMA sensitivity).

4.9.4. In-Vitro DPP-4 Inhibition Assay

DPP-4 inhibition by the microbial extract and by sitagliptin was assessed based on the cleavage
of Gly-Pro-p-nitroanilide by the DPP-4 enzyme resulting in the production of a stable chromophore.
DPP-4 inhibition activity of the microbial extract and sitagliptin was assessed by determining the
release of 4-nitroaniline from the assay mixture comprising 0.1 M Tris-HCl (pH 8.0) and 2 mMGly-Pro
p-nitroanilide (substrate). The assay mixture was kept at 37 ◦C, and the reaction was terminated by
the addition of sodium acetate buffer (pH 4.5). Absorbance was recorded at 405 nm using a UV-VIS
Spectrophotometer [67,68]. Percent inhibition was calculated using the following formula:

% inhibition =
Absorbance of vehicle control−Absorbance of inhibitor

Absorbance of vehicle Control
× 100

4.9.5. Biochemical Assessments of Serum

Glucose, Insulin, HbA1C and Lipid Profile

Serum insulin [69], HbA1C [70], glucose [71], and the lipid profile including total cholesterol [72],
HDL-cholesterol [73], and triglyceride [74] were assessed using commercially available kits. The level
of LDL-cholesterol and VLDL cholesterol were calculated using Friedewald’s formula [75].

LDL-C = (TC) − (HDL-C) − (TG/5)

4.9.6. Homeostatic Model Assessment (HOMA)

HOMA indices, including HOMA-IR (insulin resistance), HOMA-β (β-cell function), and insulin
sensitivity (IS) were calculated using a formulated equation in Excel developed by the Diabetes Trials
Unit (DTU), a registered UK Clinical Research Collaboration Clinical (UKCRC), and a registered
Clinical Trials Unit [76,77].

HOMA− IR =
Insulin (U/L) × Blood Glucose(mmol/L)

22.5

HOMA−β =
20 × Insulin (U/L)

Blood Glucose (mmol /L)
− 3.5

Insulin sensitivity (IS) =
1

[(Fasting Insulin (U/L) × Log (Fasting glucose (mmol/L))]

4.9.7. Serum Antioxidant Assay

Antioxidant enzymes, including catalase, glutathione (GSH), superoxide dismutase (SOD),
and lipid peroxidase (LPO) in serum, were determined using standard methods [78–82]. LPO levels
were determined based on thiobarbituric acid reactive substances (TBARS), and GSH was determined
with the use of Ellman’s reagent (5,5′-dithiobis-2-nitrobenzoic acid (DTNB)), which produces a product
that can be quantified spectrophotometrically at 412 nm. Catalase and SOD activity were measured
using the Beauchamp and Fridovich methods [83,84].

4.9.8. Histopathological Studies

Overnight fasted animals were autopsied under mild anesthesia, and the pancreas of the sacrificed
rats were collected for histopathological examination. The collected pancreases were fixed in 10%
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formalin and subjected to gradual dehydration (alcohol series of 30%, 50%, 70%, 90%, and 100%),
clearing, and paraffin embedding. Tissues were sectioned at 5 µ; sections were placed on glass slides,
deparaffinized, and stained (H&E) using a standard protocol [85–87]. Clinical observations were made
under a light microscope (Leica-DM RA, The Netherlands), and sections were photographed using a
microscope-mounted camera.

4.10. Plant Growth Promotion Assay in Chickpea Plants (Cicer Arietinum)

Antioxidant Assay

To determine the effect of Streptomyces sp. strain DBT34 on the antioxidant activity in chickpea
plants, an in-vivo experiment was conducted which involved treating chickpea seedlings with DBT-34
and letting the plants grow for four weeks. After that time, a methanolic extract (50–500 µg/mL) was
prepared from the untreated four-week-old chickpea plants (control) and chickpea plants treated with
Streptomyces sp. strain DBT34. The methanolic extract was used to conduct a DPPH radical scavenging
assay and ABTS radical cation decolorization assay [32,63].

4.11. Statistical Analysis

A Tukey’s multiple range test (p < 0.05) was used to determine statistically significant differences
between the experimental materials and the controls using SPSS software.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/19/7364/s1.
Figure S1: Growth promotion of chickpea plants induced by Streptomyces sp. strain DBT34 under greenhouse
conditions, (A) Growth of untreated (control) chickpea plants; (B) Growth of chickpea plants treated with
Streptomyces sp. strain DBT34 under greenhouse conditions.
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