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Abstract

Background: Accurate somatic mutation-calling is essential for insightful mutation analyses in cancer studies.
Several mutation-callers are publicly available and more are likely to appear. Nonetheless, mutation-calling is still
challenging and there is unlikely to be one established caller that systematically outperforms all others. Therefore, fully
utilizing multiple callers can be a powerful way to construct a list of final calls for one’s research.

Results: Using a set of mutations from multiple callers that are impartially validated, we present a statistical approach
for building a combined caller, which can be applied to combine calls in a wider dataset generated using a similar
protocol. Using the mutation outputs and the validation data from The Cancer Genome Atlas endometrial study
(6,746 sites), we demonstrate how to build a statistical model that predicts the probability of each call being a somatic
mutation, based on the detection status of multiple callers and a few associated features.

Conclusion: The approach allows us to build a combined caller across the full range of stringency levels, which
outperforms all of the individual callers.
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Background
Somatic mutations are genetic changes that occur in
somatic cells after conception. Cancer is driven by such
somatic alterations, and thus cataloging somatic muta-
tions is essential to understand the genetic bases of cancer
development. With the burst of high-throughput sequenc-
ing data generated in recent years, extensive efforts
have been made towards accurate somatic mutation-
calling. Many calling algorithms are now publicly avail-
able, including Shimmer [1], MuTect [2], Strelka [3],
MutationSeq [4], JointSNVMix [5], and SomaticSniper
[6]. Additional in-house callers are likely to be under
development for on-going studies. Nonetheless, many
challenges remain to be addressed, for example, remov-
ing artifactual variants from multiple sources, detecting
rare variants in highly heterogeneous tumor samples,
detecting variants at a shallower sequencing coverage.
Every caller will tackle these issues, but different callers
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are likely to be more successful on some of them and
less so on others. As a consequence, finding the single
best performing caller is not easy, and perhaps not even
feasible.

Having multiple callers on hand, anyone conducting a
mutation analysis may want to apply all of the callers to
his/her data with the aim of later constructing a list of final
calls. In essence, combining calls from multiple callers
amounts to developing a strategy to sort the calls to be
included as final calls. This can be done effectively if one
can systematically assign a confidence measure to be a
somatic mutation across the full list. In general, pursuing
this goal requires a validation dataset to some extent. For
example, the paper by Lower et al. [7] presented a method
to prioritize calls from three methods by assigning false
discovery rate confidence values, but it requires the inde-
pendent sequencing of at least one of the tumor or normal
samples.

In our work, we are considering a situation in which
mutation-calling is done (by multiple callers) for many
tumor-normal sequence pairs across a large genomic
regions such as whole genome or exome, but only a lim-
ited resource is available for validation. For example, in
practice, often only a small fraction of detected mutations
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can be validated or a small subset of regions in a selected
list of samples are re-sequenced for evaluation purposes.
We aim to build a combined caller, which is learned
based on the relatively small validation dataset but can be
applied to a wider dataset generated based on a similar
protocol.

A large corpus in the statistical literature is dedicated to
combining individual learners, see e.g. Chapter 16 of [8],
however most of them — e.g., boosting, bagging and
random forests — are based on building individual learn-
ers from descriptors rather than combining outputs of
algorithms. Stacking [9] was introduced as a mean of com-
bining such outputs. In this paper, we exploit this well
established framework to merge the outputs of different
callers.

Specifically, we present a statistical approach for com-
bining calls from multiple somatic mutation-callers, when
validation is impartially done for all mutations detected
by all callers in a selected set of regions or samples.
For 194 tumor-normal exome-seq pairs from The Can-
cer Genome Atlas (TCGA) endometrial study [10], single
nucleotide variant (SNV) type mutations (i.e., point muta-
tions) were detected by three somatic mutation-callers.
Validation through an independent re-sequencing was
impartially done for all the mutations detected from 20
selected patients across the whole exome and for those
mutations detected within 243 genes of interest across all
194 patients. We used this data to show how our statisti-
cal approach improves against individual callers and naive
combination based on caller intersection. We also show
that this improvement is maintained when the parame-
ters of the model are estimated on a set of samples or
regions different from the ones on which the performance
is evaluated.

