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Systems biology is a data-heavy field that focuses on systems-
wide depictions of biological phenomena necessarily sacrificing
a detailed characterization of individual components. As an
example, genome-wide protein interaction networks are widely
used in systems biology and continuously extended and refined
as new sources of evidence become available. Despite the vast
amount of information about individual protein structures and
protein complexes that has accumulated in the past 50 years in
the Protein Data Bank, the data, computational tools, and
language of structural biology are not an integral part of sys-
tems biology. However, increasing effort has been devoted to
this integration, and the related literature is reviewed here.
Relationships between proteins that are detected via structural
similarity offer a rich source of information not available from
sequence similarity, and homology modeling can be used to
leverage Protein Data Bank structures to produce 3D models
for a significant fraction of many proteomes. A number of
structure-informed genomic and cross-species (i.e., virus–host)
interactomes will be described, and the unique information
they provide will be illustrated with a number of examples.
Tissue- and tumor-specific interactomes have also been
developed through computational strategies that exploit pa-
tient information and through genetic interactions available
from increasingly sensitive screens. Strategies to integrate
structural information with these alternate data sources will be
described. Finally, efforts to link protein structure space with
chemical compound space offer novel sources of information in
drug design, off-target identification, and the identification of
targets for compounds found to be effective in phenotypic
screens.

The growth of protein structure information has stimulated
a parallel growth in computational tools that predict protein
structure and function. These tools provide fundamental in-
sights into the physical principles that underlie the behavior of
biological macromolecules. For example, molecular dynamics
simulations allow realistic descriptions of conformational
heterogeneity; Poisson–Boltzmann calculations have revealed
how electrostatic interactions play a central role in biological
functions; and the forces that determine the stability of the
native folded state are now well understood. Advances such as
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these have been transformative and are part of the language
and intellectual foundation of modern structural biology.

A parallel set of computational methods falls under the
rubric of “structural genomics,” which includes the goal of
structurally characterizing enough members of sequence
families so as to enable the construction of homology models
for the others. A key development has been the computa-
tional identification of geometric relationships among pro-
tein structures. Since structural similarity can identify
functional relationships even in the absence of statistically
significant sequence similarity, structural alignment has
become a powerful tool to detect evolutionary relationships
between proteins that cannot be detected from sequence
alone. We have used the term Structural Blast (1) to imply
the use of structural alignment to identify relationships be-
tween proteins in analogy to the widely used BLAST suite of
programs for sequence alignment (2). Figure 1 provides two
examples of functional relationships that can be detected this
way: protein–protein interaction (PPI) and protein–
compound interaction. Figure 1A illustrates the structural
alignment of four protein domains where BLAST fails to
detect any sequence relationship between them. Figure 1B
shows the experimentally determined complex between the
pleckstrin homology (PH) domain from phospholipase
C-gamma-2 (yellow) and the small GTPase Rac2 (gray).
Structural alignment of the Ezrin F3 lobe (red) with the PH
domain produces a model for the complex between Ezrin
and Rac2 (red–gray). Similarly, Figure 1C shows the exper-
imentally determined complex between the PH domain
from mouse Beta-II spectrin (green) and inositol 1,4,5-
trisphosphate (sticks). Structural alignment of the Tiam-2
PH domain (blue) with the Beta-II spectrin PH domain
produces a model for the complex between Tiam-2 and
inositol 1,4,5-trisphosphate (blue and sticks). These examples
provide the basis of many of the methods highlighted later
that, as will be described, enable the use of structural in-
formation on a genomic scale.

The Protein Data Bank (PDB) (3) stands as a centerpiece of
structural biology. It has created standards that impact the
entire community, organized data in easily accessible form,
and provided a battery of tools and links to other databases
that have revealed multiple ways in which 3D structural in-
formation can be exploited for the detailed annotation of
protein function and interactions. Indeed, much of the
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research that is discussed here would not have been possible
without extensive use of the PDB and its many auxiliary
resources.

There are areas of biomedical research where protein
structure is still underutilized. Specifically, cellular systems
biology, with its heavy emphasis on the study of pathways and
networks, has made only limited use of 3D information. In
networks, PPIs are typically described as nodes (proteins)
connected by edges (interactions), without reference to the
structures of the proteins involved or the nature of the in-
teractions. With 20,000 human protein coding genes and
potentially millions of PPIs, it is not possible to obtain
experimental structures for every node and edge in the inter-
actome. Computational methods to interrogate these in-
teractions can complement the available experimental
evidence, enabling more meaningful insights from systems
biology approaches.

