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It is now well-recognized that the tumor microenvironment (TME) is not only

a key regulator of cancer progression but also plays a crucial role in cancer

treatment responses. Recently, several high-profile publications have demonstrated the

importance of particular immune parameters and cell types that dictate responsiveness

to immunotherapies. With this increased understanding of TME-mediated therapy,

approaches that increase therapeutic efficacy by remodeling the TME are actively being

pursued. A classic example of this, in practice by urologists for over 40 years, is

the manipulation of the bladder microenvironment for the treatment of non-muscle

invasive bladder cancer (NMIBC) by instillation of intravesical bacillus Calmette-Guerin

(BCG). The success of BCG treatment is thought to be due to its ability to induce

a massive influx of Th1-polarized inflammatory cells, production of Th1 inflammatory

cytokines and the generation of tumor-targeted Th1-mediated cytotoxic responses.

Whilst BCG immunotherapy is currently the best treatment for NMIBC,∼30% of patients

show no response to this treatment. Here we present a review highlighting a variety

of promising alternative immunotherapies being developed that remodel the bladder

tumor microenvironment. These include (1) the use of oncolytic viruses which selectively

replicate within cancer cells whilst also modifying the immunological components of

the TME, (2) manipulation of the bladder microbiome to augment the response to

BCG or other immunotherapies (3) utilizing Toll-like Receptor agonists as anti-tumor

agents due to their potent stimulation of innate and adaptive immunity and (4) the

growing recognition that immunotherapeutic strategies that will have the largest impact

on patients may require multiple therapeutic approaches combined together. The

accumulating knowledge on TME remodeling holds promise for providing an alternative

therapy for patients with BCG-unresponsive NMIBC.
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INTRODUCTION

In addition to malignant cells the TME is also made up of other non-transformed cells and
secreted extracellular components. The interactions between the tumor cells and the tissue
microenvironment are such that they regulate tumor progression but also determine cancer
treatment responses. In particular, the tumor microenvironment often limits the infiltration and
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function of effector T cells into the tumor, recruiting
myeloid derived suppressor cells (MDSCs), tumor associated
macrophages (TAMs) and regulatory T cells (Tregs), providing
an immunosuppressive niche to help cancer cells escape from
immune surveillance (1, 2). Understanding the complex
interplay of the components that make up the tumor
microenvironment can help inform on strategies to modulate
the tumor microenvironment to be more immunogenic
resulting in enhanced immune responses and improved
therapeutic outcomes.

THE GOLD STANDARD

IMMUNOMODULATORY APPROACH TO

TREAT NMIBC: INTRAVESICAL BCG

One of the oldest such immunomodulatory approaches and
the gold standard treatment for non-muscle invasive bladder
cancer is serial intravesical instillations with bacillus Calmette-
Guerin (BCG) (3, 4). Effective BCG therapy has been shown
to prevent or delay tumor recurrence and progression and
this has been attributed to its ability to induce a massive
influx of inflammatory cells (Th1-polarized lymphocytes and
neutrophils), the generation of classically activated resident
tissue macrophages (M1), the production of Th1 cytokines
(IFNγ, IL-12, and TNF-α) and the generation of anti-tumor
targeted Th1-mediated cytotoxic responses (5–7). However,
around 30% of patients are unresponsive to BCG therapy and
increasing evidence points toward the pre-existing immune
tumor microenvironment influencing the BCG response (8).

As is the case for many solid tumors, the tumor
microenvironment of non-muscle invasive bladder cancer
is characterized by the presence of pro-inflammatory cells
(such as macrophages, myeloid-derived suppressor cells,
regulatory T cells, dendritic cells, mast cells, neutrophils, and
lymphocytes) and cytokines (such as tumor necrosis factor-α and
interleukins) both in the supporting stroma and in tumor areas.
Many of these cell types have been studied to investigate their
influence on outcomes following BCG immunotherapy. Several
published reports have provided evidence that a predominance
of immunosuppressive cell types are associated with BCG
immunotherapy failure. In particular, the presence of M2-like
tumor associated macrophages (TAMs) has consistently been
associated with shorter recurrence-free survival and thus a poor
response to BCG (7, 9–11). In NMIBC these TAMs are induced
and maintained by Bone Morphogenetic Protein 4 (BMP4)
secreted by the tumor cells (12). They are able to suppress
adaptive immunity, support tumor growth and angiogenesis and
aid cell migration, invasion and metastasis (13).

