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Influence of bone conduction
transducer type and placement
on ocular and cervical vestibular
evoked myogenic potentials

Laura Frohlich®™, Maira Wilke, Stefan K. Plontke & Torsten Rahne

Evaluating the effectiveness of different bone conduction (BC) transducers with controlled coupling
force to elicit cervical and ocular vestibular evoked myogenic potentials ((VEMPs, oVEMPs) in healthy
subjects by comparing response rates, amplitudes, latencies, thresholds and asymmetry ratios.
Prospective experimental study including healthy participants. VEMPs were measured to different
stimulation modes; the BC transducer coupling force was controlled to 5.4 (+ 0.5) Newton. cVEMPs:
to bone conducted vibration (BCV) with the B81 transducer on the mastoid; oVEMPs: to BCV with
the B81 on the mastoid, BCV with the B81 on the forehead, and BCV with the Mini-Shaker 4810

on the forehead. Air conducted sound (ACS) with insert earphones was used as reference. Data of
24 normal subjects (mean age 25.3 (+ 3.0) years) were analyzed. ACS and BCV with the B81on the
mastoid evoked cVEMPs in 100% of ears. The highest oVEMP response rates were obtained with the
B81 on the mastoid (83-92%), the lowest with the B81 on the forehead (17-22%). The Mini-Shaker
elicited lower response rates (65%) compared to results from the literature without coupling force
control and compared to ACS (78-87%). Amplitudes were higher for BCV than ACS. ACS and BCV on
the mastoid caused higher asymmetry compared to BCV forehead stimulation. The B81 was feasible
to elicit VEMPs with mastoid placement and can be used as an approved medical device to measure
BCV VEMPs in a clinical set-up. Normative asymmetry values have to be established due to higher
variability for mastoid stimulation.

Cervical and ocular vestibular-evoked myogenic potentials (c(VEMPs, 0oVEMPs) are routinely measured in many
clinics as part of the neuro-otology test battery to evaluate otolith function. Cervical VEMPs were first described
by Colebatch et al.! who recorded click-evoked muscle reflexes from the ipsilateral sternocleidomastoid mus-
cle. Ocular VEMPs were reported a decade later>™*. The underlying mechanism for VEMP recordings is that
saccular and utricular afferents can be activated by air conducted sound (ACS) as well as by bone conducted
vibration (BCV)®. The threshold of saccular afferents to ACS is approximately 15-20 dB lower than for utricular
afferents®. Today it is known that due to differences in neural projections, utricular function can be assessed by
recording the excitatory potentials from the contralateral ocular muscles (0VEMPs), while saccular function
can be assessed by recording inhibitory potentials from the ipsilateral sternocleidomastoid muscle’. Clinically,
cVEMPs are usually measured to ACS due to lower thresholds of saccular afferents to ACS and to avoid stretch
reflexes, while BCV is normally used to measure oVEMPs®. Because of their vestibular origin, VEMPs can also be
recorded in patients without hearing. However, the recording of VEMPs to ACS is not possible in patients with a
conductive hearing loss. The impairment of sound transmission through the middle ear causes reduced VEMP
amplitudes or absent responses®'®. Thus, BCV as an alternative stimulus has to be used to elicit the responses in
these patients. Recordings in single neurons have shown that the threshold to BCV is lower than to ACS with
reference to hearing levels®!!.

BCV stimuli can be generated by various types of bone conduction (BC) transducers. These include audiomet-
ric BC transducers, e.g., B71 or B81 (Radioear, New Eagle, USA), large vibratory shakers such as the Mini-Shaker
4810 (Briiel & Kjeer Sound & Vibration Measurement A/S, Denmark) or tendon hammers.

