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Renal biopsy is the gold standard for defining renal fibrosis which causes

calcium deposits in the kidneys. Persistent calcium deposition leads to

kidney inflammation, cell necrosis, and is related to serious kidney diseases.

However, it is invasive and involves the risk of complications such as bleeding,

especially in patients with end-stage renal diseases. Therefore, it is necessary to

identify specific diagnostic biomarkers for renal fibrosis. This study aimed to

develop a predictive drug target signature to diagnose renal fibrosis based on

m6A subtypes. We then performed an unsupervised consensus clustering

analysis to identify three different m6A subtypes of renal fibrosis based on

the expressions of 21 m6A regulators. We evaluated the immune infiltration

characteristics and expression of canonical immune checkpoints and immune-

related genes with distinct m6A modification patterns. Subsequently, we

performed the WGCNA analysis using the expression data of 1,611 drug

targets to identify 474 genes associated with the m6A modification.

92 overlapping drug targets between WGCNA and DEGs (renal fibrosis vs.

normal samples) were defined as key drug targets. A five target gene

predictive model was developed through the combination of LASSO

regression and stepwise logistic regression (LASSO-SLR) to diagnose renal

fibrosis. We further performed drug sensitivity analysis and extracellular

matrix analysis on model genes. The ROC curve showed that the risk score

(AUC= 0.863) performedwell in diagnosing renal fibrosis in the training dataset.

In addition, the external validation dataset further confirmed the outstanding

predictive performance of the risk score (AUC = 0.755). These results indicate

that the risk model has an excellent predictive performance for diagnosing the
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disease. Furthermore, our results show that this 5-target gene model is

significantly associated with many drugs and extracellular matrix activities.

Finally, the expression levels of both predictive signature genes EGR1 and

PLA2G4A were validated in renal fibrosis and adjacent normal tissues by

using qRT-PCR and Western blot method.

KEYWORDS

logistic regression, prective model, drug sensitivity, renal fibrosis, immune
microenvironment

Introduction

Renal fibrosis is a process of wound-healing failure in renal

tissues after chronic injury, calcium deposits, and inflammation.

It is a common pathway and pathological marker of almost all

types of chronic kidney diseases (CKD) (Farup et al., 2021) (Xie

et al., 2021). The main pathological feature of renal fibrosis is

nephrogenesis. Fibroblasts are massively activated and

proliferated. The extracellular matrix (ECM) deposited in the

renal interstitium is excessively synthesized and secreted,

resulting in structural damage, renal function impairment,

and, ultimately end-stage renal disease (Yan et al., 2021).

Renal biopsy is the gold standard for defining renal fibrosis.

However, it is invasive and involves the risk of complications

such as bleeding, especially in patients with end-stage renal

diseases. Therefore, it is necessary to search for more

accessible and specific biomarkers of renal fibrosis (Jia et al.,

2020).

Despite the significant progress made by modern medicine,

non-invasive diagnostic techniques (Nielsen et al., 2020) and

effective treatment measures for renal fibrosis are still limited

(Zhang et al., 2021a). Currently, there is no specific treatment

(Deng et al., 2020). In recent years, many efforts have been

devoted to finding novel biomarkers and therapeutics of renal

fibrosis, focusing on the properties of unknown mediators and

pathways involved in developing renal fibrosis (Prakoura et al.,

2019). Machine learning (ML) is an emerging field with

enormous resources being applied to medical problems that

fuse computer science and statistics together (Handelman

et al., 2018). So far, it has shown good performance in a wide

range of tasks in biomedicines (Cilluffo et al., 2021). Machine

learning techniques have been widely applied to identify disease

biomarkers for diagnosis, prognosis, and risk assessment (Dockès

et al., 2021; Field et al., 2021).

