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Abstract: Necroptosis has emerged as an exciting target in oncological, inflammatory, neurodegener-
ative, and autoimmune diseases, in addition to acute ischemic injuries. It is known to play a role in
innate immune response, as well as in antiviral cellular response. Here we devised a concerted in
silico and experimental framework to identify novel RIPK1 inhibitors, a key necroptosis factor. We
propose the first in silico model for the prediction of new RIPK1 inhibitor scaffolds by combining
docking and machine learning methodologies. Through the data analysis of patterns in docking
results, we derived two rules, where rule #1 consisted of a four-residue signature filter, and rule
#2 consisted of a six-residue similarity filter based on docking calculations. These were used in
consensus with a machine learning QSAR model from data collated from ChEMBL, the literature,
in patents, and from PubChem data. The models allowed for good prediction of actives of >90,
92, and 96.4% precision, respectively. As a proof-of-concept, we selected 50 compounds from the
ChemBridge database, using a consensus of both molecular docking and machine learning methods,
and tested them in a phenotypic necroptosis assay and a biochemical RIPK1 inhibition assay. A total
of 7 of the 47 tested compounds demonstrated around 20–25% inhibition of RIPK1’s kinase activity
but, more importantly, these compounds were discovered to occupy new areas of chemical space.
Although no strong actives were found, they could be candidates for further optimization, partic-
ularly because they have new scaffolds. In conclusion, this screening method may prove valuable
for future screening efforts as it allows for the exploration of new areas of the chemical space in a
very fast and inexpensive manner, therefore providing efficient starting points amenable to further
hit-optimization campaigns.

Keywords: necroptosis; RIPK1; inhibitors; docking; machine learning; QSAR; virtual screening

1. Introduction

Necroptosis is a form of programmed necrosis which has been explored for clinical
application in cancer, inflammatory, neurodegenerative, and autoimmune diseases, in
addition to acute ischemic injuries [1]. This is a non-apoptotic and caspase-independent
cell death pathway triggered by death receptor ligands, tumor necrosis factor ligand
superfamily member 6 (FasL), and tumor necrosis factor (TNFα), leading to a sequence
of key events from transcription to stabilization and post-translational modifications of
necrosome components, namely: (1) activation of tumor necrosis factor receptor 1 (TNFR1);
(2) receptor interacting protein kinase-1 (RIPK1) ubiquitination by cellular inhibitor of
apoptosis proteins (cIAPs) and phosphorylation by transforming growth factor-β-activated
kinase 1 (TAK-1); (3) activation of receptor interacting protein kinase-3 (RIPK3) by RIPK1;
(4) phosphorylation of mixed lineage kinase domain-like pseudokinase (MLKL) by RIPK3;
and (5) assembly of an MLKL oligomer which translocates into the cell membrane, leading
to cell lysis [2,3].
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Inhibition of necroptosis as a therapeutic approach is very appealing because one of
its key biological players, RIPK1, is a kinase that has an unusual allosteric binding site
among kinases characterized by the so-called “DLG-out/Glu-out” inactive conformation [4].
This hallmark lends itself to highly specific molecular targeting. Following the discovery
of the first specific inhibitor, necrostatin-1 (Nec-1) [5], multiple highly selective RIPK1
inhibitors were discovered through biological screening paired with structure-activity
relationship (SAR) optimization, some of which were co-crystallized with their kinase
target [4]. Among the molecules discovered, five have entered clinical trials for multiple
conditions: GSK2982772 (Phase II, ulcerative colitis; Phase II, rheumatoid arthritis; Phase
II, psoriasis), DNL747 (Phase I, Alzheimer’s disease), SAR443122 (Phase Ib, coronavirus
disease 2019; Phase II, lupus erythematosus), SAR443820 (Phase I, multiple sclerosis),
GSK3145095 (Phase II, pancreatic cancer), GFH312 (Phase I, inflammatory conditions) [6,7].
The uniqueness of the allosteric pocket is particularly desirable in targets such as kinases,
as these are particularly prone to a high degree of promiscuity [8].

RIPK1 has proven to be a useful druggable target to modulate distinct disease pro-
cesses [9]. However, so far, the discovery of RIPK1 inhibitors has typically relied on in vitro
or small in silico screening where, at best, a focused set of compounds derived from already-
known scaffolds is tested. Structure-activity relationship (SAR) studies resulting from such
screening efforts are therefore not necessarily applicable to other new scaffolds. Gaining
insight into the broader patterns that describe what enables a compound to bind to the
allosteric back pocket of RIPK1 would therefore be extremely useful in guiding the opti-
mization, design, and/or selection of new active compounds. Although many other kinases
have been explored to develop in silico models using various structure- and ligand-based
methods that predict inhibitors [10], only one study on QSAR modeling of RIPK1 inhibitors
to find new SARS-CoV-2 therapies has been reported to date, where authors report no test
performance for their classification model and low test performance (R2 < 0.35) for the
regression model [11].

To bridge this gap, in this work we attempt to glean new information on the molecular
determinants that drive RIPK1 inhibition by employing a synergistic approach of molecular
docking and machine learning methods to a diverse set of active and inactive compounds.
Analysis of the docking poses of different sets of RIPK1 inhibitors uncovered a four-residue
signature that is statistically more frequent in inhibitors than in non-inhibitors. A consensus
between this rule and quantitative SAR (QSAR) model predictions derived from machine
learning was used to screen new inhibitor candidates from a diverse library of compounds.
As a proof-of-concept of the usefulness of the knowledge gained from our in silico studies,
we tested a small set of compounds using a phenotypic necroptosis assay and a biochemical
(cell-free) assay with human RIPK1. We were able to identify seven compounds that are
moderately active, which may be used as starting points to devise new families of RIPK1
inhibitors. This work indicates that our in silico screening protocol can be used as a fast
and inexpensive approach to identify new diverse compounds that can successfully be
employed as starting points for further development. This work is a pioneer attempt to
propose predictive structural rules for RIPK1 inhibition.

2. Methods
2.1. Assembly of the Dataset of RIPK1 Inhibitors

We assembled a dataset of RIPK1 inhibitors by collating compounds and their experi-
mental bioactivity data from ChEMBL 25 [12], a recent RIPK1 screen by Harris et al. [13]
(termed “the Harris dataset” throughout), and a patent recently filed by Roche (termed “the
Roche dataset” throughout) [14]. Compound structures from the RIPK1 inhibitors dataset
were obtained either from the ChEMBL 25 SQL database (as SMILES), the raw data down-
loaded from PubChem BioAssays (as SMILES), or from their corresponding references (as
2D structure images or IUPAC names). Whenever IUPAC names were available, OPSIN [15]
was used to obtain the corresponding SMILES. Whenever structures were only available as
a 2D image, OSRA [16] was used to convert the images to SMILES.
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ChEMBL data was accepted according to typical high-quality curation parameters,
such as confidence score >7, bioactivity relation taking values of “=” or “>” (for activities
above 2 µM) or “<” (for activities below 2 µM). Assays were required to be type “B”
(for binding), and the organism was set as ”Homo sapiens.” As the aim was to build a
classification model that distinguished between active and inactive compounds, all data
were subsequently filtered by measurement type to include only IC50, Ki, or Kd. This type
of aggregation is common for binary classification purposes [17,18].

The resulting activity readouts will be termed “bioactivities” throughout this work,
and a compound was deemed active if it demonstrated bioactivity below 2 µM.

Canonical SMILES annotated in ChEMBL were washed and standardized using
MOE2019.02 package [19] and MolVS 0.1.1 (https://molvs.readthedocs.io/en/latest (ac-
cessed on 14 July 2022)), where structures were converted into the dominant tautomer
and protomer at pH = 7.4. The resulting structures were converted to InChIKeys using
RDKit [20] to remove duplicates and each unique structure was assigned the minimum
value among its duplicates.

