
Ecology and Evolution. 2021;11:18401–18421.	﻿�   | 18401www.ecolevol.org

Received: 5 August 2021  | Revised: 1 November 2021  | Accepted: 21 November 2021

DOI: 10.1002/ece3.8428  

R E S E A R C H  A R T I C L E

Mapping canopy nitrogen-scapes to assess foraging habitat 
for a vulnerable arboreal folivore in mixed-species Eucalyptus 
forests

Benjamin Wagner1  |   Patrick J. Baker1  |   Ben D. Moore2  |   Craig R. Nitschke1

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1School of Ecosystem and Forest Sciences, 
The University of Melbourne, Richmond, 
Victoria, Australia
2Hawkesbury Institute for the 
Environment, The Western Sydney 
University, Penrith, NSW, Australia

Correspondence
Benjamin Wagner, School of Ecosystem 
and Forest Sciences, The University 
of Melbourne, Richmond, Vic. 3121, 
Australia.
Email: benjamin.wagner@unimelb.edu.au

Funding information
This research was supported by 
the Australian Research Council 
(LP140100580 to CN and PJB, 
FT120100715 to PJB). BW was also 
supported by the University of Melbourne 
through a Melbourne Research 
Scholarship. Additional funding was 
generously provided to BW through from 
the Royal Zoological Society of New 
South Wales, the Foundation for Parks 
and Wildlife, the Norman Wettenhall 
Foundation and the School of Ecosystem 
and Forest Sciences, University of 
Melbourne. CN was additionally funded 
through the Integrated Forest Ecosystem 
Research (IFER) program of DELWP.

Abstract
Herbivore foraging decisions are closely related to plant nutritional quality. For arbo-
real folivores with specialized diets, such as the vulnerable greater glider (Petauroides 
volans), the abundance of suitable forage trees can influence habitat suitability and 
species occurrence. The ability to model and map foliar nitrogen would therefore en-
hance our understanding of folivore habitat use at finer scales. We tested whether 
high-resolution multispectral imagery, collected by a lightweight and low-cost com-
mercial unoccupied aerial vehicle (UAV), could be used to predict total and digestible 
foliar nitrogen (N and digN) at the tree canopy level and forest stand-scale from leaf-
scale chemistry measurements across a gradient of mixed-species Eucalyptus forests 
in southeastern Australia. We surveyed temperate Eucalyptus forests across an eleva-
tional and topographic gradient from sea level to high elevation (50–1200 m a.s.l.) for 
forest structure, leaf chemistry, and greater glider occurrence. Using measures of mul-
tispectral leaf reflectance and spectral indices, we estimated N and digN and mapped 
N and favorable feeding habitat using machine learning algorithms. Our surveys cov-
ered 17 Eucalyptus species ranging in foliar N from 0.63% to 1.92% dry matter (DM) 
and digN from 0.45% to 1.73% DM. Both multispectral leaf reflectance and spectral 
indices were strong predictors for N and digN in model cross-validation. At the tree 
level, 79% of variability between observed and predicted measures of nitrogen was 
explained. A spatial supervised classification model correctly identified 80% of can-
opy pixels associated with high N concentrations (≥1% DM). We developed a success-
ful method for estimating foliar nitrogen of a range of temperate Eucalyptus species 
using UAV multispectral imagery at the tree canopy level and stand scale. The ability 
to spatially quantify feeding habitat using UAV imagery allows remote assessments of 
greater glider habitat at a scale relevant to support ground surveys, management, and 
conservation for the vulnerable greater glider across southeastern Australia.
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1  |  INTRODUC TION

The ability to determine and monitor habitat suitability for vulner-
able wildlife populations is important for efficient conservation 
planning (Turner et al., 2003; Turner & Gardner, 2015). Individual 
species may have multiple habitat requirements which typically dif-
fer across spatial scales (Nitschke et al., 2020; Shifley et al., 2006). 
As such, species-specific adaptations to a certain climate regime 
(e.g., fur length) may be determined at a relatively broad scale with 
low-resolution data (Turner & Gardner, 2015), while certain habitat 
requirements (e.g., density of tree hollows for nesting) may require 
high-resolution data at much finer scales (Turner et al., 2003). This 
is often the case for arboreal fauna that rely on the occurrence of 
nesting and feeding resources, which may be influenced by many 
other environmental factors, including site productivity, distur-
bance history, forest structure, and tree morphology and physiol-
ogy (Dearing et al., 2005; Foley et al., 1999; Gibbons & Lindenmayer, 
2002; Lindenmayer et al., 2017; Youngentob et al., 2011).