Combined with machine learning, Cao et al. (2016) found

that the urinary TREM-1/TREM-2 ratio can be a potential

biomarker for diagnosing renal fibrosis in CKD patients

(Guerquin et al., 2013). Hypoxia promotes the development

of renal fibrosis. Armutcu ADAMTS protease may provide

some important signals for the early diagnosis and treatment

of renal fibrosis. Elevated plasma CDH11, SMOC2, and PEDF

and urinary CDH11 and PEDF levels were associated with

interstitial fibrosis and significantly correlated with increased

severity of tubular atrophy. In both the cohorts, elevated plasma

and urinary SMOC2 and urinary CDH11 levels were

independently associated with progression to end-stage renal

diseases (Ma et al., 2021a). These biomarkers provided new

ideas for treating renal fibrosis. EVR may delay impaired

autophagic flux and block the activation of the NF-kB

pathway (Wang et al., 2019), and rAAV9 acts as a carrier of

miR-29b anti-fibrotic factors (Xu et al., 2020). Twist1/galectin-

3 signaling pathway regulates macrophage plasticity

(M2 phenotype) and promotes renal fibrosis (Liu et al.,

2021). However, the underlying mechanisms of renal fibrosis

have not been fully elucidated, and current treatments can only

delay disease progression. Therefore, exploring novel potential

drug targets are of great significance for the treatment of renal

fibrosis (Sun et al., 2022).

Massive gene expression profiling databases provide

opportunities to discover novel prognostic and predictive

biomarkers using sophisticated deep learning algorithms.

These datasets also allow extensive external validation (Sun

et al., 2022). We first searched three datasets from the GEO

database, removed the batch correspondence through the SVA

algorithm, and merged them into the training dataset. We then

performed a panel of 21 putative m6A regulators (7 writers,

12 readers and 2 erasers) to identify distinct patterns of m6A

methylation modification. We then performed an unsupervised

consensus clustering analysis of 175 renal fibrosis samples based

on the expressions of 21 m6A regulators. To further clarify the

role of m6A modification patterns in the immune

microenvironment, we used the ESTIMATE algorithm to

evaluate immune infiltration characteristics in different m6A

patterns. We next analyzed the expression of canonical immune

checkpoints and immune-related genes with distinct m6A

modification patterns. We then performed the WGCNA

analysis using the expression data of 1,611 drug targets

obtained from the GeneCards database to identify 474 genes

associated with m6A modification. 92 overlapping drug targets

between WGCNA and DEGs (renal fibrosis vs. normal samples)

were defined as key drug targets. A prediction model for renal

fibrosis composed of five drug targets was developed using

LASSO regression and stepwise logistic regression (LASSO-

LR). The ROC curve shows that the risk model has an

excellent predictive performance. Finally, we performed drug

sensitivity and gene and extracellular matrix analysis. Five genes

Frontiers in Pharmacology frontiersin.org02

Feng et al. 10.3389/fphar.2022.909784

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.909784


were significantly associated with drug sensitivity and

extracellular matrix activity.

Materials and methods

RNA-sequencing data and data
preprocessing

The expression profile dataset was searched from the NCBI

GEO database (http://www.ncbi.nlm.nih.gov/geo/) with “Renal

fibrosis, Homo sapiens” as keywords, and a total of three sets of

expression data. The analysis of them6Amodulators was performed

after batch effects were removed by the SVA algorithm.

Identification of m6A-modified subtypes

An unsupervised consensus clustering analysis was

performed on 175 renal fibrosis samples based on the

expressions of 21 m6A regulators. The principal component

analysis (PCA) showed that the three subtypes could clearly

distinguish the samples. We performed the GSVA analysis using

the R package. The GSVA algorithm calculated the m6A score

between the three subtypes. Significant differences in the m6A

score were found among the three subtypes.

Immune infiltration characterization

We obtained microenvironment scores through the

ESTIMATE package to quantify the immune microenvironment

(TME) levels across different m6A patterns. We further employed

the CIBERSORT method to compare the infiltration levels of

22 immune cells among the three m6A subtypes. Finally, we

performed a GSVA enrichment analysis of the enrichment

scores for the immune gene set using the R package. The

results showed significant differences in the enrichment of

17 immune gene sets among the three m6A subtypes. Adjusted

p < 0.05 was considered statistically significant.

Detection of m6A modification-related
drug target modules based on WGCNA

WCGNA clustered drug targets with similar expression

patterns to construct a scale-free gene co-expression network

and analyzed the correlation between modules and specific

phenotypes (m6A modified subtypes). According to the

correlation between modules and target genes and the

correlation between modules, important target gene modules

are screened. It has significant advantages in analyzing gene

association patterns as a comprehensive biological algorithm.