Methods
Our aim is to build a combined caller using the mutation
outputs generated by multiple callers based on the same
paired tumor-normal sequence data (BAMs; [11]), when
the mutation calls are impartially validated. For illustra-
tion purposes, we assume K = 3 callers (Caller A, B, and
C) are used for mutation-calling. The most basic and key
information available in each mutation output is the list of
positions detected as point mutations. A mutation output
may include additional features such as mutation substi-
tution type, mutation quality score, and perhaps details
of filters applied to remove artifactual or low-quality vari-
ants. When the raw sequence data are available, genomic
features can be computed for each mutation site such
as sequencing depth and the variant allele fraction (the
fraction of reads carrying the variant allele) for each
tumor and normal sample. The more information that is
available, the more powerful are the callers that can be
constructed.

Taking intersections or unions
One natural and simple way to build a combined caller
is to take intersections or unions of the calls from three
callers as final calls. For example, one may take the muta-
tions detected by all callers (ABC), or take intersections of
mutations from two callers (AB, AC, or BC), or take calls
detected by at least two callers (‘2orMore’), or even take
calls detected by any caller (Union). This strategy is very
intuitive and can be immediately used in practice once a
Venn diagram is drawn from calls, as in Figure 1. Note that
building this type of combined caller does not require a
validation dataset — although estimating its performance
does.

Cumulatively adding mutation sets based on combination
call status
We explained how the sets of mutation sites defined by a
Venn diagram could be used to build a combined caller.
Restricting ourselves to mutation sets corresponding to
a combination of detection statuses of the K callers, we
obtain a partition of the mutation sites into 2K − 1 dis-
joint subsets. This partition can be used to systematically
sort mutations by some measure of confidence that we
have in their being somatic mutations. On Figure 1, these
23 − 1 = 7 disjoint sets are ABC, AB without C, AC with-
out B, BC without A, A only, B only, and C only. We sort
these 2K −1 disjoint sets by their validation rate, i.e., by the
proportion of true mutations that they contain, as shown
on Table 1. These sorted sets of sites define a sequence

Figure 1 Venn diagram of the point mutations detected by three
callers on 20 TCGA endometrial tumor-normal exome-seq pairs.
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Table 1 Validation results of the seven disjoint mutation
sets shown in Figure 1

Combination Val. FP TP cFP cTP
call status rate (%) count count rate rate

All callers 99.4 12 1,914 1.2 55.3

Caller A and C only 96.4 11 294 2.4 63.8

Caller A and B only 96.3 7 184 3.1 69.1

Caller B and C only 94.4 2 34 3.3 70.1

Caller C only 79.6 11 43 4.4 71.3

Caller A only 59.7 632 935 69.1 98.4

Caller B only 15.9 302 57 100 100

For each mutation set (row), the validation rate (Val. rate), the false positive (FP)
and true positive (TP) counts, and the cumulative false positive (cFP) and
cumulative true positive (cTP) rates in percentage, are presented. Mutation sets
are ordered by the validation rate.

of combined callers, sorted by stringency. The most strin-
gent combined caller only predicts the site in the first set
to be mutations. Then less stringent combined callers can
be defined by adding the sites in the sorted sets.

Fitting logistic models using the call status and genomic
features
Stacked generalization was first introduced in the neural
network community [12] and later adapted to the statistics
literature [9], as a systematic way to combine classifiers.