At the end of this workflow, a total of 248 datapoints were retained from ChEMBL.
Additionally, to enrich the chemical space covered, inhibitory data was added to the
ChEMBL data from Harris et al. [13], the “Harris dataset” (N = 72), and from a 2019 Roche
patent [14], the “Roche dataset” (N = 118). The activity distribution of these three merged
datasets is portrayed in Supporting Figure S1. The resulting bioactivity data was binarized,
using an activity threshold of 2 µM, leading to a dataset composed of 71% actives and 29%
inactives. The two classes were subsequently balanced by adding 186 inactives from a
confirmatory necroptosis inhibition assay performed on L929 cells, available in PubChem
BioAssays (AID:463117, pubchem.ncbi.nlm.nih.gov/bioassay/463117 (accessed on 14 July
2022)). These inactive compounds were randomly sampled from a total of 277 PubChem
compounds indicating necroptosis inhibition <5%. This type of balancing with inactive
data has been proven to improve machine learning performance [17]. The final RIPK1
inhibitors dataset was composed of 624 compounds. The complete data assembly workflow
is summarized in Figure 1.
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2.2. Preparation of Compound Structures for QSAR

All compounds from various datasets were subjected to molecular docking and ma-
chine learning/QSAR calculations, therefore, they underwent proper structure preparation
prior to any calculations. All compounds were stripped of any salts and underwent struc-
ture standardization using MolVS 0.1.1 (https://molvs.readthedocs.io/en/latest (accessed
on 14 July 2022)) and subsequent correction of protonation and tautomer states using
MOE2019.02. Additionally, compounds were energy-minimized with Amber10:EHT in
MOE2019.02 using a tolerance threshold of 0.01. Stereochemistry was kept unchanged
throughout all compound preparation.

2.3. Molecular Descriptors, Morgan Fingerprints, Protein-Ligand Interaction Fingerprints (PLIFs),
and PLIFs Similarity

The compounds were represented in the form of different types of molecular de-
scriptors that can be divided into three different classes: (1) Physicochemical descriptors
(N = 200), calculated from the standardized SMILES using RDKit; (2) Morgan fingerprints,
calculated in RDKit, for a radius = 2 and 1024 bits; (3) Protein–ligand interaction finger-
prints (PLIFs), calculated using PLIP [21] (python implementation), which exhaustively
characterizes all possible residue–ligand contacts for a pose obtained with molecular dock-
ing. PLIP detects contacts based on atom type complementarity, distance, and angle, which
were parameterized by the developers using experimental values. In the PLIF signature of
a compound, for a residue contact to “exist,” at least four out of the top five poses must
indicate some form of interaction with that residue, thus serving as a “robust” PLIF signa-
ture. This was used to avoid any bias of PLIFs towards the first pose and was prompted
by the unpredictable relationship between the first pose’s docking score and activity (see
results section).

We used PLIFs’ similarity for some analyses, which corresponds to the Tanimoto
similarity between the ligand’s interaction fingerprint and that of the co-crystal ligand in
the PDB being used for the docking calculations under analysis.

2.4. Molecular Docking Protocol Validation and Optimisation

All docking calculations were performed using GOLD Version 5.7.1 [22], in which the
scoring function, number of scored poses, and protein structure were optimized. At the
time this work was being developed, eight human RIPK1 X-ray structures of reasonable
resolution (<3 Å) were available in the Protein Data Bank [23], namely, 4ITH, 4ITI, and
4ITJ [24], 4NEU [25], 5HX6 [26], 5TX5 [27], 6C3E, and 6C4D [28]. The structures were
stripped of all molecules other than the protein and the co-crystal ligand (waters and
ions) and were then aligned. Each PDB is a RIPK1 dimer where each chain is interacting
with a ligand molecule and, since different chains are very similar and often possess
alignment RMSDs below 0.5 Å, chain A was selected by default. Finally, protomer and
tautomer states were corrected using the Protonate3D functionality to optimize the protein’s
intramolecular hydrogen bond network. All preparation steps described above were
performed in MOE2019.02.

The docking sphere set defined in the GOLD’s configuration file had a 10 Å radius
and a center placed in ASP156’s nitrogen (a crucial residue for the interaction with ligands).
First, a validation step was performed with all protein structures where each co-crystal
ligand was subjected to self-docking against its original X-ray protein, and cross-docking
against the remaining seven proteins. Then, an exhaustive search for the best match of
scoring function (ChemPLP, GoldScore, ChemScore, and ASP) and X-ray structure (listed
above) was performed for 1000 GA runs. Here, the best set of parameters is the one that best
allows the reproduction of the experimental pose of the ligands (i.e., RMSD ≤ 2 Å between
docked and experimental pose). After the best structure and scoring function pair were
found, the calculations were re-run for 100 and 50 poses to optimize the exhaustiveness
of pose exploration. The optimal parameters discovered (5HX6, GoldScore, 50 poses)

https://molvs.readthedocs.io/en/latest
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were then applied to perform molecular docking on around 260 K compounds from the
ChemBridge database (more details below).

Figure 2 portrays a cross-section of longitudinal view (A) and a view from the bottom
of the pocket (B) of the docking sphere set in GOLD, surrounding the binding pocket and
the X-ray ligand (cyan) of 5HX6. The region inside the sphere corresponds to the allosteric
back pocket of RIPK1, which is “L” shaped and quite narrow, and is immediately adjacent
to the ATP-binding pocket which, in Figure 2A, begins at the open end of the back pocket.
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2.5. Development of a QSAR Model of RIPK1 Inhibition Using Machine Learning

To build a QSAR model able to predict RIPK1 inhibitors, we employed a random
forest (RF) algorithm (scikit-learn [29]) trained on 70% of the RIPK1 inhibitors dataset
(training set) and tested on the remaining 30% (test set) (random sampling). The data was
annotated with three types of descriptors: 200 physicochemical descriptors from RDKit,
1024-bit Morgan fingerprints from RDKit and 6 key residue contacts previously selected
from analysis of the ChEMBL data. Using the training set only, we optimized the number
of trees (ranging between 100 and 1000, with a step = 100) and tested these against all
possible combinations of feature subsets (physicochemical descriptors, Morgan fingerprints,
and residue contacts). The best combination of several trees and feature set was selected
according to the highest 10-fold cross-validation accuracy. The final model was then built
as an ensemble of 100 RF models, trained with the optimal parameters previously selected.
Each of the 100 RF models was trained with alternating random samples of 90% of the
training set. The predicted class for each compound corresponds to the majority vote cast
by the ensemble of random forest models, as exemplified in the scheme of Figure 3 and
calculated as portrayed in Equation (1):

majorityclass = {i f
RFs(vote = active)

100
× 100 > 50% : active; else : inactive} (1)

This RF ensemble was then applied to the test set to measure its ability to correctly
predict new active compounds. Finally, as a proof-of-concept for its usefulness, we screened
a large library of about 260 K commercial compounds from ChemBridge Corporation (more
details below). The overall workflow described above is portrayed in Figure 4.
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2.6. Virtual Screening and Compound Selection

The dataset of compounds to screen was gathered from the union of the EXPRESS-Pick
and CORE libraries available from ChemBridge Corporation (~1.2 M unique compounds).
All structures were downloaded from the vendor’s website in the SDF format, and were
submitted to the compound preparation procedure. To allow for a more time-efficient
screening (particularly in the case of docking), the dataset was filtered to keep compounds
with a quantitative estimate of drug-likeness [30] (QED) > 0.85 and without PAINS sub-
structures [31]. Both parameters were assessed using RDKit and these two filters produced
a final dataset of 268,031 compounds which were screened through the docking and the
QSAR platforms.