Two of its highlights are clustering modules with genes with

similar expression patterns and the correlation analysis between

modules and m6A-modified subtypes. This study performed a

hierarchical cluster analysis on the expression profiles to exclude

outliers. Subsequently, the Pearson correlation coefficient of any

two genes was calculated, and a correlationmatrix was established.

The topological overlap matrix was transformed into a topological

overlap matrix using the topological overlap matrix similarity

function. Co-expressed genes were assigned into modules by a

dynamic minimal tree-cutting algorithm. The module genes with

the highest correlation were obtained for subsequent analysis.

Differential identification and functional
enrichment analysis

DAVID is an online bioinformatics tool designed to predict

many gene functions. Therefore, we used DAVID to observe the

gene enrichment of the pathways (p < 0.05). We used the

clusterProfiler R package to perform a functional annotation

of the key genes.

Least absolute contraction and selection
operator analysis

Drug targets associated with renal fibrosis were integrated in

least absolute contraction and selection operator (LASSO)

regression to identify prognostic biomarkers. We use the

“timeeroc” package to plot the receiver operator characteristic

(ROC) curves of the datasets separately. Then, we calculated and

compared the area under the curve (AUC) of the ROC curves to

test the performance of the classifier.

qRT-PCR

Total RNA was extracted by the TRIzol reagent. Then, qRT-

PCR was performed with One Plus Step (Thermo Fisher,

United States) and SYBR Premix (Takara, Japan) following the

manufacturer’s instructions. The primer sequences of the relevant

genes are listed in Supplementary Table S1. A unilateral ureteral

obstruction (UUO) kidney disease model was established for

harvesting fibrotic kidneys. C57Bl/6J mice (SLAC Laboratory

Animal Company) were given left ureteral ligation to establish a

UUO model as previously described (Guerquin et al., 2013).

Western blotting

To detect the EGR1 and PLA2G4A protein expression levels,

the protein was extracted by a radio-immunoprecipitation assay

protein lysis buffer (Beyotime Institute of Biotechnology) and
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FIGURE 1
De-batch analysis. (A,B) are the sample step-by-step diagrams before and after de-batching, respectively.

FIGURE 2
Expression landscape of m6A RNA methylation regulators in renal fibrosis. (A) Boxplot of the transcriptome expressions of 21 m6A regulators
between healthy and renal fibrosis samples. (B)Heatmap of expression level correlations of 21 m6A regulators. * means p less than 0.05; ** means p
less than 0.01, *** means p less than 0.001.
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FOCUS Global Fractionation kit (G-Biosciences). The proteins

were separated by SDS-PAGE and transferred onto polyvinyl

difluoride membranes. The membranes were incubated in 5 %

non-fat milk for blocking, followed by incubation with primary

antibodies EGR1 and PLA2G4A (1:1,000, Abclonal Technology)

at 4°C overnight. Finally, the membranes were washed and

incubated in a blocking buffer with horseradish peroxidase-

conjugated secondary antibodies for 2 h before detection.

Results

Data collection and de-batch processing

Expression profile datasets were searched from the NCBI

GEO database (http://www.ncbi.nlm.nih.gov/geo/; March 2022)

with “Renal fibrosis, Homo sapiens” as keywords. A total of three

sets of the expression data were obtained:

A. GSE22459: 65 samples; 25 normal and 40 renal fibrosis

samples were included. Sequencing platform: GPL570.

B. GSE76882: Contains 234 samples; 99 normal and 135 renal

fibrosis samples. Sequencing platform: GPL13158.

C. GSE57731: Contains 73 samples; 45 normal and 28 renal

fibrosis samples. Sequencing platform: GPL17244 for the

subsequent validation analysis.

Then, the SVA algorithm removed the two sets of the gene

expression profile data of A and B and merged them into a

training dataset containing 124 normal and 175 renal fibrosis

samples. The sample relationship distribution before and after

batch effect removal is shown in Figures 1A, B.

Expression landscape of m6A regulators

We analyzed a panel of 21 putative m6A regulators (7 writers,

12 readers, and 2 erasers) to identify distinct patterns of m6A

methylation modification. As shown in Figures 2A 13 m6A

regulators were significantly different between renal fibrosis

and normal samples (p < 0.05). To explore the association

between different m6A modulators, we describe the

correlation pattern between three m6A modulators (Figure 2B).