Whilst the TAMs are localized in the stroma-tumor margin
of NMIBC, infiltrating the tumor area in high-grade tumors,
another immunosuppressive cell type the Tregs localize in
the stroma around the cancer lesion regardless of tumor
stage and grade (9). High Treg counts were shown to be an
independent predictor for recurrence following BCG treatment
(7, 9). Whilst the above studies focused on immunohistochemical
analysis of the NMIBC tissue microenvironment, another study

characterized immune cell populations in the urine of patients
undergoing BCG instillations for the treatment of NMIBC
as a surrogate for the bladder tumor microenvironment (14).
They observed an infiltration of neutrophils, T cells, monocytic
myeloid-derived suppressor cells (M-MDSCs) and group 2 innate
lymphoid cells (ILC2), cells that have been shown to play a
part in regulating tissue homeostasis during infection, chronic
inflammation, metabolic disease and cancer (15). There was
a lower recurrence-free survival in patients with a T cell-to-
MDSC ratio of <1 than in patients in which the ratio was
>1. This difference between patient groups was even present
before BCG therapy. Bladder tumor cells cultured in vitro with
BCG could shift ILCs toward the ILC2 phenotype producing
the Th-2 cytokine IL-13 which allowed the recruitment and
immunosuppressive function of monocytic cells.

Amongst the robust immune response induced by BCG
therapy, in vitro and in vivo studies have suggested a role for
NK cells in BCG-induced cytotoxicity (16–18). Brandau et al.
showed in vitro that BCG-activated killer (BAK) cells, of which
NK cells were the major effector cell population, displayed
substantial cytotoxicity against bladder tumor cells. Furthermore,
using a syngeneic orthotopic murine bladder cancer model they
demonstrated in NK-deficient beige mice and in mice treated
with anti-NK1.1 monoclonal antibody that BCG therapy was
completely ineffective, suggesting a key role for NK cells during
BCG immunotherapy (19).

As well as detecting a diverse infiltrate of innate and adaptive
immune cells including the above mentioned cell types, another
study reported a significant role for IL-17 positive mast cells in
influencing the outcomes from BCG therapy (20). Patients with
carcinoma in situ (CIS, high grade cancer cells that are only in
the innermost layer of the bladder lining) with higher numbers of
IL-17+mast cells showed significantly longer event-free survival
after intravesical BCG therapy than patients with less IL-17+
mast cells. This significant effect was only observed in patients
who underwent intravesical BCG treatment suggesting that BCG
amplifies the beneficial effects associated with increased numbers
of IL-17+mast cells.

Clearly the interactions between cancer and immunity
are highly complex and multifactorial and in particular we
still need to have a better understanding of the mechanisms
hindering efficient constitutive and/or treatment-induced
immune responses to tumors. Currently, in NMIBC, there are
no reliable biomarkers which allow prediction of the efficacy of
the BCG induced anti-tumor response despite many attempts
to look at the immune response in bladder tissue before and
after BCG treatment. This may be reflective of the fact that
many of the studies to date looking at the immune response
to BCG treatment have focused on individual cell types using
traditional single immunohistochemical stains rather than
performing a multiplex comprehensive analysis of both cellular
and non-cellular immune components. With the introduction
of new technologies that allow for a more global analysis of
complex disease states a more comprehensive picture of the
roles and interactions between these different components
and their influence on therapies should be revealed. This will
allow for more informed treatment strategies on how best to
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immunomodulate particular bladder cancer microenvironments
to achieve the optimal therapeutic outcomes.