Hit compounds were selected from the overlap between the four-residue signature
(LEU70, VAL75, ASP156, LEU157) and the PLIFs similarity >0.83 rule (details in the results
section). PLIF similarity was calculated based on six key residues (LEU70, VAL75, LEU78,
LEU129, ASP156, ASP157) selected for being robust interactions across the different PDB
structures of RIPK1 (see discussion section). These 2 filters produced 1744 candidates,
compounds that can simultaneously contact all 4 residues and indicate a similar binding
mode (only considering the 6 key residues selected) to that of the co-crystal ligand in
5HX6. Candidates were selected for purchase using a consensus between the previous
rules and the QSAR predictions (N = 66). To reduce this number to a set of compounds to
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test, as well as to prevent over-extrapolating from the known chemical space from which
the 4-residue signature was derived, only the 50 compounds from the ChemBridge dataset
with the largest common substructure to the Harris dataset were selected (named “in silico
hits” set).

2.7. Phenotypic Assay of Necroptosis Inhibition

Fifty selected in silico hits were purchased and dissolved in dimethyl sulfoxide (DMSO,
Sigma-Aldrich, St. Louis, MO, USA) for a final concentration of 100 µM after which three
were excluded due to solubility issues. These were tested in a phenotypic assay of necrop-
tosis inhibition using the L929 murine fibrosarcoma cell line (ATCC, Manassas, VA, USA).
L929 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), supplemented
with 10% heat-inactivated fetal bovine serum and 1% antibiotic/antimycotic (all from
Gibco, Thermo Fisher Scientific, Paisley, UK), and maintained at 37 ◦C under a humidified
atmosphere of 5% CO2. L929 cells were seeded in 96-well plates at 0.5× 104 cellular density.
After 24 h, cells were co-incubated with 10 ng/mL murine TNFα (Peprotech, London, UK)
for necroptosis induction and 30 µM of selected hits for an additional 8 h. Nec-1 (Sigma-
Aldrich) at 30 µM was used as a positive control for necroptosis inhibition. Adenylate kinase
(AK) released from damaged cells was determined using the ToxiLightTM Non-Destructive
Cytotoxicity BioAssay Kit (Lonza, Basel, Switzerland) according to the manufacturer’s
instructions. The luminescence signal was recorded using a GloMax®MultiDetection Sys-
tem (Promega, Madison, WI, USA). All measurements were performed in duplicate and
all assays were performed in triplicate. AK readings were used as a cell death readout
and the results were reported as fold-to-control (DMSO) to normalize for variability across
different plates.

2.8. Biochemical Assay of RIPK1 Inhibition

RIPK1 activity was tested upon treatment with each compound using a radiometric
ATP-competitive assay through the KinaseProfiler™ service provided by Eurofins Dis-
covery Services (assay 16-022KP). Briefly, the compounds were prepared in 100% DMSO
and added to a final reaction volume of 25 µL containing human RIPK1 (hRIPK1), 8 mM
MOPS (pH 7.0), 0.2 mM EDTA, 100 µM KKRNRTLTV, 10 mM Magnesium acetate, and
[γ-33P-ATP] (concentration used according to RIPK1’s Km). This mixture was incubated for
40 min at room temperature, after which 5 µL of a 3% phosphoric acid solution was added
to stop the reaction. Then, 10 µL were collected from the reaction medium and spotted
onto a P30 filtermat, washed three times for 5 min with a solution of 75 mM phosphoric
acid once in methanol, followed by drying and scintillation counting.

2.9. Performance Evaluation

Prediction performance was measured using the precision for active compounds and
overall accuracy, which were calculated using Equations (2) and (3), portrayed below:

Precision =
True Actives

Predicted Actives
(2)

Accuracy =
True Actives + True Inactives

Predicted Actives + Predicted Inactives
(3)

Additionally, we used enrichment metrics such as the ratio of actives (inhibitors) over
inactives (non-inhibitors) or % of enrichment for actives (truly predicted actives/predicted
actives) × 100.

2.10. Applicability Domain

To minimize the acceptance of over-extrapolated predictions, i.e., predictions that
are outside the applicability domain of the machine learning model, an adaptation of
the reliability-density neighborhood (RDN) metric [32] was used to control the accepted
prediction produced by the QSAR model. Similarly, over-extrapolation produced by the
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docking model was controlled by enforcing that a sufficiently large common substructure
was shared with any compound in the Harris dataset. This was measured as the number of
heavy atoms of the largest maximum common substructure between a query compound
and each compound in the Harris dataset. This applicability domain filter for docking
resulted from preliminary experiments where we observed that using the contacts signature
selected many inactive compounds from a proprietary set of compounds, with small
common substructures shared with the RIPK1 inhibitors dataset.

2.11. Analysis of Chemical Novelty for In Silico Hit Compounds

We determined the maximum common substructure (MCS) (or largest common scaf-
fold) between each in silico hit compound and all compounds in the full RIPK1 dataset
(ChEMBL, Roche, Harris, and PubChem datasets). We then gathered the pairs of hit + train
compounds that shared the largest scaffold and plotted the ratio of shared/non-shared
heavy atoms in every pair.

2.12. Data Analysis and Visualisation

The machine learning step was performed using Scikit-learn 0.23.2 and raw data
handling and analysis were done using pandas 0.24.1, NumPy 1.15.4, and SciPy 1.2.1. Han-
dling of chemical structures, calculation of molecular descriptors and Morgan fingerprints,
maximum common substructure analysis, R-group decomposition, and production of 2D
images were performed using RDKit 3 March 2020. Dunnett’s test, designed for multiple
comparisons against a control, was implemented in Python 3.7.4 as described by Kanji [33].
This test was applied to analyse the significance of the observed differences between com-
pounds and the TNFα control in the phenotypic assay. A p-value < 0.05 was considered
significant. Three-dimensional images and analysis of pose positions were produced using
PyMOL v1.8.4.0 [34]. A comparison of the different binding sites was performed using
the Electron Density Support for Individual Atoms (EDIA) module [35] and the SIENA
module [36] in the ProteinsPlus web server [37].

The graphical representation of the chemical space was performed by running all com-
pounds through scikit-learn’s t-SNE [38] function, applied to 1024-bit Morgan fingerprints.
This effectively compresses the original 1024 dimensions to two dimensions where, in theory,
compounds retain relative proximity to each other, similar to the 1024-dimensions space.

3. Results and Discussion
3.1. Chemical Space Analysis of RIPK1 Inhibitors

At the beginning of this project, both chemical structures and bioactivity data of RIPK1
inhibitors were collected from ChEMBL (2008–2018). However, we later realized that
inactives were under-represented (40%) and that only a relatively small amount of data
(N = 248) fulfilled typical quality criteria (see details in the methods section). To overcome
this issue, and to allow for the widest coverage in chemical space possible when training a
machine learning QSAR model, we manually extracted additional data from two additional
public sources, which yielded two datasets each—the Harris dataset and the Roche dataset
(see methods section for details). This yielded a considerable expansion in chemical space
coverage, which originally corresponded to just the yellow points, as portrayed in Figure 5.
To inspect the chemical diversity observed by the distribution of points in Figure 5, we
clustered compounds and gathered each cluster’s largest common scaffold (i.e., its MCS).
All clusters are identified with their corresponding scaffold in Figure 5. This confirmed that
new scaffolds were added with the new data collected. High chemical diversity was also
detected through the occurrence of a large portion of compounds with no cluster affiliation
(N = 60) (Figure 5). This complete dataset was used subsequently to build a QSAR model.
A molecular docking-based screening model (i.e., interaction rules) was also built but using
ChEMBL data alone, which occurred prior to new data being gathered. Thus, we used the
additional datasets to test the prediction rules previously derived.
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3.2. Validation of Molecular Docking Calculations