Given a set of calls cik ∈ {0, 1} for site 1 ≤ i ≤ n
and caller 1 ≤ k ≤ K , stacking aims at building a linear
function of the calls for each site i which predicts its true
status yi as accurately as possible. In other words, we rep-
resent each site by its K calls from the different callers,
and learn a new classifier of mutation sites in this feature
space. Formally, given a set of n sites with known calls cik
for all callers and known true status yi, a linear stacking
approach would solve:

arg min
β1,...,βK

n∑
i=1

(
yi −

K∑
k=1

βkcik

)2

, (1)

i.e., a linear regression in the call space, estimating weights
βk such that a linear combination of the calls based on
these weights is close to the true mutation status. The
mutation status of a new site ci defined by its calls from
the K individual callers would then be predicted via

f (ci)
�=

K∑
k=1

βkcik . (2)

In practice, we use a logistic model rather than a lin-
ear one, because it is better suited to binary classification
[8] – we only have binary mutation status {0, 1} as opposed

to scores or continuous confidence measures. Our estima-
tor therefore becomes:

arg min
β1,...,βK

n∑
i=1

{
log

(
1 + exp

{ K∑
k=1

βkcik

})
− yi

K∑
k=1

βkcik

}
.

(3)

If the features cik are binary, which is the case if the
individual callers returned binary decisions rather than
continuous scores, the resulting classifier f (ci) is the sum
of weights βk for callers which classified the site i as a
somatic mutation. It can only take 2K − 1 distinct values
on sites which were called by at least one caller. Each of
these values corresponds to a unique combination of calls
by the individual methods, which in turn corresponds
to one of the disjoint subsets defined by the Venn dia-
gram discussed in Section ‘Cumulatively adding mutation
sets based on combination call status’. If the effects of
callers are additive, then the ranking of the sites defined
by f is expected to essentially behave like the more naive
one defined in Section ‘Cumulatively adding mutation sets
based on combination call status’.

The estimators defined by (1) and (3) combine the
individual callers uniformly for all sites. It is however con-
ceivable that some callers perform better for some types of
sites, e.g., those with low coverage, and less well for others.
We now assume that some descriptors gij, 1 ≤ j ≤ p, of
each site i are available besides the detection status of the
three callers and the validation status. These descriptors
could typically be genomic features.

Feature-weighted linear stacking (FWLS, [13]) replaces
each parameter βk of the stacking regression estimator (3)
by a linear combination of the descriptors gij:

βk =
p∑

j=1
αjkgij, (4)

where the αjk parameters are weights corresponding to the
relevance of feature gij to measure how predictive caller
k is for site i. The weights βk are therefore site-specific,
accounting for the fact that the relevance βk of a particular
caller k may be different for sites with different genomic
features.

Plugging weights (4) in the linear function (2) yields a
different set of coefficients for each site i : h(ci, gi) =∑K

k=1 βkcik = ∑K
k=1

∑p
j=1 αjkgijcik . h is now a linear func-

tion of the K × p products of features gij and calls cik so
FWLS equivalently amounts to:

(i) describing each site by this extended set of features,
and

(ii) estimating a linear classifier of mutation sites in this
space.
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Formally, after plugging (4) in our stacking estimator (3)
we see that FWLS solves:

arg min
γ1,...,γK×p

n∑
i=1

⎧⎨
⎩log

⎛
⎝1 + exp

⎧⎨
⎩

K×p∑
l=1

γlxil

⎫⎬
⎭
⎞
⎠ − yi

K×p∑
l=1

γlxil

⎫⎬
⎭ ,

(5)

where xil ∈ R
K×p contains all the products of calls and

genomic features for site i. The K × p parameters γl are
the weights of the logistic regression. They are strictly
equivalent to the αjk parameters of (4), we only use them
to emphasize that FWLS can be formulated as a regular
logistic regression estimator in an expanded feature space.

In the experiments of this paper, we consider all com-
binations of call status defined in Section ‘Cumulatively
adding mutation sets based on combination call status’,
i.e., all products of single calls rather than the single calls.
Technically this can still be cast as a FWLS model, by
adding all single calls and products of single calls to the
set of features gij. In practice, our implementation relies
on (5), i.e., on a logistic regression in an expanded feature
space.