The Mini-Shaker as a large electrodynamic vibratory shaker has been successfully used in numerous studies
to measure oVEMPs and cVEMPs. It has a flat frequency response and sufficient maximum power output. How-
ever, the transducer is not specified as a medical device and is originally intended to be used for accelerometer
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calibration, vibration testing of small objects, and mechanical impedance and mobility measurements. There-
fore, it is only applicable for experimental studies and not for routine clinical measurements. Furthermore,
the set-up requires a specified power amplifier which is a costly and cumbersome set-up for clinical use. The
shaker is very heavy with a weight of approximately 1 kg. It is usually hand-held during VEMP testing by the
examiner and coupled to the test site by its weight, which corresponds to coupling forces between 10 and 20 N.
The performance of the shaker when operated in the VEMP measurements was examined by Liitkenhéner!.
It was found that the transducer’s properties strongly depend on the experimental conditions. The resonance
frequency of the moving element changes as soon as the body of the shaker is held in the hand of an examiner.
Moreover, the performance depends on the shaker’s spatial orientation. Most importantly, the static force by
which it is pressed against a test person’s head can lead to fundamentally nonlinear behavior of the Mini-Shaker.
This occurs if the force is too high so that the shaker’s table is statically displaced to its maximum position even
if there is no electrical input. A set-up to control the shaker’s coupling force was described by Todd et al.'* who
used the Mini-Shaker in a pulley system with a weight of 1-2 kg to maintain a constant force of 3.5-7 N while
the transducer was coupled to the mastoid.

The use of tendon hammers to elicit VEMPs has also been described!*!>. VEMPs could reliably be elicited
by tendon hammer taps and the hammer itself is an approved medical device. However, for VEMP recordings,
the tendon hammer has to be fitted with a pressure trigger linked to the recording system. The procedure allows
assessment of whether a VEMP response is present or absent but manual tapping is difficult to control, lacks
repeatability and is not calibrated with reference to force level making threshold measurements and comparisons
difficult.

The audiometric BC transducer B71 has been used in a few studies, but the maximum output force generated
by the transducer was not always sufficient to elicit VEMPs'*#16. The newer B81 is a more powerful transducer
based on the balanced electromagnetic separation transducer (BEST) principle which can produce higher out-
put levels and less harmonic distortion than the B71". The only study describing the use of the B81 to measure
VEMPs was conducted by Mueller et al.’®. Ocular VEMPs were measured in their study in a group of healthy sub-
jects and the B81 was feasible to elicit the responses in all included subjects. The measurement of cVEMPs with
the transducer has not been reported in the literature so far. The advantages of the B81 are that it is an approved
medical device (CE marking) which is also used in audiometric evoked potential recordings (e.g., for BC audi-
tory brainstem recordings) and can be easily calibrated to standard electrophysiological recording set-ups. The
transducer is normally used with a steel spring headband and positioned on the mastoid so that a coupling force
of 5.4+0.5 N, as required for BC audiometry (ISO389-3"), is realized. The disadvantage of mastoid placement
is that the responses are sensitive to small changes in stimulation site? possibly making a comparison of the left
and right side more difficult than for symmetrical otolith stimulation by forehead placement.

A new transducer, the B250, was recently described by Hikansson et al.?!. It is based on the B81 design but
slightly larger and optimized for output at 250 Hz. A first pilot study with healthy test subjects showed that
cVEMPs and 0VEMPs could successfully be elicited with the B250 positioned on the mastoid but not for forehead
positioning. However, the transducer is not commercially available or approved as a medical device.

The objective of this study was to investigate the effectiveness of different BC transducers with controlled
coupling force to elicit cVEMPs and oVEMPs in healthy subjects by comparing response rates, amplitudes, laten-
cies, thresholds and asymmetry ratios. Cervical VEMPs to BCV were measured with the B81 on the mastoid,
oVEMPs to BCV were measured with the B81 on the mastoid and forehead as well as with the Mini-Shaker
on the forehead using an experimental apparatus to control the coupling force. As a reference, oVEMPs and
cVEMPs to ACS were measured.

Material and methods

Study participants. The study was designed as a prospective comparative experimental study at a tertiary
referral center. Based on the primary outcome measures, the study sample size was estimated to 25 participants.
All test subjects had to be healthy adults and not older than 40 years to be included in the study. Screening
audiograms were conducted in all subjects. Exclusion criteria were otologic or neurotologic disorders as well as
an air-bone gap >10 dB at 500 Hz.