After the data was collected and analyzed, we sought to build a predictive molecular
docking model. Prior to any docking calculation, we optimized the best combination of pro-
tein structure and scoring function, which entailed testing eight crystal structures available
at the time experiments were first started (listed in the methods section) against four scoring
functions implemented in GOLD. No protein-scoring function pair was able to reproduce
all the ligands’ experimental pose (i.e., yield a docked pose with RMSD ≤ 2 Å of the exper-
imentally determined pose in cross-docking validation). Supporting Figure S2. A indicates
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that GoldScore reproduced the largest number of experimental poses in 6 PDB structures
(4ITH, 4ITI, 4NEU, 5HX6, 5TX5, and 6C3E), followed by ChemPLP which did so for 5 PDB
structures. After selecting GoldScore, cross-docking calculations for 1000 runs indicate that
structure 5TX5 reproduced the largest number of co-crystal ligands (Supporting Figure S2B)
however, re-running docking for exhaustiveness of 50 runs indicates 5TX5 among the struc-
tures with high variance between the top poses achieved (Supporting Figure S3). This
is an indication that 5TX5 might lack robustness in the poses produced for any given
screened compound. 5HX6, conversely, indicated the robustness of all poses produced in
cross-docking regardless of exhaustiveness level. Therefore, the GoldScore fitness function
paired with 5HX6 as reference structure were the selected conditions to run all docking
calculations. Search exhaustiveness of 50 runs was used instead of 1000 as it produced
results comparable to 1000 poses (Supporting Figure S4) and allows for a viable calculation
time for large datasets.

The inability to reproduce the experimental pose of all ligands appears to be due to the
varying spatial constraints of the different binding pockets across structures, as calculated
with EDIA (Supporting Table S1), which indicates that 4ITH, 4ITI, and 4ITJ have a less
elongated pocket (less “tube-like”), whereas 5HX6, 5TX5, 6C3E, and 6C4D have longer
pockets, evident by a smaller ellipsoid b/a ratio for the second group. 4NEU also appears
to demonstrate an approximately tubular shape, similar to the second group. However,
running SIENA with the “ligand pose comparison” option on the ProteinsPlus webserver
indicates that, regardless of the PDB structure used as a query, 4NEU is never included as
possessing a similar binding site to other RIPK1 PDB structures. This implies that 4NEU
has a very different binding site from all other PDB structures. As a result, it would be very
challenging for anyone to reproduce all co-crystal ligands included in this study. Despite
the issue of the variable size/shape of RIPK1’s allosteric back pocket, 5HX6 demonstrates
the ability to robustly reproduce the pose of both larger (5HX6, 5TX5, and 6C4D) and
smaller (6C3E) ligands (different docking trials produce similar RMSD).

3.3. Docking Score and Ligand Efficiency Do Not Correlate with Activity

Using the parameters previously optimized, we first performed a molecular docking
run for ChEMBL dataset to establish if docking score (or ligand efficiency, LE) would be
good predictor of RIPK1 inhibitors. As we envisioned screening a large commercial library
at the end of the project, we used 50 poses to build all predictive models and rules derived
from docking data, after ensuring that the scores obtained using 1000 and 50 poses were
sufficiently similar for the ChEMBL dataset (Supporting Figure S4).

After docking the ChEMBL dataset, the results obtained clearly prove that the score
alone does not indicate a reliable correlation with bioactivity (Figure 6), observed by a
drop at the right end of the enrichment curve, which implies that the highest 15% docking
scores or LE values portray a steady increase in inactives. A good curve is characterized
by a steady increase or maintenance of the percentage of actives retrieved, as the selection
cut-off becomes stricter, therefore enriching the selected compounds with actives.

The enrichment drops at the top of the docking scores rank, likely as a result of the
well-known limitations associated with docking scores which, when used alone, are prone
to rank compounds in a manner that does not correlate with activity or affinity [39,40].
Rather, docking excels in the quality of docking poses produced hence we decided to
build a screening model based on the protein-ligand interactions that are associated with
these poses.

The decision to not directly use docking scores or ligand efficiency as a parameter to
select new compounds was later validated by results obtained with a new dataset consisting
of an aggregate of the PubChem (inactives), the Harris, and the Roche datasets (Supporting
Figure S5A). The results from these new data indicated that both docking outputs place
inactives in the same distribution as actives, with inactives occupying slightly higher values
in both parameters.
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Additionally, comparing the enrichment curve produced by docking and LE obtained
with 5HX6 versus using a more spherical pocket (i.e., 4ITH) confirms the initial hypoth-
esis that 5HX6 would allow larger coverage across different ligands, leading to a better
separation between active and inactive compounds (See Supporting Figure S5B).

3.4. PLIFs Similarity as a New Guideline to Find RIPK1 Inhibitors

The issue of lack of correlation between docking scores (or LE) and activity, which
led to a poor enrichment towards higher values of docking scores, prompted us to use an
alternative approach to harness the information produced by the docking calculations. To
do so, we calculated the protein–ligand interaction fingerprints (PLIFs), and used these to
quantify the PLIFs similarity of binding modes between each ChEMBL compound and the
reference X-ray ligand (portrayed in Figure 7, under “5HX6-lig”). This metric produced a
drastic improvement from the previous enrichment curve, as demonstrated by the grey
curve in Figure 8 (corresponding to PLIFs obtained with 5HX6), with enrichment of actives
reaching just below 90% (vs < 74% for LE). The PLIF similarity function also allowed us
to correct for compound size (following the same rationale for the correction applied to
docking scores, LE). A compound that shares all the interactions of the reference ligand by
virtue of simply being large would be penalized, as it also indicates additional contacts not
portrayed by the reference ligand.
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In an attempt to further improve the enrichment rate of the “all residues” curve in
Figure 8 (grey curve), we attempted to reduce the number of residues considered in the
PLIF similarity measurements, as some of the contacts might be solely a result of particular
characteristics of the structure of the reference ligand, and thus not well generalizable to
other compounds. To do so, we kept only the residues that interact with at least half of the
crystal structures (Figure 7), which resulted in the selection of six residues: LEU70 (seven
ligands), VAL75 (six ligands), and LEU78 (five ligands) which belongs to the binding loop,
LEU129 (five ligands) which belongs to the αE helix, and finally ASP156 (eight ligands)
and LEU157 (N ligands) which are the catalytic residues belonging to the DLG/DFG motif
found in the activation loop. LEU157 also participates in the regulatory spine and regulates
the access to the active site pocket [13]. Recalculating the similarity using exclusively
these six residues slightly improved the enrichment curve (Figure 8, red curve). From this
analysis, we concluded that PLIF similarity ranking >80 (i.e., 80th percentile) would be a
good cut-off to select inhibitors, as it allowed for covering the largest number of compounds
with sufficiently high enrichment (~80%) (this percentile cutoff corresponds to similarities
above 83%).

Testing the use of the six-residue PLIFs similarity on new datasets (Harris, Roche,
and PubChem inactives) indicated that the previously selected cut-off (>83% similarity)
only allows selecting three compounds from the test data. Such low data coverage means
that these additional datasets cannot truly test the PLIF similarity cut-off derived from
ChEMBL, which is likely because the external datasets have been intentionally created to
populate a novel chemical space. However, the Harris and Roche datasets demonstrate 92%
enrichment for actives at their own 80th percentile cut-off (which corresponds to 60% PLIFs
similarity), which indicates that PLIF similarity also correlates with activity in additional
datasets beyond ChEMBL. Surprisingly, when PubChem inactives were added to the two
previous datasets, the enrichment rate dropped to 38%, which indicates that inactives
overlap actives from Harris and Roche datasets with respect to PLIF similarities.