Herbivore foraging decisions are closely related to plant nutri-
tional quality and their distributions and home-range sizes are often 
determined by forage quality, which is driven by foliar chemistry 
(Au et al., 2019; Foley et al., 1999; Martin et al., 2020; Wallis et al., 
2012). For arboreal folivores with specialized diets, such as koalas 
(Phascolarctos cinereus), the concentration and digestibility of protein 
and amino acids are important determinants of nutritional adequacy 
(Cork & Catling, 1996; Moore et al., 2004, 2010; Wallis et al., 2010). 
Protein digestibility can be strongly constrained by the actions of 
tannins, which form insoluble complexes with proteins (Hagerman & 
Butler, 1978). Protein accounts for most of the nitrogen (N) found in 
plant tissue, and concentrations of N, and hence protein, can be lim-
iting for herbivores due to its low concentration and poor digestibil-
ity in the plant tissue (Degabriel et al., 2008; Kavanagh & Lambert, 
1990; Wallis et al., 2012).

The southern greater glider (Petauroides volans, McGregor 
et al., 2020) is both a threatened species and a folivore whose diet 
is limited to Eucalyptus leaves. Listed as Vulnerable by the IUCN 
(Burbidge & Woinarski, 2016), it is under threat by anthropogenic 
disturbances such as climate change and timber harvesting, causing 
habitat contraction, fragmentation, or loss (Lindenmayer et al., 2011; 
McLean et al., 2018; Wagner et al., 2020; Youngentob et al., 2013). 
The greater glider's protein and most of its water intake is obtained 
exclusively from the foliage of Eucalyptus trees (Foley et al., 1990). 
Such specialization is the rarest form of foraging among mammalian 
herbivores (Shipley et al., 2009). Home range sizes are 1–4 ha for 
greater gliders inhabiting mature forests but can increase depend-
ing on resource availability (Kavanagh & Wheeler, 2004; Pope et al., 
2004; Smith et al., 2007). Factors driving habitat selection and occu-
pancy by greater gliders differ across scales: At a broader extent, a 
narrow thermal tolerance confines its distribution to the cooler and 
wetter areas of the landscape (Kearney et al., 2010; McIlwee, 2001; 
Wagner et al., 2020). At the spatial scale of a forest stand and the 
greater glider's home range, its specialized diet and the need for ma-
ture trees with hollows for nesting together drive habitat selection 

(Jensen et al., 2015; Kavanagh & Lambert, 1990; Lindenmayer et al., 
1990). As such, southern greater gliders are typically found in higher 
abundance at high elevation and in mature forests that are com-
posed of favored Eucalyptus species (Henry, 1984; van der Ree et al., 
2004; Youngentob et al., 2011).