The study protocol was reviewed and approved by the ethics committee of the Medical Faculty of Martin
Luther University Halle-Wittenberg and the University Hospital Halle (approval number: 2018-76). The study was
performed in accordance with the ethical standards of the Declaration of Helsinki. Written informed consent was
obtained from all participants before inclusion to this study. For publication of the image in Fig. 1 in an online
open access publication, written informed consent was obtained by the pictured test person.

Experimental set-up. The Eclipse EP25 system (Interacoustics A/S, Middelfart, Denmark) was used for
stimulation and recording. Electromyographic (EMG) signals were recorded in a—20 to 80 ms window rela-
tive to the onset of the stimulus and bandpass filtered between 10-1000 Hz. The artifact rejection level was
set to 400 pV. Responses to at least 200 stimuli were averaged. Self-adhesive Neuroline 720 surface electrodes
(Ambu A/S, Ballerup, Denmark) were used to record the EMG signals after the skin was prepared to provide
impedances of less than 5 kQ. The electrodes were placed over the middle of the sternocleidomastoid muscle
ipsilateral to the stimulated side and referenced to an electrode over the sternum for cVEMP testing. For oVEMP
recordings, the electrodes were placed as bipolar montage on the infra-orbital ridge 1 cm below the lower eyelid
contralateral to the stimulated side and about 2 cm inferior to the first electrode.

For BCV stimulation, the B81 and the Mini-Shaker 4810 were used. The B81 was fitted with the standard P333
steel spring headband (Radioear, New Eagle, USA) to provide coupling forces of 5.4+ 0.5 N. The Mini-Shaker
was fitted with an experimental apparatus to control the coupling force (see Fig. 1). The apparatus consisted of a
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Figure 1. Experimental apparatus to control coupling force. (a) Mini-Shaker 4810 with the experimental
apparatus to control the coupling force. (b) Mini-Shaker with experimental apparatus coupled to a test subject’s
head at hairline for oVEMP testing. For publication of the image in an online open access publication, written
informed consent was obtained by the pictured test person.

chuck holding an aluminum rod in a frame fixed to the shaker itself, and a preload force adjustment. The latter
consisted of a compression spring with a spring constant of 0.49 N/mm. A static force of approximately 5 N was
adjusted by screwing the preload force adjustment compressing the spring by 10 mm (10 mm x 0.5 N/mm =5 N).
The aluminum rod ended with a plane circular tip surface of approximately 1.75 mm? which served as an adapter
to be coupled to the hairline at the test person’s head. The whole system was fixed to a flexible mounting arm.
The Mini-Shaker was used with the power amplifier 2718 (Briiel & Kjeer Sound & Vibration Measurement A/S,
Denmark). For ACS stimulation, ER-3A insert earphones (3 M, St. Paul, MS, USA) were used.

The stimuli were short 500 Hz tone bursts (0-1-0, i.e.: 0 cycles rise/fall time, 1 cycle plateau) for each meas-
urement. The BCV stimuli were calibrated on an artificial mastoid 4930 (Briiel & Kjaer Sound & Vibration
Measurement A/S, Denmark). An InfiniiVision 2000 X-Series oscilloscope (Keysight Technologies, Santa Rosa,
CL, USA) was used to read the output peak-to-peak equivalent vibratory force levels (peVFL). The maximum
stimulus intensity was 142 dB peVFL for the B81 and 144 dB peVFL for the Mini-Shaker. For ACS, the standard
clinical units and calibration in dB nHL was used. The maximum stimulus intensity was 100 dB nHL. The stimu-
lus polarity was chosen to produce outward initial movement, i.e., a force towards the head, for all transducers
and measurement modes. The B81 is polarized when manufactured to give the same direction of movement for
a given voltage polarity. The Mini-Shaker’s polarity varies for every device so that the polarity for the specific
transducer used in this study was controlled using the artificial mastoid and the oscilloscope to ensure the correct
voltage polarity corresponsing to outward initial movement was chosen in the Eclipse set-up menu.