From all the results in this section, we conclude that PLIFs similarity can be used as an
indicator of activity, as it produced high enrichment among the Roche and Harris datasets
as well as with ChEMBL data, but it cannot be used as a sufficient condition for activity
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due to the simultaneous enrichment of PubChem inactives. Therefore, we sought to find
an additional criterion that could be used as a confirmatory tool to predict new actives.

3.5. Deriving a New 4-Residue Rule to Predict RIPK1 Inhibitors

To derive an interaction signature that is predictive of RIPK1 inhibition we performed
an exhaustive analysis of the key residue contacts (LEU70, VAL75, LEU78, LEU129, ASP156,
ASP157), using ChEMBL data alone. Observing each of the six residues individually does
not indicate a particularly good separation between actives and inactives (Figure 9A).
However, when higher complexity contact patterns were considered (i.e., all possible
combinations of 2, 3, 4, 5, and 6 residues, composing 57 combinations in total) it was
revealed that the 4-residue combination [LEU70, VAL75, ASP156, LEU157] was linked
with the largest difference of contacts in actives versus inactives (2.5 times more frequent in
actives than in inactives), and also accompanied by a significant coverage of actives (61%),
as portrayed in Supporting Figure S6.
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Figure 9. (A) Frequency (%) of contacts between the six key residues involved in binding with
active versus inactive compounds. (B) The six key residue contacts selected from common shared
contacts across RIPK1 X-ray structures. The four residues in grey correspond to the signature of
simultaneous residues that, as a group, are statistically more prevalent in actives than in inactives
across the multiple datasets.

All four residues simultaneously interact with 61% of actives but only with 25% of
inactives. This is aligned with the experimental knowledge gained from the different
X-ray structures, which indicates that, in order to successfully inhibit RIPK1, a ligand
must stabilize the protein in its inactive conformation by engaging multiple residues from
opposite sides of the allosteric back pocket simultaneously [24]. Therefore, it is reasonable
that multiple-residue engagement offers better differentiation between actives and inactives,
compared to observing single residue contacts. The original six residues selected earlier are
portrayed in Figure 9 (blue and grey residues), including the four residues associated with
actives (indicated in grey), and essentially suggest that multiple contacts with residues all
around the pocket are associated with the ability to inhibit RIPK1 (additional perspectives
of the pocket surrounded by these key residues is portrayed in Supporting Figure S7).

To assess whether the ability to predict actives can be extended to additional data,
we tested this four-residue rule on the Harris and Roche datasets which cover different
scaffolds than those in ChEMBL dataset. Figure 10 indicates that this structural signature
can successfully select actives.
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Figure 10. Performance of the 4-residue contact rule (LEU70, VAL75, ASP156, and LEU157) to filter
actives from inactives from RIPK1 inhibitors datasets. The simultaneous occurrence of these four
contacts is an adequate predictor of inhibition across the different subsets considered in this work
(ChEMBL, Harris, and Roche subsets).

Evaluating this signature of residue contacts in all inactives (N = 632) in the PubChem
phenotypic screen from which our inactives were drawn indicates that only 27% of com-
pounds establish contacts with all four residues simultaneously. This is additional evidence
in support of the value of this signature to predict binding leading to both inhibition and
induction of RIPK1’s activity.

From these analyses, we concluded that this four-residue signature was a robust rule
to predict RIPK1 actives, and it was used as a required condition to predict actives among
the ChemBridge library, alongside the PLIF similarity filter (which will be treated as a
non-essential pre-requisite).

3.6. Building a Machine Learning Model to Predict Necroptosis Modulators

Next, we focused on building a machine learning model that could provide a ligand-
based perspective to complement the two previous molecular docking-derived predictive
rules. The RIPK1 inhibition dataset (aggregate of all subsets, namely, ChEMBL, Harris,
Roche actives, and Pubchem inactives datasets), composed of 312 actives and 312 inactives,
was split into a training (70%) and a test set (30% of data). This split was kept fixed for all
models assessed in this work, by using the same random seed throughout. The training set
was used for modeling and model optimization, and the test set was reserved for the final
performance assessment. We ensured that the chemical space of the training and test sets
had comparable coverage (Figure 11), given that we want to maximize the chemical space
learned in training.

After hyperparameter optimisation the best 10-fold cross-validation accuracy
(89.9 ± 2.7%) was obtained when using a random forest of 700 trees, trained on molec-
ular descriptors and residue contacts. We provided the six key residues previously
uncovered as the residue contact descriptors, rather than providing the four-residue
signature derived from exploring trends in the six key residues. This ensures that the
machine learning model is free to derive its own trends from the data. This accuracy
level indicates that the establishment of a structure-activity relationship for RIPK1
inhibition was possible. These results led to the selection of molecular descriptors
and residue contacts as the optimal feature, set to build the final QSAR classification
model. The selection of the model architecture relying on cross-validation performance
is essential as it avoids overfitting (overinflated prediction performance against the
test set and potential loss of performance against new data).
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Finally, we built an ensemble of 100 random forest models using the parameters
previously optimized, as using an ensemble allows for more robust predictions (model
structure represented in Figure 12A). This model produced a precision for actives and
inactives of 87.9 and 87.6%, respectively, using no additional applicability domain filter.
Employing the RDN applicability domain method enabled even higher precision values
when more stringent limits were enforced (Figure 12B). However, the cost of using a
stricter cut-off is fewer “accepted” predictions (i.e., predictions accepted within any given
applicability domain cut-off). We opted for using a maximum applicability domain limit
of 0.03 (dashed line in Figure 12B) as this allows for a good compromise between a low
error rate among predicted actives (96.4% precision) and enough coverage (30% of test
compounds). Overall, this filter controls which predictions are accepted, considerably
decreasing the false positive rate, and has led to a precision of close to 100% (the rate at
which predicted and accepted inhibitors are actual inhibitors).
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Figure 12. (A) Conceptual representation of the QSAR model, which consists of an ensemble of
100 random forests where each random forest model is composed of 700 decision trees. The ta-
ble in the lower corner summarizes training and test performance. Tr: Training set, Te: Test set.
(B) Applicability domain curve of the final QSAR model, where % True Actives refers to the test set.

The most important descriptors in our QSAR classification model were related to steric
and electronic effects surrounding each atom in every molecule (MaxAbsEStateIndexm,
MaxEStateIndex, MinEStateIndex), van der Waals surface areas of low partial charge
(PEOE_VSA6), and non-polar atoms (SlogP_VSA5).
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The six residue contact descriptors were scored at around 50% of the importance
ranking within the QSAR model, which is not surprising given that the four-residue or
the six-residue PLIFs similarity is not applicable to all actives, but rather they work to
distinguish the actives they do cover from any inactives. Interestingly, LEU70 was placed
at the top 30% of the importance ranking in 1 of the 100 random forests in the ensemble.

Furthermore, docking results provided useful tridimensionality to the QSAR model.
A very common issue in QSAR modelling is the inability to set apart very similar structures
which have very different activities—the so-called “activity cliffs.” This is caused by the
fact that similar structures have largely the same 2D features. In this work, we observed
that PLIF similarity was able to differentiate activity cliffs (Sim > 0.65) that drastically differ
in activity (>0.5 µM of difference) (Figure 13).
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Figure 13. Six-residue PLIFs differentiate most of the activity cliffs in the RIPK1 inhibitors dataset. An
example of an activity cliff present in the RIPK1 inhibitors dataset is displayed, where two compounds
vary by a single methyl group, yet indicate a drastic difference in activity.

In an even more extreme case, upon analyzing the contact signature of two activity
cliff isomers reported by Harris et al. [13], the active S-enantiomer indicated three contacts
out of the six key residues, while the inactive R-enantiomer indicated only one. Among all
descriptors used in this work, only PLIFs allow for differentiating the last pair of activity
cliff compounds, because all 2D features (physicochemical and Morgan fingerprints) are
precisely the same between the two compounds and the docking scores are virtually the
same (49.22 and 49.44) between them.