This article summarizes some of the advances in structural
systems biology and points to strategies through which
protein and protein–compound interactions w
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structural information can be integrated with the vast quan-
tities of data emerging from high-throughput (HT) genomic
technologies and patient records (summarized in Table 1).
There are a number of computational methodologies that are
central to this integration. First, the ability to construct ho-
mology models for most proteins in a given genome implies
that, in principle, structure can be used on a genome-wide
scale. Homology models dramatically enhance structural ge-
nomics efforts; for example, while there are structures avail-
able for about 5000 human proteins in the PDB, there are
homology models for at least one domain of about 18,000
human proteins in databases such as ModBase (4) and
SwissModel (5).

A second methodology has been the use of Structural Blast,
as illustrated in Figure 1. The structure-based identification of
a large number of functional relationships combined with
extensive structural coverage of multiple genomes with ho-
mology models enables the prediction of PPIs on a genomic
scale. Third, machine learning (ML) is crucial to the integra-
tion of structural and genomic data. ML not only facilitates the
combination of data from multiple sources but also mitigates
inaccuracies in structural models since training will determine
the extent to which the models have predictive value. In this
regard, it is important to emphasize that inferences yielded in
systems biology are often statistical in nature, and the use of
structural information must be used in such a way so as to
conform to this reality.

This article is not meant as a comprehensive review of the
literature, and many substantial studies do not appear on the
reference list. Rather, our goal is to convey our own perspec-
tive of the development of a new interdisciplinary field and
ith Structural Blast. A, F3 lobe of Ezrin from Protein Data Bank (PDB) 1ni2:A
en); PH domain of Tiam-2 from PDB 3a8p:C (blue); and PH domain of PLCg-2
) to the PDB complex (2w2x:AC) of Rac2 (gray) and PLCg-2 PH (yellow). PrePPI
rin. C, the first PH domain of Tiam-2 is predicted by LT-Scanner (94) to bind
model for Tiam-2 (blue) onto the PH domain of Beta-II spectrin (green)
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Table 1
Intersections between structural biology and systems biology

Systems level Insight from computational structural biology

Protein Models of protein domains (4, 5)
Delineation of intrinsically disordered regions (97)
Prediction of interaction surfaces (38, 94)
Context of missense mutations (60, 98)

PPIs (33–35) Determination of direct versus indirect
Domain-level models of protein regions involved
Atomic-level detail of interfaces

Pathways/networks Molecular mechanisms for information flow
Molecular depiction of complexes and series of PPIs
Pathway/submodule crosstalk
Hypothesis generation for effects of perturbations
Rational targeting to alter phenotypic outcome (75)
Integration with subcellular localization (99)

Tissue/tumor Integration with context-specific data (27)
Differential pathways/networks (100)
Models for protein-mediated cell–cell interactions (101)
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highlight articles that provide useful examples along with ac-
cess to a larger literature. Our perspective is also embodied in
our own contributions, some of which are summarized later.

PPIs

The discovery and analysis of PPI networks has become an
important area of systems biology where a particular focus has
been specific applications to human disease. In systems-based
approaches, genes or proteins are identified as disease associ-
ated based on their topological location in interaction net-
works (6–8). A necessary step in the creation of a network is
the identification of interactions among proteins, which may
include formation of stable dimeric or multimeric complexes;
transient engagements that in some cases may be of low af-
finity and in others may involve post-translational modifica-
tion; nonphysical interactions where, for example, one protein
may regulate the expression of another in the absence of any
physical contact between the two. It is necessary to keep these
distinctions in mind when reading the PPI literature.

Given the centrality of PPIs in so many cellular processes,
their experimental detection and computational prediction
constitute a major research focus. Only HT experimental
methods and highly efficient computational approaches are
capable of detecting/predicting PPIs on a genomic scale.
Complicating the challenge is the fact that physiological PPIs are
context dependent: two proteins found to interact in an in vitro
assay may well form a complex if expressed at appropriate levels
but may never actually encounter one another in vivo.