Identification of m6A modification
subtypes in renal fibrosis

To investigate the m6A modification patterns in renal

fibrosis, we performed an unsupervised consensus clustering

analysis of 175 renal fibrosis samples based on the expressions

of 21 m6A regulators (Figures 3A–C). By setting the K value in

the range of 2–6 and choosing the optimal K = 3, three different

FIGURE 3
Identification of m6A-modified subtypes. (A) Consensus cluster cumulative distribution function (CDF) for k = 2–6. (B) Relative change in the
area under the CDF curve at k = 2–6. (C) Consensus clustering matrix for optimal k = 3. (D) Principal component analysis (PCA) of the three m6A
subtypes in renal fibrosis. (E) Violin plot of m6A score differences among the three m6A subtypes. (F) Heatmap of the m6A regulator expression
among the three m6A subtypes. Red represents high expression and blue represents low expression. (G) The expression statuses of 21 m6A
regulators in the three m6A subtypes. * means p less than 0.05; ** means p less than 0.01, *** means p less than 0.001.
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m6A modified subtypes of renal fibrosis were identified, among

which, C1, C2, and C3 contained 77, 73, and 25 samples,

respectively. The principal component analysis (PCA) showed

that the three subtypes could clearly distinguish the samples

(Figure 3D). We calculated m6A scores by using the GSVA

algorithm and found that m6A scores were significantly different

among the three subtypes (Figure 3E). There are diverse m6A

modification patterns. In addition, we also found 19 m6A

FIGURE 4
Characteristics of the immunemicroenvironment in different m6Amodification patterns. (A) Differences in TME scores among the three m6A-
modified subtypes. (B)Differences in the abundance of 22 immune cells among the threem6Amodification patterns. (C)Differences in the activity of
17 immune response gene sets under the threem6Amodification patterns. * means p less than 0.05; ** means p less than 0.01, *** means p less than
0.001.
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regulators whose expressions were significantly different among

the three subtypes (Figures 3F,G). Notably, except for IGF2BP1,

the remaining m6A regulators generated a unique m6A low

transcription profile in C3.

Characteristics of immune infiltration in
different m6A patterns

Recent studies have shown that the m6A modification of

RNA plays a crucial role in forming immune responses and the

immune environment. Then, we utilized the ESTIMATE

algorithm to measure the immune microenvironment (TME)

level. C2 exhibited higher immune and stromal scores

(Figure 4A). We further compared the infiltration levels of

22 immune cells among the three m6A subtypes using the

CIBERSORT method (Figure 4B). Nine significantly

differentially expressed immune cells (DICs) were found (p <
0.05). To better illustrate the immune gene set activity changes

among m6A modified subtypes, we calculated the enrichment

scores for 17 immune gene sets from the ImmPort database using

GSVA. The results showed significant differences in the

enrichment of the 17 immune gene sets among the three m6A

subtypes (Figure 4C). These results demonstrated that m6A

methylation modification had an essential regulatory role in

shaping different immune microenvironments in renal fibrosis.

Immune checkpoints, MHC, co-
suppression, and co-stimulatory
molecular signatures in different m6A
patterns

We further analyzed the expression of canonical immune

checkpoints and immune-related genes with different m6A

modification patterns. The expressions of PD-1, PD-L1,

CTLA-4, BTLA, CD47, TIM3, CD278, TIGIT, OX40, and B7-

H4 were significantly different among the three subtypes

(Figure 5A). In addition, the expressions of multiple MHC,

co-stimulatory, and co-repressor-related genes were

significantly different across m6A (Figures 5B–D). This means

that the m6A modification patterns may benefit more from

immunotherapy responses.

WGCNA analysis revealed m6A
modification-related drug targets

The m6A modification subtype was used as the clinical

feature to implement the WGCNA analysis. The expression

data of 1,611 drug targets that were obtained from the

GeneCards database (relevance score >7) were used. We set

the network construction parameter and calculated the scale-free

distribution topology matrix. As shown in Figure 6A, we selected

FIGURE 5
Expression patterns of typical immune-related genes. (A–D) Differential expression of immune checkpoint, MHC, co-suppression and co-
stimulatory genes among different m6A clusters. * means p less than 0.05; ** means p less than 0.01, *** means p less than 0.001.
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the power five when the squared value of the correlation

coefficient reached 0.85 for the first time (red line). The

1,611 drug targets were divided into 11 modules based on

dynamic pruning (Figure 6B) and topological overlap

measurement (TOM) clustering (Figure 6C). Subsequently, the

associations between each module and clinical features were

calculated (Figure 6D). We selected the blue and brown

modules with the highest degree of correlation with m6A

modified subtypes. Therefore, the 474 genes in blue and

brown modules served as m6A modification-related drug

targets for the subsequent analysis.