3.7. Virtual Screening of the ChemBridge Library Using the Docking-Based (4-Residue Signature
and the PLIFs Similarity Filter) and the QSAR Models

Once the final model was built, a drug-like subset of ~270 K compounds from Chem-
Bridge (see methods section) was screened through the docking filter and through the
QSAR classification model (see the summary scheme in Figure 14). From this subset,
1744 compounds indicated the 4-residue interaction signature and a PLIF similarity to
5HX6’s ligand of at least 0.83, meaning they would be expected to fit nicely inside RIPK1’s
allosteric back pocket. A summary of the distribution of all ChemBridge drug-like candi-
dates with respect to the two docking-based rules is demonstrated in Supporting Figure S8.
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Figure 14. Summary of the screening workflow applied to the ChemBridge library of compounds to
obtain the 50 in silico hits purchased for testing.

Among these docking hits, 66 compounds coincided with the reliably predicted
hits resulting from the QSAR model. Since many of these were not readily available
in the required quantity (5 mg) for biological evaluation (or were not available at all), we
populated the in silico hits list with additional docking hits, for a total of 50 compounds
(i.e., in silico hits set) (Figure 15B). This was the final set of purchased compounds, and it
can be found in Figure 16 and Supporting Figures S9–S11.
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Figure 15. (A) Distribution of the 50 in silico hits (yellow and red) with respect to the RIPK1 inhibitors
dataset (blue). (B) Overlap of subsets of in silico hits obtained, resulting from Docking predictions
and machine learning QSAR predictions. (C) Quantifying chemical novelty through the distribution
of the percentage shared structure between the in silico hits and their closest compound in the RIPK1
inhibitors dataset.
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controlled with their own applicability domain filter to prevent over extrapolation. The 
complete overlap from QSAR and docking hits indicates a high level of agreement be-
tween the more general QSAR model which captures 2D molecular patterns related to 
RIPK1 inhibition, with the two rules derived from the docking model, which addresses 
the 3D complementarity to RIPK1’s allosteric back pocket. This is particularly relevant 
since, beyond the efforts to elucidate the SAR of RIPK1 modulation in chemical series, to 
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Figure 16. In silico hits selected for in vitro testing (N = 50). Compounds are clustered with hierar-
chical clustering applied to Morgan fingerprints. Clusters are generally ordered from top to bottom
according to descending inter-cluster median similarity. Cluster 11 should be regarded as the pooled
compounds that indicate generally low similarity to the remainder of the compounds. Molecules were
aligned by common substructure using the “GenerateDepictionMatching2DStructure” functionality
in RDKit, to aid visual comparison of molecules.
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The fact that only 66 compounds were predicted to be active among ca. 200,000 initial
compounds is an indication of how different the training set chemical space from the
ChemBridge database is. However, it should be noted that both sets of predictions were
controlled with their own applicability domain filter to prevent over extrapolation. The
complete overlap from QSAR and docking hits indicates a high level of agreement between
the more general QSAR model which captures 2D molecular patterns related to RIPK1
inhibition, with the two rules derived from the docking model, which addresses the 3D
complementarity to RIPK1’s allosteric back pocket. This is particularly relevant since,
beyond the efforts to elucidate the SAR of RIPK1 modulation in chemical series, to our
knowledge no attempts have been made to leverage public bioactivity data on necroptosis
or RIPK1 modulation toward a broader QSAR predictive model.

In the same line as our work, a recent work by Rodríguez-Pérez and Bajorath [41]
also used PLIFs for the development of a machine learning model that predicts binding
modes among kinases with high accuracy, but included only X-ray data. Many other
prediction models using molecular docking, QSAR modeling, pharmacophore modeling,
and molecular dynamics have been reported for different kinases, as summarized in a recent
review by Gagic et al. [10]. Particularly, Cruz et al. used QSAR, pharmacophore-based
virtual screening, and molecular dynamics to design new RIPK2 inhibitors [42]. To our
knowledge, only a single work has been published on QSAR modelling of RIPK1 where the
authors modelled a variety of SARS-CoV-2 targets to discover new therapies for COVID-19.
In this work, they modelled RIPK1 inhibitors from ChEMBL, but it is not clear how many
compounds were used. The authors built both classification and regression models but
reported no test set performance for the former and a low R2 for test data with the latter
(best model = 0.35) [11]. The lack of more comprehensive modelling efforts focused on
RIPK1 inhibition for drug discovery, paired with the fact that many other kinases have
proven to be modellable, supported our goal to build a predictive in silico model to predict
RIPK1 inhibition.

The chemical space placement of the 50 candidates with respect to the known chemical
space of RIPK1 actives and inactives is demonstrated in Figure 15A (note that distances
in this plot are not at scale from real distances, but rather define relative proximity). It
is evident that most compounds populate new regions of chemical space. Compounds
are also quite diverse, which is demonstrated in Figure 16, where the 50 in silico hits are
organized in clusters. To quantify the degree of chemical novelty, we determined the
maximum common substructure (MCS) (or largest common scaffold) between each in silico
candidate and all compounds in the original RIPK1 dataset (“training” compounds), and
we gathered the pairs of [hit; train] compounds that shared the largest scaffold.

The distribution of ratios of shared:non-shared atoms between each compound in the
pair and their corresponding MCS is portrayed in Figure 15C. Both curves indicate that
most hit-to-training pairs share about half (or less) of their structures, which implies that,
in many cases, half (or more) of the structure in a hit compound is not observed in previous
compounds with similar scaffolds. The shared MCSs are listed in Supporting Figure S12.

3.8. Phenotypic Necroptosis Inhibition Assay Reveals In Silico Hits with RIPK1 Inhibitory Activity

After the top 50 in silico hits were selected for purchase, we tested them experimentally
as a small proof-of-concept for the usefulness of our in silico screening method. We first
used a phenotypic assay of necroptosis inhibition, but unfortunately, three compounds (two
of which were QSAR hits) indicated poor solubility and were excluded from experimental
testing (Supporting File S1). In this assay, we induced cell death by incubating cells with
TNFα for 8 h, and cell damage was evaluated through AK release. Co-incubation of
cells with Nec-1 (control inhibitor) completely abolished TNFα-induced cell death, thus
confirming necroptosis as the cell death mechanism. We compared the cell death response
when treating cells with Nec-1 and the different in silico hits, and the results are indicated in
Figure 17A. Notably, of the 47 compounds tested, 21 significantly inhibited TNFα-induced
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cell death (p < 0.05, Dunnett’s test). Furthermore, five of these compounds (9241059,
69498616, 99763627, 46935501, 54708310) were able to inhibit more than 50% of the cell
damage caused by TNFα, while compound 54708310 indicated inhibition levels comparable
to those of Nec-1 (1.76 and 0.94-fold AK release, respectively). The only QSAR-derived
in silico hit that we were able to test (27202701) was among the inactives, which does not
permit us to draw any conclusions on the performance of QSAR. Nonetheless, this is not
surprising, seeing as its active prediction was associated with only 56% of the votes in the
QSAR RF ensemble model, which indicates this was a challenging decision to make by
the QSAR model, and likely results from the compound being close to the threshold that
separates actives from inactives.
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an initial stage, we tested 10 compounds at a concentration of 5 μM (Figure 17B), and later, 
in a more conservative approach, we decided to test the remaining 19 compounds availa-
ble at a concentration of 30 μM (Figure 17C). The results obtained from the direct hRIPK1 
inhibition assay highlighted two compounds, 24940823 and 59553984, which indicated 20–
25% hRIPK1 inhibition at 5 μM. This is a positive outcome since we selected these com-
pounds from just 47 tested compounds which were shortlisted from a generic, diverse 
library using fast computational methods and little manual labor. Furthermore, the tested 
compounds represent new scaffolds, some of which are rather different than previously 
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Figure 17. (A) Cell death measured by AK release produced under different treatment conditions
in L929 cells, expressed as mean and standard deviation. The different cell treatment conditions
are listed on the x-axis, which include a vehicle control (DMSO), a negative control (TNFα), a
positive control (Nec-1), and the different test compounds paired with TNFα (N = 37). Of the initial
50 candidates, 3 were initially excluded due to solubility issues and 10 more were later excluded for
not allowing reproducible AK release readouts (standard deviation greater than or equal to 30% of the
mean), * p < 0.05 vs. TNFα. The remaining hRIPK1 activity was determined in a direct biochemical
assay where a few compounds were initially shortlisted for testing at 5 µM (B), and the remaining
compounds were later tested at 30 µM (C).