Finally, since the resulting feature space can become
large, we choose to use an �1-penalized version of (5):

arg min
γ1,...,γK×p

n∑
i=1

⎧⎨
⎩log

⎛
⎝1+exp

⎧⎨
⎩

K×p∑
l=1

γlxil

⎫⎬
⎭
⎞
⎠−yi

K×p∑
l=1

γlxil

⎫⎬
⎭+λ

K×p∑
l=1

|γl|.

(6)

Penalizing the �1 norm
∑K×p

l=1 |γl| of the parameter is
known to lead to sparse estimators [14], and λ ∈ R is used
to adjust the level of sparsity.

Implementation and evaluation of combined callers
The approach of building a combined caller by taking
intersections or unions (Section ‘Taking intersections or
unions’) does not require a training set, and evaluation
of the caller can be done straightforwardly on a test
set. The approach that cumulatively adds disjoint sub-
sets (Section ‘Cumulatively adding mutation sets based on
combination call status’) uses a training set to determine
the order of subsets (by computing the validation rate of
each subset), and evaluates the performance on a test set
using the order. For the approach building a caller by fit-
ting a logistic model (Section ‘Fitting logistic models using
the call status and genomic features’), a training set is used
to estimate the γl parameters of (6). In order to choose
the hyperparameter λ, we perform 10-fold cross valida-
tion on the training set for each candidate λ to estimate
the error of the associated model. Then the most parsi-
monious model whose error is no more than one standard
error above the error of the best model is chosen. Once
λ is selected, we re-estimate γl using this λ on the whole

training set, and evaluate its performance on the test set.
Experiments were conducted using the R package glmnet
[15], which implements penalized GLMs, in particular the
�1 penalized logistic regression of which (6) is an instance.
The R scripts that contain our detailed implementation
are included as Additional file 1.

Results
We have used the mutation datasets generated for the
TCGA endometrial study [10]. For 194 tumor-normal
Illumina exome-sequence pairs, somatic-mutation calling
was done by three centers whose algorithms are referred
to here as Caller A, B, and C. In total, 51,648 single
nucleotide variant (SNV) type of mutations were detected.
A large fraction of the mutations were targeted for cus-
tom capture validation. As explained in the Additional
file 2: Supplementary Methods, these sites were captured
using the Nimblegen technology and then re-sequenced
independently using an Illumina HighSeq 2000. In partic-
ular, impartial validation (i.e. validating all calls from all
callers) was carried out for all mutations in (1) a randomly
selected 20 patients and (2) an additional 243 genes of
interest from the remaining 174 patients. Validation sta-
tus was successfully determined for all but a small fraction
(less than 5%) of the validated mutations. For more details
about the validation and determining the validation sta-
tus, see Additional file 2: Supplementary Methods. Our
final dataset consists of the successfully validated muta-
tions: (1) 4,438 sites in the selected 20 patients and (2)
an additional 2,308 sites within the 243 genes of interest.
Note that almost all of these sites (> 95%) are included
as example datasets in our software package (Additional
file 1).

For each point mutation site in our final dataset, we
know the validation status (‘somatic’ or ‘non-somatic’), the
call status (i.e., whether or not it was detected) by each of
the three callers, the mutation substitution type (combina-
tion of the reference allele and the variant allele), and the
sequencing depth and the variant allele fraction in each
tumor and normal sample based on the exome sequence
data that was used for mutation-calling. A brief summary
of our dataset is included as Table 1, Additional file 2:
Table S1 and Figures S1–S4. Caller B provided more infor-
mation besides the positions of the detected mutations.
For a broader set of somatic variants (candidate muta-
tions), it reported the mutation quality score as well as the
pass/fail status of individual filters at each site. Although
the detailed description of each filter was not available,
the filter outcomes were available (Additional file 2: Table
S2), which we were able to use for improving Caller B’s
performance (Section ‘Improving a single caller’s perfor-
mance using details of its filters’). In Section ‘Building
and evaluating combined callers’, we demonstrate how to
build a combined caller using the calling status of the three
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individual mutation callers and a few genomic features.
In Section ‘Improving a single caller’s performance using
details of its filters’, we show the potential for improv-
ing the performance of an individual caller using more
detailed outputs, using Caller B as an instance.