Differential gene identification and
functional enrichment analysis

To understand the association between drug targets and renal

fibrosis, we performed a differential gene analysis on renal

fibrosis and normal samples based on the expression of

1,611 drug targets (FDR<0.05). 289 drug targets with altered

expressions were identified (|log2FC|>0.5; Figure 7A).

92 overlapping drug targets between WGCNA and DEGs

were defined as key drug targets (Figure 7B). To characterize

the roles and underlying mechanisms of key genes, we performed

FIGURE 6
Co-expression identifies drug targets associated with m6A modification. (A) Left image: Adjacency matrix weight parameter power selection
graph. The horizontal axis represents the weight parameter power, and the vertical axis represents the square of the correlation coefficient between
log (k) and log [p(k)] in the corresponding network. The higher the squared value of the correlation coefficient, the closer the network is to the
distributionwithout network scale. The red line represents the standard line where the squared value of the correlation coefficient reaches 0.85.
Right image: Schematic diagram of the average connection degree of genes under different adjacency matrix weight parameters, power parameter.
The red line represents the value of the average connection degree of network nodes under the value of the power parameter of the adjacency
matrix weight parameter in the left image. (B) Module division tree diagram. Each color represents a different module. (C) Heatmap of the
Topological Overlap Metric (TOM) matrix. Light yellow represents lower TOM, and darker red represents higher TOM. (D) Heatmap of the
correlations of individual modules with m6A-modified subtypes.
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Gene Ontology (GO) and KEGG analyses. The analyses showed

that key genes were mainly related to kidney development,

extracellular exosome, extracellular matrix, and the

angiotensin system (Figures 7C–F). These findings suggest

that key drug targets may be involved in the development and

progression of renal fibrosis.

FIGURE 7
Identification and enrichment analysis of key drug targets. (A) Volcano plot showing information on changes in the expressions of drug targets
between healthy and renal fibrosis samples. (B) Venn plot of the intersection of WGCNA and differential analysis. (C) Biological processes of the key
drug targets. (D)Cellular components involved in the key drug targets. (E)Molecular functions of the key drug targets. (F) Signaling pathways involved
in the key drug targets.
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Construction and validation of a risk
model

A series of bioinformatics algorithms were used to further

study the contribution of the key drug targets to the

pathogenesis of renal fibrosis. First, we performed feature

selection and dimensionality reduction on 92 drug targets

related to renal fibrosis by using LASSO regression and found

11 important drug targets (Figures 8A,B). Subsequently, we

developed a predictive model composed of five drug targets

using stepwise logistic regression to diagnose renal fibrosis

(Figure 8C). Finally, we calculated the risk score for each

sample with the five drug target expression values and

regression coefficients. The risk score is calculated as

follows: RiskScore = 10 + (0.4402 × PLA2G4A) +

(−0.4683 × THY1) + (0.8501 × EGR1) + (-0.9986 × EGR1)

+ (−0.6811 × SLC4A1). The risk score could differentiate

between healthy and renal fibrosis samples well, with renal

FIGURE 8
Risk scores can differentiate healthy and renal fibrosis samples. (A) Distribution of the LASSO coefficients for 92 drug targets. (B) 10-fold cross-
validation with adjusted parameter selection in LASSO regression. Partial likelihood deviations are plotted against log (λ), where λ is the tuning
parameter. (C)A gene signaturewith five drug targets was developed by stepwise logistic regression, and risk scores were calculated. (D) Violin plot of
the risk score distribution between normal samples and renal fibrosis in the training set. (E) Predicted ROC curve for the risk scores in the training
set. (F) Distribution of the differences in risk scores between normal samples and renal fibrosis in the GSE57731 validation set. (G) Predicted ROC
curve of the GSE57731 validation central risk score.