Databases of experimentally observed PPIs

There are many genome-wide PPI databases for human and
different model organisms (9). Some are based on HT
methods, such as yeast two-hybrid (10) and tandem affinity
purification mass spectroscopy (11), whereas others are based
entirely on literature curation (e.g., BioGRID (12), IntAct (13),
MINT (14)). Databases such as HINT (15), HURI (16), and
APID (17) curate these resources to provide high-quality in-
teractions and/or to extract only binary or physical associa-
tions. The widely used STRING database (18) combines
literature curation with predictions based primarily on
sequence relationships. With few exceptions, existing data-
bases do not include context-specific information, such as the
cell line, tissue, tumor type, disease condition, and others, in
which the interactions are observed.

Context-specific associations can be derived from methods
based on the correlation of gene profiles across many condi-
tions (e.g., cell lines or drug treatments) (19, 20). These profiles
are typically obtained from HT genomic screens of cancer cell
lines or human tissue samples: Project Achilles for RNAi and
CRISPR–Cas9 knockdowns (21, 22); the Library of Integrated
Network-Based Cellular Signatures (LINCS) (23) and the
Cancer Dependency Map (CMap) (24) for phenotypic drug
screens; The Cancer Genome Atlas (TCGA) for tumor-specific
genetic variation (25); and Genotype-Tissue Expression
(GTEx) for nondiseased tissue-specific genetic variation (24).
The Califano laboratory has pioneered the use of algorithms to
predict tumor-specific regulatory interactions based on the
analysis of large-scale molecular profile data taken, for
example, from TCGA (26). As will be discussed later, the
integration of patient-specific regulatory networks with pre-
dicted physical interactions between proteins enables the
development of context-specific structure-informed protein
interaction networks, thus providing mechanistic insights not
available from resources mentioned previously (27).

Structure-informed prediction of PPIs in the human proteome

PPI prediction can involve (a) predicting the structure of
known complexes given the structures of interacting mono-
mers; (b) predicting whether and how two proteins interact
given their structures, which requires building a model of the
putative complex and then scoring it; (c) predicting whether
two proteins interact given their sequence, which can be
accomplished either by purely sequence-based methods, that
is, sequence relationships to proteins in known complexes, or
through some combination of methods (a) and (b). There are
two main computational approaches for method (a): docking
and template-based modeling. Docking methods (28, 29) are
widely used but have not reached the point in terms of
computation time where they can truly be used for genome-
scale interactomes. Template modeling (30) involves super-
imposing the structures of two query proteins on structurally
similar interacting proteins in a PDB complex (e.g., Fig. 1).
Algorithms to find such structurally related proteins are
currently quite efficient (31, 32).

The Interactome3D server was an early resource for the
prediction of the structures of protein complexes for different
organisms (33). The current release lists binary interactions
taken from experimental databases and, where possible,
structural models for 18 organisms. Structures of complexes
are obtained from either the PDB or template-based modeling
with templates identified based on sequence relationships. For
the human proteome, structural models are provided for
~15,000 binary complexes involving ~10,000 proteins; about
half of the complexes are taken from the PDB. Overall,
Interactome3D lists 125,000 experimentally observed binary
PPIs for the human proteome with structural models for 12%.
J. Biol. Chem. (2021) 296 100562 3
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Interactome INSIDER (34) also builds models for experi-
mentally determined binary interactions. It is based in part on
the Ensemble Classifier Learning Algorithm to predict Inter-
face Residues (ECLAIR) framework, which combines features
derived from individual proteins, such as surface properties,
with pairwise PPI features obtained from docking and coevo-
lution analysis. ECLAIR is trained on high-quality experi-
mental data sets of PPIs (15). The current version contains
over 120,000 predictions of structurally resolved interfaces for
experimentally observed human PPIs. The high structural
coverage of Interactome INSIDER is achieved by the use of
docking, which avoids the necessity of a binary complex as a
structural template; that is, only the structures of individual
interacting proteins are needed.