Next, we tested the compounds in a biochemical assay where their inhibitory activity
was assessed directly against hRIPK1 in a cell-free assay. For this assay we only had a
sufficient sample amount for 29 compounds and the results are portrayed in Figure 17. In
an initial stage, we tested 10 compounds at a concentration of 5 µM (Figure 17B), and later,
in a more conservative approach, we decided to test the remaining 19 compounds available
at a concentration of 30 µM (Figure 17C). The results obtained from the direct hRIPK1
inhibition assay highlighted two compounds, 24940823 and 59553984, which indicated
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20–25% hRIPK1 inhibition at 5 µM. This is a positive outcome since we selected these
compounds from just 47 tested compounds which were shortlisted from a generic, diverse
library using fast computational methods and little manual labor. Furthermore, the tested
compounds represent new scaffolds, some of which are rather different than previously
known actives. Indeed, the exploration of new chemical space (or “scaffold hopping”)
is the biggest advantage of our approach, and these new compounds could presumably
undergo the next step of hit optimization.

3.9. Agreement between the Phenotypic Assay of Necroptosis Inhibition in Murine L929 Cells and
the Biochemical hRIPK1 Inhibition Assay

Mouse and human necroptosis are not expected to correlate well due to flexibility con-
straints of the allosteric pocket in the mouse RIPK1 [13], so we wanted to (retrospectively)
check how predictive, in qualitative terms, the phenotypic screen (L929 cells) would be
in shortlisting RIPK1 actives. To achieve this, we analyzed the data through the outlier
detection algorithm RANSAC [43] (7% residual_threshold, 1000 max_trials, stop_probability
of 0.90) using the 30 µM assay data only. Even when using a much more restrictive resid-
ual threshold, the RANSAC algorithm spontaneously detected the robust trend in green
(Figure 18). However, RANSAC was used merely as a visual aid since it is not reasonable
to expect a linear correlation between mouse and human readouts. We concluded that,
overall, high necroptosis inhibitory values (i.e., low-fold AK release) are associated with
relatively low hRIPK1 inhibition. This is observed with compound 54708310, which has
anti-necroptosis activity comparable to that of Nec-1, but only indicates 77% hRIPK1 inhibi-
tion. Additionally, the phenotypic assay indicated four compounds (59553984, 41530213,
50707244 and 24940823) as having a very low inhibitory activity (orders of magnitude
lower than 54708310). However, these compounds indicate similar (if not lower) hRIPK1
inhibition to that of 54708310.
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tested at 5 µM and 30 µM, respectively, in the biochemical (hRIPK1 activity) assay. The labelled
compounds are the top 5 candidates from the phenotypic assay. The grey dashed lines are a simple
aid for qualitative analysis.
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The four disproportionately more inactive compounds produced from the phenotypic
necroptosis assay could correspond to mRIPK1-inactives, which are hRIPK1-actives (the
difference arising from the lack of flexibility in the mRIPK1 pocket). Alternatively, it is
possible that these compounds have limited permeation through the cell membrane. With
respect to the one compound which is disproportionately more active in the phenotypic
assay than in the biochemical assay (54708310), this compound may target another protein
in the necroptosis cascade which is supported by several dual RIPK1-RIPK3 inhibitors [44],
as these proteins share high sequence similarity (32.3% sequence identity, considering high
similarity is typically observed for values above 30% [45]). For example, the target predic-
tion model built by ChEMBL using conformal QSAR [18] predicts this compound targets
PARP1 (with 90% confidence), which is a protein that is an immediate signaling network
neighbor of RIPK1 (according to OmniPath’s curated network of September 2020 [46]). Fi-
nally, one cannot discard the possibility of compound degradation during shipment to the
location where the RIPK1 inhibition assay was performed, which could cause differences
between both assays.

3.10. Extracting General Structure-Activity Relationships (SAR) in New RIPK1 Inhibitors

All 50 in silico candidates spanned into the “foot” portion of the boot-shaped allosteric
back pocket (foot starts at 6.47 Å from the far end of the pocket), although the docking
sphere used during docking calculations allowed binding to a portion of the ATP-binding
site (See Figure 2). In fact, 52% of ligands were placed at 3 Å or less from the far end of the
pocket, resembling the placement observed for most co-crystal ligands in the PDB structures
available to date. There was, however, no correlation between minimum distance to the
bottom of the pocket and activity (some of the most inactive compounds were also placed at
less than 3 Å of the end of the pocket). Ultimately this implies that the distance to the end of
the pocket cannot be used as a standalone parameter to predict activity. Like the co-crystal
ligands, our in silico candidates also indicate a binding primarily driven by hydrophobic
contacts. A table with all residue contacts is available in Supporting Figures S13–S15.

To extract meaningful structure-activity relationships, we performed an R-group
decomposition analysis using RDKit, focusing on the most active candidates, i.e., com-
pounds with RIPK1 inhibition ≥ 20% (N = 7, listed in Supporting Figure S16). After
an exhaustive search of all possible R-group modifications sharing the same core struc-
ture, we discovered several examples of active–inactive pairs sharing the same core
(Supporting Figures S17–S19). Interestingly, for almost all pairs, the core was located at the
closed end of the pocket which implies the modifications associated with a shift in activity
occurred at the entrance of the pocket. With respect to the most active RIPK1 inhibitor
compound (24940823) found from the biochemical assay, it shared a common core with
four other inactive compounds (Figure 19).

For the first pair of compounds sharing an R group with the most active inhibitor, the
shared core was perfectly aligned between all three, and they differed only in the placement
of portions closest to the pocket entry. Despite this difference, all molecules shared a very
similar residue interaction profile, but some key changes were identified: (1) the existence
of an extra hydrophobic contact between the most active compound 24940823 and LEU78,
which is a residue located halfway across the length of the pocket, and (2) a hydrophobic
contact with LEU159, which is near the entrance of the pocket (both contacts portrayed in
Figure 20). It is possible that these additional contacts helped stabilize the complex and
therefore explain the increased activity. This is particularly relevant since LEU78 belongs to
the binding loop and is located above and to the left of the pocket, while LEU159 belongs
to the activation loop which is located to the right of the pocket (when looking straight
through the entrance of the pocket). The loss of both contacts can be ascribed to the large
lipophilic moiety (two fused rings) being replaced with a single ring with multiple polar
atoms, connected to the core by an aliphatic linker (see Figure 19). In fact, in both inactive
compounds, the added aromatic N or O atoms are placed in a largely lipophilic part of the
pocket, near LEU159’s lipophilic side chain.
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the most active compound (24940823) in the RIPK1 inhibition assay. Hyd: hydrophobic contact,
H-don: H-donor, H-acc: H-acceptor. (C) Docked poses of the compounds (71840557 in magenta and
61027660 in cyan) sharing the first core with 24940823 (in green). Only key differing contacts are
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Interestingly, comparing the binding pose of compound 24940823 with the co-crystal
ligand of 5HX6 indicates that the former turns away from the entrance toward the ATP-
binding site (see Supporting Figure S20 and Figure 2).