Procedures. Ocular and cervical VEMPs were measured on the right and left sides of all subjects.

cVEMPs. For cVEMP recordings, the participants were sitting on a chair and were asked to turn their head to
the shoulder contralateral to the stimulated side?”. VEMP responses were recorded from the ipsilateral sterno-
cleidomastoid muscle. The EMG signal was monitored, and feedback was provided by the examiner to ensure
sufficient tonic muscle contraction (50-200 uV). To calculate the background EMG, the root mean square of
the EMG signal was averaged over the pre-stimulus window and for each recording frame. EMG scaling was
performed by normalizing the cVEMP p13-n23 peak-to-peak amplitude to the background EMG in order to
reduce the impact of muscle contraction on cVEMP amplitudes.

Cervical VEMPs were measured to BCV using the B81 positioned on the mastoid and to ACS using the ER-3A
insert earphones. The Mini-Shaker was not used for cVEMP measurements because the experimental apparatus
required a fixed head position and could not be coupled to the head during cVEMP measurements (turning the
head to the contralateral shoulder was necessary).

oVEMPs. For oVEMP testing, the participants were asked to lie in supine position and look up, maintaining an
upward gaze of approximately 30°. Upward gaze was controlled by asking the participants to looking at a certain
point on the ceiling serving as a target. VEMP responses were recorded from the ocular muscles contralateral
to the stimulated side.

Ocular VEMPs were measured to BCV using the B81 on the mastoid and on the forehead as well as using the
Mini-Shaker on the forehead. During the measurements with the Mini-Shaker the test person’s head was posi-
tioned on a fixation pillow (mediPlac, Borchen, Germany) to prevent head tilt and therefore prevent a change of
coupling force adjusted with the experimental apparatus described earlier. Ocular VEMPs to ACS were measured
using the ER-3A insert earphones.
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Figure 2. VEMP response rates. oVEMP and cVEMP response rates as absolute numbers for the left (blue)
and right (red) side and different (bone conduction) transducer types and placements. Absent responses are
illustrated in gray. Chi-square tests showed that the oVEMP response rate with the B81 on the forehead was
lower compared to all other stimulation modes (p <0.008, marked by asterisks).

Data analysis. The VEMP responses were analyzed in OtoAccess software version 1.5 (Interacoustics A/S,
Middelfart, Denmark, https://www.interacoustics.com/otoaccess/database). A response was judged to be pre-
sent when it was clearly larger than the pre-stimulus waveforms, i.e., the background noise. The amplitudes of
all myogenic potentials were measured from peak to peak (p13-n23 for cVEMPs, n10-p15 for oVEMPs). The
asymmetry ratio (AR) in % was calculated by dividing the difference between the larger and smaller amplitude
by the sum of the amplitudes multiplied by 100.

Descriptive statistics were used to report latency, amplitude, threshold and asymmetry data. Quantitative
data were presented as mean, standard deviation (+), and range (minimum and maximum).

Response rates were calculated for each stimulation mode (c(VEMP: B81 at mastoid, AC; oVEMP: B81 at
mastoid, B81 at forehead, Mini-Shaker at forehead, AC) for the right and left sides and were compared using
the Chi-square test. For confirmed associations (p <0.05), post-hoc analysis was performed by pairwise Chi-
square tests. To consider multiple comparisons, the p value was reduced according to the Bonferroni correction
(cVEMPs: 4 stimulation modes with six pairwise comparisons, p=0.05/6 =0.008). Qualitative data were pre-
sented as graphs, if appropriate. SPSS version 25 for Windows software (IBM, Armonk, NY, USA, https://www.
ibm.com/products/spss-statistics) was used for all statistical analyses. Graphs were created in GraphPad Prism
version 8.4.3 (Graphpad Software, San Diego, CA, USA, https://www.graphpad.com/scientific-software/prism/).

Results

Twenty-four subjects could be included into the study. The mean age was 25.3 (+ 3.0) years (range 19-30 years).
Twelve participants were male, 12 were female. Due to technical problems with the measurement set-up during
two data collection sessions, the AC oVEMP and BC oVEMP data with B81 on the forehead and the Mini-Shaker
from another subject were lost. Thus, cVEMP data were available from 24 subjects and 48 ears, and oVEMP data
were available from 23 subjects and 46 ears except for BC oVEMPs with the B81 on the mastoid (24 subjects
and 48 ears).