The Predicting Protein-Protein Interactions (PrePPI) algo-
rithm is fundamentally different from Interactome3D and
Interactome INSIDER in that it makes structure-informed
predictions of whether two proteins interact independent of
whether they appear in experimental databases (35, 36).
Figure 2. Scoring protein–protein interaction (PPI) models with PrePPI. A, c
5 (CUL5) and defective in cullin neddylation protein 1 (DCN1)-like protein 5 (
DCUN1D5 (green) to the PDB template 3o2p:EA complex between the yeast ce
chain A, purple). In spite of low sequence identities—23% for CUL5 versus CDC5
align well to the template chains with low protein structure distances (32) of 0.0
to the PrePPI structure modeling (SM) score. B, structure superposition of mode
dotted circle highlights the interaction interface, a portion of which is described
(dotted circle in (B)): CUL5 (yellow) on CDC53 (3o2p:E, brown), and DCUN1D5 (g
explicitly scored; rather its relationship to the template (brown–purple) is eva
contacts in 3o2p:EA (i.e., between CDC53 and DCN1) are bolded and boxed. Th
are aligned to residues in the query proteins, and this yields a favorable contri
interfacial is evaluated. PredUs (38) predicts whether residues in CUL5 and DCU
template are shown as lines: The solid lines denote the cases where the contacti
predicted to be interfacial (blue dots); the dotted line denotes the case where
predicted to be interfacial (red dots). Only those contacts that are likely to occu
the SM score.
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Furthermore, PrePPI uses structure on a truly genome-wide
scale, effectively screening most of the �200 million possible
human PPIs. Like other methods, it begins with a database of
�18,000 PDB structures and homology models for proteins
and their constituent domains. PrePPI then uses structural
alignment to establish relationships among protein structures:
every one of the �18,000 query proteins is assigned a set of
“structural neighbors” derived from structure alignments to
protein structures in the PDB, regardless of species. Each
query protein will have, on average, hundreds of neighbors.
This large number results both from the use of distant struc-
tural relationships in multiple genomes and from the fact that
the PrePPI alignment procedure defines neighbors when as
few as three secondary structure elements can be aligned. If
any two query proteins have neighbors that interact in the
same PDB file (templates), then each of the query proteins is
superimposed on its appropriate neighbor to generate a
structural model for the interaction between those two query
proteins. This is illustrated in Figure 2A, where models of the
reation of a model (yellow–green) for the interaction between human Cullin-
DCUN1D5) based on structural alignment of models for CUL5 (yellow) and
ll division control protein 53 (CDC53; 3o2p, chain E, brown) and DCN1 (3o2p,
3, and 25% for DCUN1D5 versus DCN1—the models for CUL5 and DCUN1D5
5 and 0.04. The average of the protein structure distance values contributes
ls for CUL5 (yellow) and DCUN1D5 (green) on the PDB template 3o2p:EA. The
in (C). C, structure-based sequence alignments for portions of the interface
reen) on DCN1 (3o2p:A, purple). The interaction model (yellow–green) is not
luated for the PrePPI SM score. Positions of residues that make interfacial
e alignments reveal that all the residues involved in the template interface
bution to the SM score. Then, the propensity for these model residues to be
N1D5 are interfacial (blue) or not (red). The contacts observed for R804 in the
ng template residues are aligned to residues in CUL5 and DCUN1D5 that are
contacting template residues are aligned to model residues that are not

r between the proteins in the interaction model (solid lines) further increase
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proteins for human CUL5 (yellow) and DCUN1D5 (green) are
superimposed on chains of the PDB complex between the
yeast proteins for CDC53 (brown) and DCN1 (purple). In this
case, the template complex was identified because the proteins
for human CUL5 and yeast CDC53 are structural neighbors as
are the proteins for human DCUN1D5 and yeast DCN1.

The use of structural alignment in this way generates an
extensive set of PPI models that are quickly scored by a naïve
Bayesian ML algorithm, trained on experimentally determined
PPIs. Scoring is a unique feature of PrePPI. Since hundreds of
millions of interaction models are generated, some of them
quite crude, applying standard energy functions would be
computationally prohibitive. The approach used to enable the
scoring of so many models is to transform the problem to one
where pairwise information for the modeled interface (Fig. 2B)
is transferred directly from the template interface (Fig. 2C).
PrePPI scoring is based on the quality of the structural align-
ment of each individual protein to its template and on features
of the alignment of query residues to interfacial residues in the
template (37, 38); see figure legend for details. A likelihood
ratio is calculated for each interaction, and a cutoff is defined
for a “high-confidence” prediction.