THE URINARY MICROBIOME: A

POTENTIAL EMERGING FACTOR IN THE

IMMUNOMODULATION OF NMIBC

Whilst urologists have been using BCG for over 40 years
to manipulate the bladder microbiome to treat NMIBC, the
patient’s own pre-existing bladder microbiome may have a role
not only in the development of bladder cancer but also in its
response to immunotherapies (21). A greater understanding of
the potential dysbiosis–the imbalance or alteration of bacterial
composition of microbiota–in bladder cancer could lead to the
bladder microbiome of patients being used as a modifiable
way to optimize response to immunotherapy. Research to date
suggests that the bladder microbiome may modulate the bladder
microenvironment by various mechanisms. Firstly, bacterial
strains have been shown to reduce mucosal inflammation due
to inhibition of the NF-κB pathway, IL-6, and IL-8 (22). This
action could affect immunotherapies e.g., BCG that rely on
the initiation of a local inflammatory response. Furthermore,
other studies have shown that certain bacterial species such
as Lactobacillus iners, one of the prevalent genera detected
in the human urinary microbiome (23), may be superior at
binding fibronectin thus out-competing BCG whose activity
relies on binding to urothelial fibronectin (24). To date, there
have been few studies which have looked at the role of
the urinary microbiome in bladder cancer. One of the first
studies comparing the microbiome of urine specimens from
healthy individuals (n = 6) versus urothelial carcinoma patients
(n= 8) using 16S sequencing found that the abundance of
the genus Streptococcus was most often significantly elevated
in urothelial carcinoma patients (25). In contrast, Popovic et
al. reported no significant differences in microbial diversity or
overall microbiome composition in a study comparing the voided
urine of 12 UCC patients to 11 controls using 16S sequencing,
although did note that Fusobacterium, a genus associated with
colorectal cancer, was enriched in the bladder cancer group
(26). A third study, comparing 31 male UCC patients to 18
healthy controls using 16S sequencing of midstream voided urine
showed an enrichment of some bacterial genera (Acinetobacter,
Anaerococcus, and Sphingobacterium) and decrease of other
bacterial genera (Serratia, Proteus, and Roseomonas) in the cancer
group when compared to the non-cancer group. A further
finding was the enrichment of Herbaspirillum, Porphyrobacter,
and Bacteroides observed in cancer patients with high risk of
recurrence and progression indicating that these genera may
be potential biomarkers for risk stratification (27). Given the
data on gut microbiota in modulating sensitivity to immune
checkpoint inhibitors in advanced cancer patients (28–31)
further studies investigating the influence of urinary microbiota
on the bladder tumor response to anti-cancer therapy should
be pursued. The studies performed to date whilst providing
some preliminary interesting findings are limited due to the low
numbers of samples studied and their use of voided urine which

introduces contamination from microorganisms in the terminal
portion of the urethra. Clearly larger scale future studies using
catheterized urine need to be conducted to accurately evaluate
the potentially important role of the bladder microbiome in
both bladder cancer pathogenesis/progression and response to
immunotherapy agents.

ONCOLYTIC VIRUS THERAPY:

CONVERTING “IMMUNOLOGICALLY

COLD” TUMORS INTO INFLAMED “HOT”