Building and evaluating combined callers
We first used the mutations detected from the 20 selected
patients (total: 4,438) to build and evaluate combined
callers. Assuming (for illustrative purposes) that the char-
acteristics of our mutations are not affected by sample-
specific features, we randomly split the data into 50%
training and 50% test sets. Other fractions were explored,
but the qualitative conclusions were similar as long as
there was enough data to train the model, e.g., more than
20% of the total.

The performance of the combined caller constructed by
fitting a logistic model (defined in Section ‘Fitting logis-
tic models using the call status and genomic features’) is
shown as a receiver operating characteristic (ROC) curve
in Figure 2. The explanatory variables for this logistic
model consist of the combination call status (7 − 1 vari-
ables), sequencing depth and variant allele fraction in each
tumor and normal sample (4 variables), mutation substi-
tution type (12 − 1 variables), and interactions between
the combination call status variables and other features
(90 variables). Note that we used combination call status
(7 − 1 variables) instead of the call status of each individ-
ual caller (3 variables) as shown in (6) in Section ‘Fitting
logistic models using the call status and genomic features’.
We used the combination call status, since we do not want
to assume that the effects of callers are necessarily addi-
tive. For example, in reality, a certain sequence feature may
mislead two callers, but the remaining single caller may
have a better filter for it. Therefore rather than imposing
additivity, we would like to characterize each combination
call status separately. The model fitting was done based
on a randomly selected 50% training sites, then predic-
tion was made on the remaining 50% test sites, enabling
us to sort the mutations. A more stringent caller can be
constructed by taking a smaller percentage of high-ranked
mutations as final calls, and a more liberal caller can be
constructed by including a larger percentage of mutations
as final calls.

The performances of individual callers and combined
callers are summarized in Figure 2. Note that validation
was done only for the mutations that were detected by at
least one of the three callers, and therefore, the union of
all mutations comprises all true positives and all false pos-
itives. The results of three individual callers are given at
three points with different false positive rates, i.e., differ-
ent stringency levels. Caller A is the most liberal in the
sense that it detected many false positives (FP rate at 68%)
but also detected most of the true positives (TP rate at

Figure 2 Performances of individual and combined callers.
Model fitting was done using a random 50% of the point mutations
detected from the selected 20 patients, and evaluation was done
based on the remaining half. In the main panel, the true positive and
the false positive rates of various callers are shown: (1) three individual
callers (red filled triangles): Caller A, Caller B, and Caller C, (2) the caller
that cumulatively adds mutation sets based on the combination call
status in the order of the validation rate (connected blue dots), (3) the
combined caller built by fitting a logistic model (for details, see text)
(green line). The area near the point showing Caller C’s performance
is enlarged and shown as a small sub-panel on the lower right part of
the main figure. This panel further indicates the performance of the
callers that take unions or intersections of calls from three callers
(brown diamonds): all callers (ABC), intersections of two callers (AB,
AC, or BC), called by more than two callers (‘2orMore’).

96%). Caller C has a very small FP rate (4%) but detected
only 67% of the true positives. Caller B performs poorer
than Caller C, since it detected not only more false posi-
tives but also less true positives. The performance of the
caller taking unions or intersections of the calls is marked
as another set of points, inside of the sub-panel on the
lower right part of the main panel. The stringency levels of
these callers are not necessarily ordered. For example, the
set of mutations called by two or more callers (2orMore)
is nested within any intersection of two callers (AB, AC, or
BC), but no ordering exists among the latter three inter-
sections. In contrast to this, the performance of the caller
adding mutations sets cumulatively is shown as a con-
nected set of blue dots because of the natural ordering
determined based on the validation rates. In reality, the
ordering may not be the same between the training set
and the test set. When the validation rates are very similar
among the mutation subsets or the number of mutations
in each set is very small, sampling variation could easily



Kim et al. BMC Bioinformatics 2014, 15:154 Page 6 of 8
http://www.biomedcentral.com/1471-2105/15/154

result in a different ordering. In the training set, the vali-
dation rates of the mutation set called by A and C but not
B, and the set called by A and B but not C, are 97.99% and
97.96%, respectively.