4. Conclusions

Necroptosis inhibition has been intensely explored in the last decades to develop
therapies for inflammatory and neurodegenerative diseases and acute ischemic injuries.
RIPK1, a major biological player in the necroptotic cascade, is a very appealing target due to
an unusual motif within its binding pocket that can be leveraged to produce inhibitors with
excellent selectivity. Because of the attention given to this protein, there are now hundreds
of compounds in the low micromolar and nanomolar range. However, unlike other kinases,
no effort has yet been made to take advantage of these data to better understand RIPK1
inhibitors and to create general in silico predictive models that can be used to find new
compounds. To bridge this gap, we propose here the first validated in silico model for the
prediction of RIPK1 inhibitors. The model devised is particularly geared towards finding
new potentially interesting scaffolds that can be used as starting points in the development
of RIPK1 inhibitors.

In this work we have built two alternative in silico models. The first was derived from
molecular docking and consisted of a four-residue (LEU70, VAL75, ASP156, LEU157) signa-
ture filter and a six-residue (LEU70, VAL75, LEU78, LEU129, ASP156, ASP157) similarity
filter used in consensus and built from available ChEMBL data. Both models have good
predictive performance (>90 and 92% precision, respectively) when used to find actives
among a set of compounds, and this performance has been validated for ChEMBL data in
addition to compounds from two other datasets (the Harris and Roche datasets). These
serve as an alternative to docking scores. This is an important aspect, as docking scores
are typically used to predict new actives but here indicated a poor screening power, as it
was not able to differentiate actives from inactives among ChEMBL compounds. These
results highlight the importance of thoroughly validating a docking model because, in our
case, even when good self- and cross-docking are obtained, the model can still perform
poorly on the task of actually shortlisting new hits. Additionally, the four-residue signature
aligns with empirical evidence of the importance of each of these residues in the structural
integrity and function of RIPK1. Both interaction-based models derived from docking offer
a simple and intuitive approach to screen for new actives but, nevertheless, users should
be mindful that both models have their own applicability domains and might not behave
as well in other regions of chemical space that were not explored in this work.
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The second in silico model corresponded to a machine learning QSAR model from
data collated from ChEMBL, literature, patents, and PubChem data. This model also
allowed for good prediction of actives (96.4% precision). The model was trained with
200 RDKit molecular descriptors and the six key residue contacts, using a Random Forest
algorithm and the error rate for accepted predictions was controlled using an applicability
domain filter. Although there are only six residues that competed with a much larger set
of physicochemical descriptors, they all were spontaneously selected with relatively high
feature importance.

Notably, when screening the ChemBridge database of purchasable compounds, this
model selected only a few dozen hits among several thousand compounds screened, but
all of the hits overlapped those from the two molecular docking-derived models (PLIFs
similarity and 4-contact signature). A set of 50 proof-of-concept compounds were selected
from the ChemBridge database for experimental testing, all of which occupied new regions
of chemical space. This is evidenced by the fact that they shared a relatively small common
substructure with previously tested inhibitors. This is particularly useful as it promotes
innovation in the drug discovery of RIPK1 inhibitors.

The proof-of-concept compounds were selected using a consensus of both methods
and tested in both a phenotypic necroptosis inhibition assay and in a biochemical RIPK1
inhibition assay. Although no potent actives were found, 7 of the 47 tested compounds
indicated about 20–25% RIPK1 inhibition but, more importantly, were found to occupy rela-
tively new areas of chemical space. Considering that a very large in vitro high-throughput
screening campaign may only produce weakly active compounds as well, we believe our
screening method may be useful as it allows for exploring completely new areas of chemical
space in a very fast and inexpensive manner, and has been proven to produce various
starting points for further hit and hit-to-lead optimization campaigns.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27154718/s1, Figure S1: Distribution of activities in the final RIPK1
inhibitors dataset (excluding PubChem Inactives as their activity value is qualitative in nature). Figure S2.
(A) Number of cross-docked ligands (out of 8) with a top-scored docking pose within 2 Å of their
experimental pose. The top-scored pose is obtained from a total of 1000 poses. (B) RMSD between self-
or cross-docked poses and the corresponding co-crystal ligand, using GoldScore. Figure S3. Robustness
of poses found when using 5HX6 versus 5TX5. Docking calculations with 5TX5 produced an extremely
high RMSD of solutions found for 4ITI-lig when varying the number of poses used (50 vs. 1000). This
is an indication that using 5TX5 might generate non-robust solutions for any given ligand. Figure S4.
Comparing the docking scores (GoldScore) obtained from using 1000 vs. 50 on the ChEMBL dataset, to
establish whether it is feasible to use 50 poses for the larger screening step. Table S1. Characteristics of the
binding pocket composed of the allosteric binding site and the ATP-binding site (pockets are automatically
detected by DoGSiteScorer in ProteinPlus and as both binding sites are adjacent they cannot be perfectly
separated). The smaller “ellipsoid b/a” is, the more elongated the pocket is; the smaller “ellipsoid c/a” is
the more narrow the pocket is. Figure S5. (A) Ranking of actives and inactives from the three datasets
added after ChEMBL (Harris dataset, Roche dataset and PubChem Inactives). (B) Enrichment curves for
ChEMBL data as a function of the ligand efficiency limit, expressed as a percentile, for 5HX6 structure
(50 poses). The enrichment using 4ITH’s ligand efficiencies is also shown to cover the possibility that
ChEMBL molecules perform better in this alternative pocket. Increasing the minimum ligand efficiency
score at which predictions are accepted leads to no meaningful enrichment of covered actives over inactives.
Figure S6. Exhaustive analysis of all possible combinations of the 6 key residues (LEU70, VAL75, LEU78,
LEU129, ASP156, ASP157) and their corresponding difference (delta) of the percentage of actives versus
inactives covered by that combination. The values labelled at the top of the plot indicate the % actives that
show the corresponding signature, and the * indicates the combination od residues with the largest delta.
blue: combinations of 2 residues; green: combinations of 3 residues; red: combinations of 4 residues; yellow:
combinations of 5 residues; purple: a combination of all 6 residues. Figure S7. Difference perspectives of
the 6 shared residues among the 8 X-ray structures covered by this work and their location around RIPK1’s
allosteric back pocket. The residues that make up the 4-residue signature are shown in grey. Supporting
Figure S8. Distribution of values in ChemBridge. Figure S9. Purchased in silico hits overlapping between
docking and QSAR. Figures S10 and S11. Purchased in silico hits obtained from docking. Figure S12.
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shared maximum common substructures between new in silico hits and previously known compounds
in the RIPK1 dataset. Figure S13. PLIFs for the co-crystal ligand of RIPK1. Figure S14. PLIFs for the
compounds with remaining hRIPK1 activity < 80%. Figure S15. PLIFs for the remaining compounds
beyond those with remaining hRIPK1 activity > 80%. Figure S16. Co-crystal ligand (cyan) and each of
the most promising in silico candidates (remaining hRIPK1 activity <80%) docked in the allosteric back
pocket of RIPK1 (PDB:5HX6). Figure S17. SARs involving compound 24940823. Both cores identified
for Structure-Activity pairs are turned to the end of the allosteric back pocket in RIPK1 (see Figure S15);
Figure S18. SARs involving compound 59553984. The core identified for the Structure-Activity pair is
turned to the end of the allosteric back pocket in RIPK1 (see Figure S15); Figure S19. SARs involving
compound 50707244. The core identified for Structure-Activity pair is turned to the end of the allosteric
back pocket in RIPK1 (see Figure S15); Figure S20. Co-crystal ligand (cyan) and most active in silico hit
24920823 (green) docked in the allosteric back pocket of RIPK1 (PDB:5HX6).
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