TUMORS

One intervention capable of dramatically altering the TME
immune landscape, is the use of oncolytic or “cancer-killing”
viruses (OVs) (32). OVs lead to improved anti-tumor immunity
through the induction of both innate and adaptive immune
responses, releasing the full range of tumor-associated antigens
(TAAs) into an inflammatory environment via tumor lysis
and the induction of immunogenic cell death, disrupting the
immunosuppressive TME (33–36). Therefore, OVs are able
to vaccinate against the entire range of TAAs and together
with epitope spreading in the TME act as a personalized
immunotherapeutic. Considerable evidence has shown that OVs
are a very promising strategy to convert non-inflamed or “cold”
tumors into an inflamed or “hot” phenotype to promote the
priming of anti-tumor immune responses. To date, two studies
have clearly shown the promise of this immunotherapeutic
strategy to treat NMIBC. Firstly, preclinical work from our
own group had indicated the sensitivity of bladder cancer cell
lines to a novel oncolytic virus, Coxsackievirus A21 (CVA21)
(37). CVA21 is able to target, infect and lyse cells expressing
the CVA21 cellular receptors intercellular adhesion molecule-1
(ICAM-1) and decay-accelerating factor (DAF) (38). Infection
of bladder cancer cell lines by CVA21 led to the induction
of immunogenic cell death in CVA21-treated cell lines giving
promise to the potential clinical translation of these results to
generate long-lasting protective anti-tumor immunity in the
bladder mucosa (37). These results provided the rationale for a
Phase I/II clinical trial (CANON) to investigate the therapeutic
potential of CVA21 as a new immunotherapy approach for the
treatment of NMIBC (39). This trial determined safety, feasibility
and immunomodulatory effects of CAVATAK in treatment naive
tissue following escalating intravesical doses of a novel bio-
selected formulation of CVA21 (CAVATAK) administered alone
or in combination with mitomycin C (previously shown to
up-regulate the viral entry receptor ICAM-1) (37) in 15 first-
line NMIBC patients prior to TURBT surgery. Clinical activity
of CAVATAK was highly tumor-selective and demonstrated
the ability to induce tumor inflammation and hemorrhage
following either single or multiple administrations of CAVATAK
in several patients, and led to a complete resolution of tumor
in one patient. Whether used alone or in combination with
mitomycin C, CAVATAK caused marked inflammatory changes
within NMIBC tissue biopsies by upregulating interferon-
inducible genes including both Th1-associated chemokines
and immune checkpoint inhibitory genes (PD-L1 and LAG3)

Frontiers in Oncology | www.frontiersin.org 3 February 2020 | Volume 10 | Article 175

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Annels et al. Tumor-Microenvironment Modulation in Bladder Cancer

supporting future combination studies with immune checkpoint
inhibitors (40–42).

A second notable study in this field was the use of CG0070, a
conditionally replicating oncolytic serotype 5 adenovirus (Ad5)
designed to preferentially replicate in and kill retinoblastoma
(Rb) pathway defective cells using the E2F-1 promotor (43). To
enhance longlasting antitumor immunity, CG0070 encoded the
cDNA for the human cytokine, granulocyte macrophage-colony
stimulating factor (GM-CSF) which was selectively produced in
Rb pathway–defective tumor cells due to the dependence of the
E3 promoter that drives GM-CSF expression on transactivation
by E1A. Preclinical in vivo studies with CG0070 demonstrated
strong anti-tumor activity of the virus in bladder transitional
cell carcinoma xenograft tumor models and showed significant
anti-tumor synergy when combined with the chemotherapeutic
agent docetaxel (43). In a phase 1 trial of 35 patients who
had previously failed BCG therapy, CG0070 was administered
intravesically in single or multiple doses at various levels (44).
High levels of GM-CSF were identified in the urine of all patients
after administration and no adverse events related to treatment
were reported. The overall response rate to CG0070 was 48.6%
(17 of 35), which improved to 63.6% (14 of 22) in the multi-
dose group. Interim results from an ongoing phase 2 multicenter
trial (NCT02365818) of intravesical instillation of CG0070 in
45 NMIBC patients who failed BCG therapy and had refused
radical cystectomy showed an overall complete response of
47% (21/45) (45). Unfortunately, neither of the CG0070 clinical
trials reported any immunohistochemical analysis of the tumor
microenvironment to fully elucidate both the mechanism of
action of CG0070 and potential immune activation. However,
it is presumed that CG0070 works through direct tumor lysis
by selective replication in Rb pathway-defective tumor cells and
through immune-mediated killing resulting from immunogenic
cell death and immune activation induced by the local GM-CSF
production (45). Importantly, intravesical oncolytic virus therapy
was extremely well-tolerated in all of the above clinical trials and
thus may offer an alternative to the 40-year-old standard of care,
BCG therapy, but without its limiting toxicities.