PrePPI not only relies on structural information but also
calculates likelihood ratios for nonstructural evidence such as
whether the two query proteins have a similar function and
whether their orthologs interact in other species, are coex-
pressed, or have a similar phylogenetic history (35).
Nonstructural sources of evidence can increase the probability
that a structural signal is real but can also have the effect of
detecting interactions that are indirect. Overall, PrePPI per-
formance at recovering known (gold standard) PPIs is com-
parable to that of other large-scale PPI databases and is
comparable in accuracy to HT experimental methods (35). At
present, the PrePPI database contains high-confidence pre-
dictions for over 1.3 million human PPIs where about 500,000
are predicted to be binary physical interactions. Many of these
predictions are novel since the use of 3D structure detects
many relationships that are not detectable with sequence. Of
the 500,000 binary predictions, about 75% are predicted to be
domain–domain interactions and 25% are predicted to be
protein–peptide interactions. High confidence is of course a
vague term, and indeed, PrePPI undoubtedly contains many
false positives despite its overall success rate. However, it
represents an attempt to replace sequence relationships with
structural relationships on a genomic scale and, in doing so,
generates testable hypotheses not available from other ap-
proaches. Of note, the approximately 800,000 PPIs that are not
predicted to involve physical interactions likely involve pro-
teins that are present in the same complex or participate in the
same pathway but are not in direct contact.

There has also been major progress in the use of sequence-
based approaches that exploit coevolution relationships to
predict PPIs (39, 40). For the most part, these techniques
require multiple sequence alignments of many orthologs and
are, thus, largely limited to bacterial proteomes. Recently,
Cong et al. (41) developed a hybrid approach to predict PPIs
for the Escherichia coli proteome that first used coevolution to
filter 4 million pairs of query protein sequences and then
implemented docking with structures and homology models of
the query proteins to produce a set of 800 predicted PPIs.
Indeed, the combination of structural and coevolution infor-
mation offers numerous strategies to predict PPIs, and there
are likely to be exciting developments in this area in the
coming years.
Structure-informed prediction of virus/host PPIs

Viruses deploy an array of genetically encoded strategies to
co-opt host machinery and support viral replicative cycles.
Molecular mimicry, manifested by structural similarity between
viral and endogenous host proteins, allows viruses to harness or
disrupt cellular functions including nucleic acid metabolism
and modulation of immune responses. Mimicry relationships
have been detected through sequence similarity and linearmotif
co-occurrence (42, 43); however, structural similarity enables
identification of mimics between pathogen and host proteins
that cannot be observed from sequence alone (44). Structural
mimicry can occur at the level of entire protein domains or in
the form of “interface mimicry,” where the structure of host
protein residues involved in PPIs ismimicked on the surface of a
viral protein (45–47). Indeed, analysis of PDB structures has
demonstrated that the interfaces in complexes involving a viral
and human protein mimic the interfaces of human PPIs (48),
and interface mimicry has been used as a basis for predicting
virus/host PPIs (49, 50).

A recent study reported a systematic analysis of molecular
mimicry across the entire virome (51). Protein structure sim-
ilarity was used to scan for viral structure mimics from
thousands of catalogued viruses and hosts spanning broad
ecological niches and taxonomic range, including bacteria,
plants and fungi, invertebrates, and vertebrates. The results
point to molecular mimicry as a pervasive strategy employed
by viruses and indicate that the protein structure space used by
a given virus is dictated by the host proteome. In particular,
analysis of the proteins mimicked by human-infecting viruses
points to broad diversification of cellular pathways targeted via
structural mimicry, identifies biological processes that may
underlie autoimmune disorders, and reveals virally encoded
mimics that may serve as targets for therapeutics.

Viral mimicry and, in particular, interface mimicry, indicate
that viral proteins compete with host proteins for host inter-
action partners and, indeed, it is clear that knowledge of virus/
host PPIs is critical for understanding mechanisms of infec-
tion. The PrePPI computational pipeline was used to create the
Pathogen Host Interactome Prediction using structure simi-
larity (P-HIPSTer) database (50). P-HIPSTer employs struc-
tural information to predict 282,000 pan viral–human PPIs
with an experimental validation rate of 75% comparable to
what was found for PrePPI for human PPIs (36). In addition to
rediscovering known biology, P-HIPSTer has yielded a series
of new findings: the discovery of shared and unique machinery
employed across human-infecting viruses; a likely role for in-
teractions between Zika Virus proteins and human Estrogen
Receptor 1 in modulating viral replication; the identification of
J. Biol. Chem. (2021) 296 100562 5
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PPIs that discriminate between human papilloma viruses with
high and low oncogenic potential; and a structure-enabled
history of evolutionary selective pressure imposed on the hu-
man proteome. Furthermore, P-HIPSTer enables discovery of
previously unappreciated cellular circuits that act on human-
infecting viruses.