Overall, our combined caller obtained by fitting a logis-
tic model outperforms the individual callers and other
naive combinations. The ROC curve of this combined
caller is above of all the points representing the per-
formance of individual callers, although sometimes only
slightly so. Further, the combined caller allows us to assess
the performance across the full range of stringency levels.

Improving a single caller’s performance using details of its
filters
For Caller B, mutation quality scores as well as the out-
comes of individual filters were available for a broader set
of somatic variants. (Note that for each caller, the detected
mutations are the somatic variants that passed all the
filters implemented by that caller.) In Figure 2, the perfor-
mance of Caller B was shown as a single point. Here, we
demonstrate how such extra details besides the call status
can be used to improve the performance. Furthermore, to
prove the validity of our approach in a wider dataset, we
trained and tested on two different mutation datasets that
were generated for the TCGA endometrial study using the
same mutation calling algorithms, but constructed from
different genomic regions as well as different tumor and
normal samples. Specifically, we trained a model on the
mutations from the 243 genes of interest from 174 patients
(our second dataset described at the beginning of Section
‘Results’), then evaluated on the mutations from the whole
exomes of the 20 patients (first dataset). A similar analysis
was performed with the roles of the two datasets switched
(Additional file 2: Figure S5).

Since a mutation quality score was available for Caller
B, we first drew an ROC curve by sorting the calls that
were detected by Caller B (Figure 3). As expected, the
right most point in the ROC curve (besides the one at
the FP rate of 1.0) corresponds to the point for which
Caller B was previously evaluated. We then fitted a logistic
model including the mutation quality score and the indi-
vidual filter outcomes (indicator of pass/fail) from Caller
B as explanatory variables. The estimated coefficients for
the individual filters are summarized in Additional file 2:
Table S2 (note that these coefficients were estimated from
a set of ascertained sites for which each site was called by
at least one of the three callers).

By utilizing the outcomes of individual filters, Caller
B’s performance has improved substantially (Figure 3).
At a false positive rate of 33%, the true positive rate
increases from 63% to 78%, detecting 520 more muta-
tions. This highlights the importance of having the full
details of all features involved in the final decision on a
variant.
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Tr

ue
 p

os
iti

ve
 c

ou
nt

0 98 19
5

29
3

39
1

48
8

58
6

68
4

78
2

87
9

97
7

0

346

692

1038

1384

1730

2077

2423

2769

3115

3461

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

A

B
C

Individual callers
Cumulatively add sets
Our combined caller
Updated Caller B using quality score
Updated Caller B using quality score and filters

Figure 3 ROC curve of an improved Caller B built by fitting a
logistic model using the mutation quality score and individual
filters of Caller B. Model fitting was done using the point mutations
in 243 genes of interest from 174 patients excluding the 20 patients,
and evaluation was done on the point mutations in the 20 selected
patients. The performances of three individual callers (red filled
triangles), the combined caller that cumulatively adds mutation sets
(connected blue dots), and the combined caller by fitting the logistic
model (green lilne) are shown for comparison purposes. ROC curves
of two updated versions of Caller B are shown. One version is
obtained by ranking the mutations detected by Caller B using the
mutation quality score of Caller B (violet line), and the other version
by fitting a logistic model using the mutation quality score and the
individual filters of Caller B on an extended set of mutations that were
detected by at least one of the three callers (orange line).