COMBINATION APPROACHES:

PERSONALIZED IMMUNOMODULATION

OF A PATIENT’S TUMOR FOR ENHANCED

THERAPEUTIC OUTCOME

Whilst the emergence of new immuno-oncology therapies has
improved the survival rates of patients, particularly in hard to
treat cancers, most cancer patients still either don’t respond
fully to immunotherapy agents or become resistant. This is
in large part due to a lack of understanding of the tumor
microenvironment of each patient’s tumor to enable the correct
immunotherapy approach to be targeted to the right tumor
at the right time. It is becoming increasingly recognized that
this will require the use of rational combination approaches
so that more patients will respond and for longer. There are
now a variety of rational combinations of immunotherapy
and targeted agents which are also now being investigated in

NMIBC. One such combination approach is the use of immune
checkpoint inhibitors in combination with BCG. This is currently
being evaluated in both a phase I study (NCT02324582) of
pembrolizumab (antibody which targets and blocks PD-1) in
combination with BCG for patients with high-risk NMIBC (46)
and Atezolizumab (antibody against PD-L1) with or without
BCG (NCT02792192). Inman et al. had already provided the
evidence to support the rationale for such combination by
demonstrating that PD-L1 expression is associated with high-
grade tumors and intratumoral lymphocytic infiltration and was
a key determinant of stage progression (47). In addition, PD-L1
expression was shown to be abundant in BCG induced bladder
granulomata in 11/12 patients who failed BCG treatment, highly
suggestive of a role for tumor PD-L1 in attenuating responses
to BCG immunotherapy by inhibiting any anti-tumor T cells.
More recently further preclinical work confirmed that PD-L1
expression was obviously upregulated in bladder cancer cells
in response to BCG treatment both in vitro and in vivo (48).
Wang et al. reported that treatment with a combination of BCG
and anti-PD-L1 resulted in an enhanced anti-tumor effect in an
orthotopic rat bladder cancer model by reducing tumor burden
and prolonging survival. The antitumor immunity was attributed
to an increase in the number and activity of tumor-infiltrating
CD8+ T cells, as well as suppression of MDSCs in the TME (48).

Another promising immunotherapy agent currently being
trialed in different immunotherapy combination strategies is an
IL-15 superagonist, ALT-803, that has a proven potent ability
to expand and functionally activate both NK cells and T-cells
(49). This IL-15 superagonist has already shown significant
anti-tumor activity as a monotherapy against various solid tumor
models (50, 51), however, used in combination with e.g., BCG
has the potential to further augment the BCG-induced immune
response. Indeed, in a bladder cancer rat model a 46% reduction
in tumor burden in response to intravesical ALT-803 and BCG
combination therapy (compared to 15% with BCG alone and
35%with ALT-803 alone) was linked to increased production and
secretion of IL-1α, IL-1β, and RANTES, which in turn, induced
the proliferation and activation of NK cells. This enhanced
therapeutic index seen with BCG and ALT-803, administered
subcutaneously or intravesically (52, 53), provided a powerful
justification for the ongoing current Phase Ib/II, multicenter
study of intravesical BCG plus ALT-803 in high risk NMIBC
(NCT02138734) (54).