Disease driver mutations and PPI networks

There has been enormous interest in understanding the role
of mutations in disease, and 3D structural information has
played an important role in this process. Much effort has been
invested in the study of somatic mutations identified in the
sequenced genomes of tumors and normal tissue available in
resources such as TCGA (25) and the International Cancer
Genome Consortium (ICGC) (52). There are tens of thousands
of somatic mutations present in these genomes, and a major
focus has been to identify “driver genes” that contain mutations
capable of effecting tumorigenesis. Driver genes were initially
identified as containingmoremutations than expected from the
background mutation rate, but the distribution of mutations on
a particular protein also provides an important signal. Given
thatmost tumors contain a large number of uniquemutations, it
has been necessary to develop sophisticated bioinformatics tools
to analyze patient samples. These have focused on the identifi-
cation of oncogenic “driver mutations” that are generally
distinguished from “passenger mutations” that have no onco-
genic potential. These classifications are somewhat ambiguous
since a single driver mutation is not necessarily sufficient to
cause cancer, whereas some passenger mutations might well be
oncogenic when present along with other mutations or in spe-
cific contexts. The reader is referred to the excellent review by
Martinez-Jimenez et al. (53) for an illuminating historical dis-
cussion of the large literature in the field.

In another insightful review, Porta-Pardo et al. (54) sum-
marized algorithms that have been developed to identify driver
genes based on the distribution of mutations they present.
Some algorithms look for clusters of mutations along a protein
sequence, whereas others identify clusters within a 3D struc-
ture (55–57); however, such approaches do not necessarily
reveal mechanistic insights. Observations that disease muta-
tions are enriched in protein–protein interfaces (58) suggest
that cancer driver mutations can be identified on this basis.
Indeed, mapping of somatic mutations obtained from TCGA
onto PPI interfaces taken from the PDB and high-quality ho-
mology models identified about 100 interfaces enriched in
somatic mutations involving proteins not previously identified
as cancer drivers (59). In a landmark study, Bailey et al. (60)
combined 26 computational tools, including some that were
structure based, to classify about 750,000 pan-cancer missense
mutations and identified 299 driver genes and over 3400 driver
mutations. The information and mechanistic insights obtained
from these studies are unique but perhaps limited by their
focus on individual proteins. Algorithms that treat mutations
as perturbations of both the nodes and edges in networks have
been successful at annotating disease-associated genes and
mutations (8). The integration of structural information into
6 J. Biol. Chem. (2021) 296 100562
network biology is thus likely to yield important new insights
into the identification of driver genes and molecular mecha-
nisms underlying tumorigenesis.

Adding context to interactome analysis

Networks derived from pairwise-interaction assays or
computational predictions generally neither account for nor
discriminate between cellular contexts (61). Recent approaches
have started to address the challenge of “context-specific in-
teractions” by incorporating cell line-, tumor-, or tissue-
specific information (62–66). However, comprehensive
proteome-wide depiction of human interactomes across
different tissue contexts remains elusive. To address these
challenges, we developed an integrative ML framework
(OncoSig) using PrePPI and other computationally derived
interactomes for the systematic, de novo reconstruction of
tumor-specific molecular-interaction signaling maps (Sig-
Maps), anchored on any oncoprotein of interest (27). Specif-
ically, as illustrated in Figure 3, an oncoprotein-specific
SigMap recapitulates the molecular architecture necessary to
functionally modulate and mediate its activity within a specific
cellular context, including its physical cognate binding
partners.

OncoSig infers context-specific SigMaps by integrating
PrePPI with complementary evidence from transcriptional
and post-translational interactions from gene expression and
mutational profiles from TCGA. PrePPI provides context-
independent and structure-based information on the “refer-
ence” human protein interactome. ARACNe (67, 68), VIPER
(69), and CINDy (70, 71) provide information from genomic
data, including, as depicted in Figure 3A, upstream modu-
lators (orange) and downstream effectors (blue) of a protein
of interest (rose) and regulatory interactions, such as feed-
back loops, among them (green dotted line). They further
account for tumor specificity since they are based on the
analysis of molecular profile data from patient samples
corresponding to different TCGA tumor types (e.g., lung
adenocarcinoma or colon adenocarcinoma). The SigMap
generated for lung adenocarcinoma recapitulated published
KRas biology and identified novel KRas-associated proteins
whose genes were experimentally validated as synthetic le-
thal with KRASmut in 3D spheroid models derived from
primary lung cancer cells (27).