Furthermore, if similar details were available for Caller
A and C, then we could generalize the logistic model in
previous section (Section ‘Building and evaluating com-
bined callers’) including outcomes of individual filters
from all callers, which potentially leads to a higher power
as well as better insight on the cause of mutation-calling
errors.

Discussion
In this paper, we present an approach for effectively build-
ing a combined caller using the outputs from three muta-
tion callers. Our approach is valid with more than three
callers or less concordant mutation call outputs, as long
as impartial validation data is available for all calls from
all mutation callers as a training data, and the relative per-
formance of individual callers is expected to be consistent
between the training set and the test set. The combining
approach could be even more beneficial if the individual
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callers agreed less — assuming (i) they all had compa-
rable individual performances and (ii) the set of loci on
which each caller is right could be characterized in terms
of genomic features. In this case, the FWLS approach
could learn the type of locus on which each caller is typi-
cally right and output the best answer for each new locus,
resulting in a more accurate calling.

We have analyzed mutation sites that were successfully
validated based on the criteria described in Additional
file 2: Supplementary Methods. Those validation crite-
ria may not be perfect, but we found them reasonable to
demonstrate our approach. Changes in validation crite-
ria can result changes in individual callers’ performances
and thus the final model estimated. For example, more
stringent criteria are likely to treat all very rare muta-
tions as false calls, and thus in our exercise, may reduce
the sensitivity of Caller A to a large extent. However, our
approach remains to provide a convenient framework to
build the best combined model, given any validation sta-
tus. In practice, determining validation status based on
an independent sequencing data can be very challenging,
and developing highly accurate validation method itself
is another research topic. Working on better validation is
out of scope for our paper, but if uncertainty in the vali-
dation could be quantified, it could be used in the logistic
model fitting to weight more accurate calls.

In practice, an effective validation strategy is essential
for building a successful model. In principle, a training
dataset is supposed to contain all sites characterizing a
wider dataset for which one wishes to apply the estimated
model. Therefore, a validation dataset needs to include
enough sites to learn the behaviors of the mutation-calling
algorithms across a broad spectrum of genomic features.
Another important issue is to have impartially validated
sites. If validation is done partially, then the composi-
tion of a training dataset is biased and thus the estimated
parameters and the performance are also biased.

Conclusions
Our approaches provide a unified framework for dealing
with multiple somatic-mutation callers. If the callers pro-
vide only the list of positions detected as mutations, then
it is difficult to compare them, or to investigate the trade-
off between the stringency of the calling-procedure and
its power to detect true mutations. Our combined caller
can be used to overcome these difficulties. It offers an
evaluation of its performance across the full range as an
ROC curve, and in addition, allows easy comparison with
individual callers.

Furthermore, we have shown that it is feasible to build a
combined caller that performs better than all the individ-
ual callers, one which could be better (even slightly) than
a caller combining calls only based on the detection sta-
tus. An even more powerful caller can possibly be built

when more features associated with calling performance
are available, such as individual details of the filters used
by each caller or the measure of strand bias.

Finally, we demonstrate the potential for building a com-
bined caller using a small validation dataset (generated
for a subset of regions or samples in the original study),
which can be applied to a wider dataset to assign a confi-
dence measure that can be used for ranking the mutations
from multiple callers. Our two mutation datasets, one
from the selected 20 patients and the other from 243 genes
of interest across 174 patients share protocols (sample
preparation, sequencing technology, alignment methods,
and the applied mutation-calling algorithms) but differ for
genomic regions and the tumor and normal samples used
for calling. The results from training the model using one
of the datasets and evaluating on the other suggest that the
estimated models based on these validation datasets are
generally applicable to the mutations from whole exomes
of all 194 endometrial patients.

Additional files

Additional file 1: Software package. A .tar.gz file that contains R scripts
and example datasets to illustrate our approaches. The package also
includes a manual file (pdf) explaining how to run the R scripts.

Additional file 2: Supplementary information. A .pdf file including
Supplementary Methods, Tables and Figures.
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