The use of low-dose chemotherapy that elicits immune-
potentiating effects by either inducing immunogenicity or
relieving tumor-induced immunosuppression is another
strategy being pursued to immunomodulate the tumor
microenvironment. Certain chemotherapeutic agents not
only have direct anti-tumor effects but have also been shown
to play a role in depleting regulatory T cells (55), upregulating
major histocompatibility complex class I expression and
thus directly stimulating T cell function (56) as well as
myeloid-derived suppressor cell (MDSC) depletion (57),
increasing the level of type I interferons (58) and induction of
immunogenic cell death (59). This “chemo-immunotherapy”
strategy was utilized to immunologically evaluate the efficacy of
intravesical chemotherapeutic agents, mitomycin C (MMC) or
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Adriamycin (ADM) combined with BCG using an N-butyl-N-(4-
hydroxybutyl) nitrosamine (BBN)-induced orthotopic bladder
cancer model. Hori et al. showed that sequential treatment
with BCG and chemotherapy inside the bladder was more
effective than either agent alone (60). The synergy was mediated
through direct cytotoxic effects and indirectly through changes
to immune cells through recruitment of NK cells and inhibition
of TAMS and Tregs in the TME. Therefore, intravesical
chemotherapy was able to suppress protumoral immunity and
enhance anti-tumoral immunity in turn increasing the efficiency
of BCG and potentially being a novel treatment strategy for
BCG-failure NMIBC.

To date the use of vaccine therapy as a monotherapy in BCG-
refractory NMIBC patients has shown disappointing clinical
outcomes suggesting that this approach could be optimized by
combining vaccination with local immunostimulation. One such
approach to enhance a vaccine-induced immune response is
through the use of Toll-like receptor (TLR) agonists that are
able to modify the expression of selectins, integrins, chemokines,
and chemokine receptors, thus enhancing T-cell attraction to the
tumor site (61, 62). Domingos-Pereira et al. used an orthotopic
model expressing E7 as a prototype tumor antigen and a
cognate E7 vaccine to explore the ability of either synthetic or
bacterial intravesical instillation of synthetic toll-like receptor
(TLR) agonists to increase CD8 T-cell recruitment to the bladder
and improve bladder tumor regression (63). They showed that
immunostimulation with Ty21a bacteria (attenuated Salmonella
enterica typhi Ty21a live vaccine-strain against typhoid fever),
but not CpG, after tumor antigen vaccination efficiently recruits
vaccine-specific CD8T cells to the bladder, resulting in tumor
regression and 90% survival of the mice. Salmonella can provide
TLR-4 (64) and TLR-9 agonists (65) and may engage TLR-5
through flagellin (66). In a more recent preclinical study the same
authors demonstrated that whilst intravesical Ty21a induced
tumor cell death and innate and adaptive immune responses in
the same therapeutic line as BCG immunotherapy, Ty21a was
more effective than BCG for bladder-tumor treatment and thus
may be predictive of a higher efficacy in patients (67).

In a phase 1 clinical trial the activity of TMX-101, a liquid
formulation of the toll-like receptor 7 agonist, imiquimod,

was analyzed in low-grade NMIBC (68). Whilst the effective
biologic dose in this phase 1 study could not be determined
because no patient experienced a complete response, the safety
of TMX-101 was confirmed. A phase 2 study using TMX-101
in patients with NMIBC containing carcinoma-in-situ reported
results from 12 patients, of which half (6/12) had received ≥2
prior induction courses of BCG (69). TMX-101 was found to be
safe and well-tolerated. Two patients demonstrated a negative
cytology and biopsy result at 6 weeks following treatment.
Following treatment there was a significant increase in urinary
cytokines, including IL-6 and IL-18. It is clear given these
encouraging results that further investigations with this agent
are required. However, despite the immunostimulatory potential
of TLR agonists their use in cancer has been decreasing (70).
Perhaps in the future these agents can be combined with
other immunotherapeutic treatments in a safe and efficient
way in order to achieve enhanced anti-tumor responses
in patients.

CONCLUSIONS

The tumor microenvironment has a profound impact on the
success or failure of treatments for NMIBC. There is a growing
realization that remodeling the tumor microenvironment
to achieve optimal therapeutic effects will require multiple
complementary therapeutic approaches. At the core to
achieving this is a critical understanding of the bladder
tumor microenvironment including the influence of the bladder
microbiome in NMIBC both during tumor progression and
in response to treatment. Only with this knowledge can we
optimally make use of novel emerging immunotherapies
and how they can complement existing therapies to achieve
alternative bladder-sparing options critically needed in patients
with BCG unresponsive NMIBC.
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