The cVEMP and oVEMP response rates are illustrated in Fig. 2 for the different stimulation modes. Cervical
VEMPs were present to BCV with the B81 on the mastoid as well as to ACS in all 24 subjects for the left and
right sides (100%). Ocular VEMPs were obtained with the B81 on the mastoid in 22 of 24 right ears (92%) and
20 of 24 left ears (83%). Bilateral absence of responses was observed in 2 subjects, and unilateral absence on the
left side in 2 subjects. When the B81 was positioned on the forehead, 5 of 23 right ears (22%) and 4 of 23 left ears
(17%) showed oVEMP responses. The oVEMPs were absent bilaterally in 18 subjects and unilaterally on the
right side in 1 subject. With the Mini-Shaker, oVEMPs were measurable in 15 of 23 right and left ears (65%). In
the other 8 subjects, the oVEMPs were absent bilaterally. To ACS, oVEMPs were obtained in 18 of 23 right ears
(78%) and 20 of 23 left ears (87%). In 3 subjects, responses were absent bilaterally and in 2 subjects, they were
absent on the right side only.

The Chi-square test showed an association between the oVEMP response rate and stimulation mode for the
right ears (X?(3) =28.02, p=0.000) and left ears ((X*(3) =30.34, p=0.000). The post-hoc pairwise Chi-square tests
showed that the B81 on the forehead was different with respect to response rate compared to all other stimula-
tion modes (p <0.008 for all comparisons). No other differences in the response rates were observed between
the other stimulation modes.

The means and standard deviations of the latencies, amplitudes, thresholds and ARs are summarized in
Table 1 (cVEMPs) and Table 2 (0VEMPs) for the different stimulation modes and the left and right sides. For
cVEMPs, there were no clinically relevant differences between the latencies for BCV and ACS. The mean p13
latencies were between 14.1 (+1.4) and 15.6 (+2.0) ms and n23 latencies were between 23.5 (+2.4) and 24.6
(+2.0) ms. The mean normalized cVEMP amplitudes were larger by approximately 0.3 for BCV compared to
ACS, i.e., in a clinically relevant range. The mean cVEMP ARs were not different between BCV (14.2 (£ 9.0)%)
and ACS (15.0 (+10.7)%). Figure 3 shows the amplitude and AR data distributions including medians and
interquartile ranges.
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. . T 13 Ad haold a
Stimulation mode | p13 (ms) n23 (ms) Amplitude ( ) | Thr (dB) As i
cVEMPs R L R L R L R L ratio (%)
AC 141+14 |152+19 |23.5+24 |23.7+24 |1.0+0.6 1.1+0.5 91.0+6.1| 90.0+55 |15.0+10.7
B81 @ Mastoid 145+1.6 |15.6+2.0 |24.6+2.0 |24.5+23 |1.3+0.5 1.3+0.6 127.0+4.4 | 128.5+4.3 | 14.2+£9.0

Table 1. Means and standard deviations (+) of cVEMP latencies, amplitudes, thresholds, and asymmetry
ratios for the left and right side and different (bone conduction) transducer types and placements. AC: air
conduction; R: right; L: left; *Threshold in dB peVFL for bone conduction and dB nHL for air conduction.

n v T "
Stimulation mode | n10 (ms) p15 (ms) Amplitude (V) Threshold (dB) As e
oVEMPs R L R L R L R L ratio (%)
AC 9.3£0.5 9.6+1.1 |14.0+1.0 | 14.5+1.5 |45+23 |3.8+24 94.7+4.7 94.8+4.3 |22.2+15.8
B81 @ Mastoid 9.5+£1.0 [10.1+2.1 |14.6+1.0 |15.1+2.0 |58%3.7 |59+£29 |130.0+4.9 |130.5+4.9 |23.1+18.7

B81 @ Forehead 12.0+£0.7 | 11.4£0.7 |16.6+0.2 |157+0.7 |1.5%£0.7 |1.8+0.3 |139.0£4.5 |138.3+4.8 |10.3+7.5
4810 @ Forehead 8.6+0.5 89+0.7 |129+1.1 |13.1£1.0 |54+3.6 |52+47 |140.7+2.4 |141.0£25 |149+134