FIGURE 9
Sensitivity analysis of gene and drug therapy. (A) Heatmap of the expression of model genes in disease and risk groups. (B) Heatmap of model
gene–drug associations.
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fibrosis having a much higher risk score than the healthy

samples (Figure 8D). The ROC curve showed that the risk

score (AUC = 0.863) performed well in predicting renal

fibrosis (Figure 8E). In addition, the external validation set

GSE57731 also further confirmed the predictive performance

of the risk score (AUC = 0.755) (Figures 8F,G). Therefore,

these results indicate that the risk model has excellent

predictive performance.

Drug sensitivity analysis

We drew a heat map of the model genes to further explore the

role of model genes in the development of renal fibrosis and the

correlation between drug treatments (Figure 9A). We found that

SLC4A1, THY1, and GHR were significantly under-expressed in

renal fibrosis, and PLA2G4A and EGR1 were significantly over-

expressed compared with the normal group. Subsequently, the

sensitivity of each renal fibrosis patient to drug treatment was

estimated based on the Genomics of Cancer Drug Sensitivity

(GDSC) database. IC50 quantification was performed by the

pRRophetic package in R. We compared the IC50 levels of five

model genes with eight drugs (Figure 9B) and found that the

IC50 levels of cisplatin, gemcitabine, vinblastine, and docetaxel

significantly correlated with the expressions of the five model

genes.

FIGURE 10
Extracellular matrix activity profile. (A) Differential distribution of extracellular matrix activity in normal and renal fibrotic tissues, (B–F) scatter of
the correlations between five genes (EGR1, GHR, PLA2G4A, SLC4A1, and THY1) and extracellular matrix activity in renal fibrotic tissues.

FIGURE 11
EGR1 and PLA2G4A mRNA expressions were analyzed by
using the qRT-PCR assay in renal fibrosis and adjacent normal
tissues.
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Analysis of genes and extracellular matrix

Studies have found that renal fibrosis is significantly

correlated with the extracellular matrix. Therefore, we

used the GSVA enrichment analysis to evaluate the

activation state of the extracellular matrix. The

extracellular matrix enrichment in renal fibrosis scores

was significantly higher than that of normal tissues (p =

0.00021; Figure 10A). We performed a correlation analysis to

further explore the ECM activity status regulated by the five

model genes (Figures 10B–F). We found that EGR1 was

significantly positively correlated with ECM activity (r =

0.29, p = 0.00012). GHR (r = −0.23, p = 0.002) and

SLC4A1 (r = −0.14, p = 0.032) were significantly

negatively correlated with the extracellular matrix activity.

PLA2G4A and THY1 did not correlate with the extracellular

matrix activity.

Validating the expression levels of
EGR1 and PLA2G4A via qRT-PCR and
Western blot

The expression levels of both EGR1 and PLA2G4A were

detected in renal fibrosis and adjacent normal tissues by qRT-

PCR and Western blot method. Our results revealed that,

compared with normal tissues, the EGR1 and PLA2G4A genes

have higher expressions in tissues of renal fibrosis (p < 0.05)

(Figure 11). It was consistent with the PCR results that EGR1 and

PLA2G4A have the higher protein expression in the tissues of

renal fibrosis as validated by the Western blot analysis

(Figure 12).

Discussion

Our study analyzed three datasets of gene expression profiles

in whole blood, with batch effects removed by the SVA algorithm

for subsequent analysis. First, an unsupervised consensus

clustering analysis was performed based on the expressions of

m6A regulators. The ESTIMATE algorithm evaluated the

immune infiltration characteristics in different m6A patterns.

Finally, the expression analysis of typical immune checkpoints

and immune-related genes was performed. We developed a 5-

gene predictive target gene signature based on the WGCNA of

drug targets, differential gene analysis, logistic regression

analysis, etc. Finally, we performed drug sensitivity and gene

and extracellular matrix analysis. Five genes were significantly

associated with drug sensitivity and extracellular matrix activity.

m6A is the most prevalent mRNA post-transcriptional

methylation in eukaryotic cells (Cao et al., 2016). Especially in

mammals, m6A-dependent mRNA modification is a critical

process. It regulates multiple biological processes such as self-

renewal and differentiation, DNA damage response, tissue

development, RNA–protein interactions, and primary

microRNA processing by regulating RNA splicing, stability,

translocation, and translation into proteins (Cao et al., 2016).