Increasingly, PPIs in existing networks are inferred from
genetic interactions, which are typically based on the correla-
tion of gene profiles across many conditions (e.g., cell lines or
drug treatments) (19). While protein complexes are enriched
in genetic interactions (72, 73), genetic interactions do not
necessarily correspond to physical PPIs and, thus, serve as an
orthogonal and complementary resource for direct physical
PPIs as contained, for example, in the PrePPI database. Thus,
in parallel to the development of OncoSig where PrePPI was
integrated with genetic interactions derived from TCGA,
context-specific PPI networks (or SigNets) can be obtained by
integrating physical protein interactomes with genetic in-
teractions based on gene profiles derived from HT genomic



Figure 3. Aspects of the lung adenocarcinoma (LUAD)–specific KRas SigMap. A, schematic diagram of the OncoSig SigMap. For ease of depiction, only a
few nodes are drawn for the highest scoring SigMap members; in practice, there are 250 top-scoring (false positive rate <0.01) members of the LUAD-
specific KRas SigMap. KRas is denoted as the central node (KRAS, rose). Orange nodes represent upstream regulators of KRas, and blue nodes represent
downstream effectors of KRas. Orange and blue lines denote PrePPI-predicted physical interactions between KRas and upstream and downstream proteins.
Gray nodes represent PrePPI physical interactors of KRas that do not have associated upstream or downstream predictions. The dotted green line denotes
predicted regulatory interactions between proteins upstream and downstream of KRas. PrePPI-predicted KRas interactions with the FYVE, RhoGEF, and PH
domain–containing protein 4 (FDG4, orange) and RhoG (RHOG, blue) are highlighted. B, PrePPI model of the interaction between KRas (rose) and the GEF
domain of FGD4 (orange), a predicted upstream activator in the LUAD SigMap. C, PrePPI model of the interaction between KRas (rose) and RhoG (blue), a
predicted downstream effector in the LUAD SigMap. RHOG was validated as synthetic lethal with KRASmut in LUAD spheroids (27). In (B) and (C), KRas is in a
similar orientation to facilitate the comparison of the binding modes of FGD4 and RhoG. The presence of FGD4 and RhoG in the KRas SigMap implicates
KRas in cytoskeletal processes and cell migration in the LUAD context.
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screens of human cancer cell lines (23, 74). Figure 4 illustrates
a generalized scheme to derive context-dependent SigNets. Of
note, Figure 4D highlights the description of individual path-
ways at the level of interactions between individual protein
domains.

Structural systems pharmacology

Systems pharmacology approaches typically aim to
leverage network topology to elucidate drug mechanism of
action, discover new targets, and design combination ther-
apies (75). This has been made possible through the inte-
gration of omics technologies with large-scale chemical
compound repositories and databases of drug–protein in-
teractions and bioactivity data (76–81), Moreover, the
application of HT screening and sequencing technologies at
the single patient level has facilitated the application of
systems pharmacology in precision medicine (“N-of-1”)
contexts (82–84). Systems pharmacology thus leverages
network-based perspectives of human disease in next-
generation drug discovery.

While the intersection of network analysis and phenotypic
screens has proved powerful, systems-level implementation of
traditional drug discovery tools is necessary for maximum
impact. For example, if a new target is identified via network
analysis, it is then necessary to find a compound that effec-
tively and specifically inhibits that target. Or, if a particular
drug is found to be effective in a phenotypic screen, in many
cases, it will be necessary to identify the actual target(s).
Furthermore, although drug repurposing has yielded impor-
tant discoveries, the continuing exploration of chemical space
is clearly of great importance.
Traditional drug discovery has relied on both chem-
informatic tools and protein structure–based tools. The
former is ultimately based on the assumption that chemically
similar ligands will bind to similar proteins (e.g., (85, 86)).
Numerous tools are available to represent chemicals as mo-
lecular fingerprints in a format that can be used for rapid
similarity searches based, for example, on Tanimoto co-
efficients (87). The Similarity Ensemble Approach (SEA) uses
this principle to relate proteins based on the ligands they bind
and, thus, identifies new protein targets for existing drugs (88).
ML is playing an increasingly important role in this area
where, in effect, pairwise chemical similarity relationships are
supplanted by “learning” what compounds might target a
particular protein or have a desired biological effect as deter-
mined by training data obtained from aptly designed HT
screens (89).