Table 2. Means and standard deviations (+) of oVEMP latencies, amplitudes, thresholds, and asymmetry
ratios for the left and right side and different (bone conduction) transducer types and placements. AC: air
conduction; R: right; L: left; *Threshold in dB peVFL for bone conduction and dB nHL for air conduction.
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Figure 3. cVEMP amplitudes and asymmetry ratios. (a) cVEMP normalized amplitudes and (b) asymmetry
ratios with medians and interquartile ranges for the left (blue) and right (red) side and different (bone
conduction) transducer types and placements.

In oVEMP recordings, the B81 on the forehead resulted in the longest n10 (12.0 (+0.7) ms for right ears) and
p15 latencies (16.6 (+0.2) ms for right ears). The shortest latencies were obtained when the Mini-Shaker was
used (n10: 8.6 (+0.5) ms for right ears; p15: 12.9 (£ 1.1) ms for right ears). The mean n10-p15 interpeak latencies
were between 4.1 (+0.8) ms (Mini-Shaker, left ears) and 5.0 (+0.7) ms (B81 on the mastoid, right ears), i.e., not
different between the different stimulation modes. As for cVEMPs, the mean oVEMP amplitudes were larger for
BCV compared to ACS by 0.7-2.1 pV except for the B81 on the forehead which produced the smallest amplitudes.
The ARs were similar for the B81 on the mastoid (23.1 (+18.7)%) and ACS (22.2 (+15.8)%) but lower for the
Mini-Shaker (14.9 (£ 13.4)%) and the B81 on the forehead (10.3 (£7.5)%). Figure 4 shows the amplitude and AR
data distributions including medians and interquartile ranges. Forehead stimulation with the B81 or Mini-Shaker
required approximately 10 dB higher output levels to reach the oVEMP thresholds compared to stimulation at
the mastoid. The mean oVEMP thresholds were up to 139.0 (+4.5) dB peVFL for the B81 on the forehead and
141.0 (+2.5) dB peVFL for the Mini-Shaker compared to 130.5 (+4.9) dB peVFL with the B81 on the mastoid.

Discussion
This is the first study measuring BC cVEMPs with the B81 BC transducer, showing the feasibility of the device.
This is also the first study comparing 0VEMPs measured with the B81 to oVEMPs measured using a Mini-Shaker
with controlled coupling force.

The feasibility of using the audiometric BC transducer B81 on the mastoid to measure cVEMPs and oVEMPs
could be confirmed in a young and healthy study sample. The cVEMP response rate was 100%. The oVEMP
response rate with the B81 on the mastoid was comparable to using the Mini-Shaker with controlled coupling
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Figure 4. oVEMP amplitudes and asymmetry ratios. (a) oVEMP amplitudes and (b) asymmetry ratios
with medians and interquartile ranges for the left (blue) and right (red) side and different (bone conduction)
transducer types and placements.

force. However, controlling the coupling force of the Mini-Shaker resulted in lower response rates compared to
data from the literature, where the transducer was pressed against the forehead or mastoid by its own weight'®*.

There is the risk that the experimental apparatus introduced in this study was not feasible to produce the
desired coupling force, possibly due to small head movements by the test person. The apparatus requires a stable
head position which was optimized during the measurement by using a fixation pillow. However, small head
movements cannot be excluded so that the final peak-to-peak output vibratory force level might have been too
small to elicit oVEMP responses. We proposed that it could be beneficial for VEMP testing, if the Mini-Shaker’s
coupling force was controlled to avoid nonlinear operation modes. However, the response rates showed that the
nonlinear operation when pressed against the forehead by the shaker’s own weight is advantageous for VEMP
measurements.