Growing literature studies have reported the critical role of m6A

methylation in epigenetic regulation and how this modification

affects the pathogenesis of various diseases, including renal

injury. It has been reported that m6A is involved in the

epithelial–mesenchymal transition of cancer cells and is

regulated by methyltransferases, demethylases, and m6A-

binding proteins (Ma et al., 2021a). Recent evidence suggests

that m6A methylation is associated with acute kidney injury

(Wang et al., 2019; Xu et al., 2020).

It is known that in the study of key cancer genes, using the

gene signature as the input for feature selection may be a better

modeling algorithm than genome-wide gene expression profiles

when using expression regression models of the lasso strategy

(Liu et al., 2021). Traditional genome-wide analysis has been

used for an early diagnosis and prognostic model of renal fibrosis

(Sun et al., 2022). The reported biomarkers also indicated that

renal fibrosis was closely related to immunity, which is consistent

with our conclusion. But the correlation with the extracellular

matrix is not mentioned in the study. However, we studied the

modification pattern based on m6A and found that different

m6A modified subtypes have different immune infiltrations. In

addition, the key drug targets we found are closely related to the

FIGURE 12
EGR1 and PLA2G4A protein expressions were analyzed by
Western blot in renal fibrosis and adjacent normal tissues.
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extracellular matrix, indicating the feasibility of our m6A-based

gene signature may be more convincing and feasible.

This study revealed that the progression of renal fibrosis is

closely related to the m6A methylation pattern. m6A methylation is

an abundant endoepigenetic modification that has recently received

much attention. Recent studies have shown that m6A modification

is essential in regulating immune responses. We divided renal

fibrosis patients into three subtypes with different prognoses and

different immune statuses based on 21 m6A modulators. Renal

fibrosis, a pathological change driven by inflammatory responses

and calcium desposits, is a feature of renal transplant failure (Hu

et al., 2022). However, it is difficult to characterize the immune status

of a specific patient due to the immune heterogeneity in renal fibers.

While immune function is broadly regulated by m6A methylation

(Li et al., 2021), the three m6A subtypes have enhanced the

understanding of the molecular characteristics and

subpopulation-specific immune status of renal fibers. These

results help predict the clinical treatment outcome of renal

fibrosis and search for drug targets. Our follow-up study found

significant differences in the expression of immune checkpoints and

immune-related genes in different m6A patterns. This means that

m6Amodification patterns may benefit more from immunotherapy

responses. Subsequent analysis of key drug targets based on m6A

modified subtypes revealed that key genes were associated with the

extracellular matrix, consistent with previous studies on the

progression of renal fibrosis (Bülow and Boor, 2019).

EGR1 (Early Growth Response 1) has long been dysregulated in

many cancers and is known to regulate tumor progression, making it

an attractive target for cancer therapy (Saha et al., 2021). EGR1-

activated LINC01503 epigenetically silences the DUSP5/CDKN1A

expression, mediating cell cycle progression and tumorigenesis (Su

et al., 2019; Ma et al., 2021b). Another example is the loss of Nm23-

H1 in invasive breast cancer caused by the downregulation of CTCF

and EGR1 (Wong et al., 2021). EGR1 may interact with DNMT3L,

inhibit the miR-195-AKT3 axis, and regulate gastric cancer cell

apoptosis (Yang et al., 2019). There is a strong correlation

between the EGR1 expression and HIV reactivation, with the

active transcription in response to the peak expression of EGR1

(Wong et al., 2022). Curcumin sensitizes prolactinoma cells to

bromocriptine by activating ERK/EGR1 and inhibiting the AKT/

GSK-3β signaling pathway in vitro and in vivo (Tang et al., 2021). The
high expression of EGR1 promotes the proliferation of mast cells,

plasma cells, and macrophages, which promote the expansion of the

abdominal aorta and affect the immune process (Guo et al., 2022).

The GHR signaling pathways play important roles in growth,

metabolism, cell cycle control, immunity, homeostatic processes,

and chemoresistance. Dysregulation of GHR signaling is associated

with various diseases and chronic diseases, such as acromegaly,

cancer, aging, metabolic diseases, fibrosis, inflammation, and

autoimmunity (Strous et al., 2020). Wang et al. (2020) showed

that GHR gene polymorphisms are associated with esophageal

cancer in the general population, and GHR signaling can be

applied to cancers and other therapeutic strategies (Gao et al.,

2020). The extracellular domain of GHR can be cleaved during

shedding, reducing the number of cell-surface signaling receptors,

which modulate the sensitivity of cells to GH (Frank, 2001). In

muscle tissue, GHR disruption has been reported to enhance insulin

sensitivity and prolong lifespan (List et al., 2020).