The most common current uses of protein structure are in
ligand docking and lead optimization, and significant advances
continue to be made in both these technologies. For example,
flexible docking helps escape the constraint of using rigid
protein structures (90), and neural networks have been trained
to score docking poses (91). In the area of lead optimization,
free energy perturbation methods can yield truly accurate
relative binding free energies of a congeneric series of com-
pounds (92, 93), although accuracy inevitably is compromised
if a homology model rather than a crystal structure of the
protein–ligand complex is used. Algorithmic advances com-
bined with high performance computing, and particularly the
use of Graphical Processing Units (GPUs), have enabled the
ever-expanding use of these tools, but there are still limitations
for their use on a true genome-wide scale.
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Figure 4. Creating context-dependent SigNets. A, physical interactome: input from a physical interactome is represented by the PrePPI predicted model
for the FGD4/KRas complex. B, nonstructural interactome: evidence from genetic screens is orthogonal (complementary) to physical PPIs and provides
information on context dependency. C, machine learning using data from (A) and (B) with training on a gold standard set representing, for example,
proteins known to be involved in a signaling pathway or a cellular process, ranks or prioritizes proteins specific to the given context defined in (B).
Combining (A) and (B) can then be used to produce a context-dependent network of physical PPIs. Shown are PrePPI interactions among a subset of top-
scoring proteins in the lung adenocarcinoma–specific KRas SigMap (from Fig. 3) that are enriched for the biological process “actin cytoskeleton reorga-
nization.” D, one physical path from (C) is comprised of consecutive PPIs—FGD4 (orange)/KRas (rose) and KRas/Ser-Thr Protein kinase N2 (PKN2, gray)—that
are described at the linear domain level (left) and structural models of interacting domains (right).
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Our group and others are developing alternate approaches
that leverage the Structural Blast concept. Similar to what has
been described previously for PPIs, these methods exploit
available structural information under the assumption that
structural similarities between proteins provide clues as to
what compounds will bind a protein and where. One approach
is to align entire protein structures or substructures to PDB
protein–compound complexes, which have the effect of
moving the ligand in a template structure into the coordinate
system of the query protein structure (94) (Fig. 1C). The
resulting ligand–protein interaction model can then be scored
by enumerating the physiochemical features of the predicted
binding site. An alternative approach is to search for regions in
potential target proteins that structurally align to binding
pockets in PDB complexes (e.g., (95, 96)).

Structural alignment is a way to explore protein structure
space, whereas chemical similarity searches enable the
exploration of chemical space. A number of efforts to
combine the two have been described (95, 96) where the link
is a PDB complex. For example, one can start with a query
compound identified in a phenotypic screen, search for
chemically similar compounds in a database of PDB com-
plexes, and then use structural alignment to identify other
proteins that might bind to the original compound. In par-
allel, starting with a target protein, structural alignment can
8 J. Biol. Chem. (2021) 296 100562
be used to identify related proteins in PDB complexes, and
then chemical similarity can be used to identify lead com-
pounds that bind to the original query protein. This low-
resolution strategy, when combined with a battery of dock-
ing and lead optimization technologies, offers the possibility
of true genome-wide structure-based prediction of ligand–
protein interactions.
Concluding remarks

We have highlighted a daunting array of genomic technol-
ogies and databases that have emerged in the past few years
and that offer the possibility of transforming both basic and
translational biomedical research. Given the proper tools, we
have argued that the strategy of exploiting the information
available in the PDB can make this database the critical
resource that enables the integration of structural biology with
systems biology. We are now in a position to create and probe
tissue- and disease-specific structure–informed protein inter-
action networks and similar networks that describe pathogen
infection. The integration of structure in these networks is the
only way to gain mechanistic insights and to link these net-
works to drug discovery tools, which themselves are under-
going rapid evolution. As the information available in the PDB
grows, the ways in which that information can be used to carry
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out systems-wide analysis of biological processes will grow as
well.
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