Forehead stimulation required approximately 10 dB higher stimulus intensities than mastoid stimulation
to evoke oVEMPs. Thus, small changes in coupling force and therefore in stimulus intensities are very likely to
have caused absent oVEMPs to stimulation by the Mini-Shaker in some cases. The need for higher output levels
for forehead stimulation to elicit VEMPs also explains why the response rates to forehead stimulation with the
B81 were clearly lower compared to the other stimulation modes. The maximum output levels generated by the
B81 were slightly lower than with the Mini-Shaker and most likely not feasible to elicit oVEMPs in most test
subjects. It has been shown in a few studies that oVEMPs are very sensitive to direction of skull acceleration
so that variation of stimulus site along the midline of the skull results in change of polarity and/or latency**-%.

Beside the effect of stimulus site on the VEMP response polarity it is also known that the BCV stimulation
polarity (inward versus outward initial transducer movement) can influence the VEMP response, especially
latencies”. Thus, it is important to consider the stimulation polarity when interpreting or comparing the results
of this study to others. Initial force towards the head was chosen in this study for all measurements. This could
explain the small but noticeable latency difference observed between forehead and mastoid stimulation.

The results of this study showed that amplitudes to BCV were higher than to ACS for oVEMPs and cVEMPs.
This has been reported in other studies before!®?**, When VEMP amplitudes are small, BCV could be used to
decide whether a response is present or absent. Thus, the amplitude differences are relevant for clinical decision
making.

It was also observed in this study that ARs of oVEMP amplitudes were larger for the B81 on the mastoid and
for ACS compared to transducer forehead placement. The absolute ARs with the Mini-Shaker on the forehead
and with the B81 on the mastoid were comparable to values reported in the literature for these stimulation
modes'*!3. The AR difference between mastoid and forehead placement has been described before for the Mini-
Shaker’. Higher ARs for lateral acceleration are possibly caused by variations in transducer placement on the
left and right mastoids resulting in small differences of stimulus intensities at the otolithic receptors. It has been
shown that VEMP responses to lateral acceleration can be sensitive to small variations in transducer placement?.
Thus, the acquisition of normal data is very important for clinical set-ups using mastoid placement in order to
define cut-off ARs to identify pathologic VEMP results. Forehead placement is advantageous due to symmetrical
stimulation of both labyrinths but cannot be realized using B81 as reported earlier.

In a study by Rosengren et al.' it was observed that ACS stimulation and BCV tone bursts delivered to
the mastoid were less effective in evoking oVEMPs than cVEMPs. They also reported that the responses had
high degrees of asymmetry. Forehead taps by a tendon hammer and lateral pulses produced more symmetri-
cal responses and had comparable response rates in their study. These findings were confirmed in our study.
However, despite the drawback of higher asymmetry, the B81 was shown to be a feasible transducer and most
important an approved medical device to elicit BCV oVEMPs and cVEMPs when placed on the mastoid. Due
to lower thresholds for mastoid stimulation compared to stimulation on the forehead, the output generated by
the B81 audiometric BC transducer was sufficient for VEMP measurements. To overcome the drawback with
high asymmetry, a more powerful transducer needs to be developed as medical device which is sufficient to
elicit VEMPs when positioned on the forehead. The approach to use pulses instead of tone bursts as described
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by Rosengren et al. is not applicable for the B81. Pulses would lead to further oscillations due to the transducer’s
technical design as a variable reluctance type transducer. The B81 was designed as an audiometric transducer
to be operated within a relatively narrow frequency range. While this gives the advantage of being an approved
medical device, the mechanical design is not feasible for impulsive stimulation which is very effective for utri-
cular stimulation.

Conclusion
The B81 proved to be a feasible BC transducer to elicit oVEMPs and cVEMPs when placed on the mastoid. As
an approved medical device, the B81 is a suitable transducer for clinical VEMP measurement set-ups. Due to
variability in placement on the mastoids and resulting larger ranges of asymmetry ratios, normative data have
to be collected for every set-up to determine cut-off asymmetry ratios for identifying pathologic results. A more
powerful and approved transducer would be beneficial, sufficient to elicit VEMPs to forehead stimulation.

In future studies, VEMPs measured with the B81 should also be investigated in a representative study sample
including older test subjects as well as in patients with pathologies (e.g., third window pathologies, vestibular
schwannoma, cochlear implant users).

Data availability
The datasets generated for this study are available on request to the corresponding author.
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