Phospholipase A2-iva (PLA2G4A) is the most abundant

subtype of cytosolic phospholipase A2 (cPLA2) and is an

important enzyme in tumorigenesis (Zhang et al., 2018).

The eicosanoid signaling pathway based on arachidonic

acid (AA) is involved in the development of human cancer.

The cytoplasmic phospholipase A2-α (cPLA2α) encoded by

the PLA2G4A gene acts as an upstream regulator of the

eicosanoid signaling pathway by providing intracellular AA

(Bazhan and Khaniani, 2018). Studies have shown that the

PLA2G4A gene can be used as a biomarker in various diseases

such as gastric cancer (Bazhan and Khaniani, 2018), acute

myeloid leukemia (Hassan et al., 2021; Lai et al., 2021),

cholangiocarcinoma (Sun et al., 2019), and colorectal

cancer (Zhan et al., 2021a). PLA2G4A activates the

colorectal cancer microenvironment to produce pro-

cytokines IL-17A and adenosine, thereby establishing an

effective immunosuppressive microenvironment and

promoting immune evasion and tumor metastasis (Zhan

et al., 2021b). Trametinib inhibits the cell viability and

signaling of organoids to a greater extent by inhibiting the

expression of PLA2G4A (Klotsman et al., 2007).

SLC4A1 is a member of the solute carrier family 4 (Zhang

et al., 2021b). Studies have shown that this gene is associated with

distal renal tubular acidosis (Elhayek et al., 2013; Deejai et al.,

2019). The epithelial transporter SLC4A1 is involved in immune

response-related biological processes and is characterized by its

upregulation in kidney transplantation (Hruba et al., 2019). It is

involved in regulatory pathways, including immune response,

granulocyte activation, and T cell activation (Han et al., 2021).

The SLC4A1-related pathway analysis revealed increased gene

enrichment in extracellular matrix–receptor interactions and

axon guidance pathways (Saraf et al., 2018). Thymocyte

differentiation antigen-1 (THY1) has been reported to affect

lung fibroblast proliferation and fibrotic signaling (Chen et al.,

2019). In addition, a high expression of Thy1 was associated with

poorer recurrence-free survival in breast cancer patients.

Thy1 methylation may track the transfer of bipotent

progenitors to differentiated cells. Thy1 is a good candidate

biomarker for basal-like breast cancer. Thy1 expression was

downregulated in xenografts due to promoter methylation.

Thy1-knockdown responded to targeted therapy with

increased EGFR and Notch1 expressions. THY1 is

doxorubicin-resistant in tumors of offsprings exposed to high-

fat diets (Montales et al., 2016). Skeletal muscle from patients

with type 2 diabetes exhibits degenerative remodeling of the

extracellular matrix, which is associated with a selective increase

in a subset of fibrolipogenic progenitors marked by the

expression of THY1 (Farup et al., 2021). Since DNA
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methylation is often altered in early cancer development,

candidate methylation markers may be used as biomarkers for

basal-like breast cancer (Montanari et al., 2019).

Conclusion

Renal fibrosis is a process of wound-healing failure in

renal tissue after chronic injury, calcium deposits, and

inflammation. In the study, we used an integrated

bioinformatics approach, machine learning, regression

algorithms, and in vitro experiments to study m6A

modifications and drug targets in renal fibrosis. We

identified three different m6A subtypes of renal fibrosis

through an unsupervised consensus clustering analysis and

evaluated immune infiltration characteristics and the

expression of immune checkpoints and immune-related

genes among distinct m6A subtypes. Overlapping drug

targets between WGCNA and DEGs were defined as key

drug targets. We used LASSO-SLR to develop a 5 drug

target-based prediction model to diagnose renal fibrosis.

The 5-gene model had a good predictive effect and was

significantly associated with many drugs and extracellular

matrix activities. The expression levels of both predictive

signature genes EGR1 and PLA2G4A were validated in

renal fibrosis and adjacent normal tissues by using the

qRT-PCR and Western blot methods.
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