In Australia, forests dominated by tree species with average fo-
liar N measures <1% of leaf dry mass (% N DM) are less favorable as 
habitat for arboreal folivores (Cork, 1992). Greater gliders are known 
to prefer tree species with high foliar N concentrations (Kavanagh 
& Lambert, 1990; Youngentob et al., 2011). However, foraging ex-
clusively on Eucalyptus foliage is constrained by high levels of plant 
secondary metabolites (PSMs) that may cause toxicosis or reduce 
foliage digestibility. This plays an important role in the regulation of 
feeding and in forage selection by arboreal folivores (Cork & Foley, 
1991; Moore & Foley, 2005; Moore et al., 2004; Youngentob et al., 
2011). PSMs such as tannins bind to proteins, reducing N digestibil-
ity (availability, Marsh et al., 2003), while formylated phloroglucinol 
compounds (FPCs), are powerful antifeedant defenses against her-
bivory, that cause herbivores to reject or reduce their intake of de-
fended trees (Lawler et al., 1998; Moore & Foley, 2005). The amount 
of N in leaves that can be digested (digestible nitrogen, digN) can be 
a more meaningful measure of forage quality for folivore browsers, 
especially because N and digN are not always correlated (DeGabriel 
et al., 2008, 2014). Nevertheless, total N can provide a more gen-
eral measure of site productivity, often used as a measure of browse 
quality for the herbivore community in forests (Cork & Catling, 1996; 
Wallis et al., 2012). Both measures are important to assess feeding 
habitat: Eucalyptus leaves can be high in N and tannins, making these 
high levels of N unavailable or can be high not only in digN but also in 
FPCs and, therefore, more resistant to herbivory (Lawler et al., 1998; 
Marsh et al., 2003; Moore et al., 2004; Wallis et al., 2012). While 
determining N and digN may only cover parts of what makes a good 
forage habitat for arboreal folivores (Youngentob et al., 2011), good 
relationships between leaf reflectance as measured through spec-
troscopy and these constituents have been reported (Kokaly et al., 
2009; Munoz-Huerta et al., 2013).

Determining foliar nutritional quality of potential habitat trees at 
the relevant scale presents a challenge. Techniques that require in-
dividual leaves, such as chemical analysis and digestion, are imprac-
tical due to the enormous number of trees that would need to be 
sampled and the cost and time involved in processing the resultant 
leaf samples in the laboratory (Youngentob et al., 2012). Foliar spec-
troscopy, which uses the light absorption features of chemical bonds 
in leaves can quantify leaf chemistry at the scale of individual leaves, 
tree crowns, forest stands, or whole landscapes, depending on the 
equipment (Ebbers et al., 2002; Kerr & Ostrovsky, 2003; Kokaly 
et al., 2009). Because the spectral signature of foliage is correlated 
with foliar chemical properties (Curran, 1989), foliar spectroscopy 
has proven to be effective for measurements of leaf chemistry and 
can avoid the challenges imposed by scale. Variations in reflectance 
can be determined using multi- or hyperspectral sensors that are, for 
example, laboratory based, hand-held, airborne, or carried by satel-
lites (Kokaly et al., 2009). Like chemical analyses, laboratory-based 
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or hand-held sensors are impractical at the scale required for 
habitat assessments. Most satellite-based sensors collect data at 
coarser spatial grains than individual trees or animal home ranges 
and, therefore, lack the high resolution required to detect variability 
within leaf or canopy reflectance (Young et al., 2017). For example, 
current Landsat or Sentinel satellites capture reflectance in 30 × 30 
or 20  ×  20  m resolution, respectively. Consequently, they cannot 
provide information on spectral variability at the scale of individual 
trees, at which arboreal folivore feeding decisions are made (Asner 
et al., 2017; Attiwill & Adams, 1996; Baldeck et al., 2015; Futuyma 
& Moreno, 1988; Hume, 1999). High-resolution alternatives from 
air- or spaceborne hyper- and multispectral imagery can be costly, 
but have been successfully applied in mapping potential favorable 
feeding habitat for southeastern Australian folivores (Youngentob 
et al., 2012), as well as koalas in western Queensland (H. Wu et al., 
2019) by determining N and digN from spectral reflectance. Another 
promising tool for acquiring very high-resolution imagery at a fine 
scale are unoccupied aerial vehicles (UAVs), or drones.

Unoccupied aerial vehicles are a low-cost alternative to aerial 
or satellite imagery. They have been applied in the agricultural sec-
tor to estimate crop nutrients and the forestry sector to measure 
structural metrics of trees (Adão et al., 2017; Felderhof & Gillieson, 
2014; Mohan et al., 2017; Nevalainen et al., 2017). UAVs are sim-
ple to use, cost-effective, and highly mobile, making them useful 
for mapping areas at scales of tens to hundreds of hectares at very 
high resolution. These platforms can carry various sensors, including 
multi- or hyperspectral cameras, LiDAR, or thermal imagers, which 
increases their utility for ecological research (Anderson & Gaston, 
2013). For example, UAVs have been used to detect koalas (Beranek 
et al., 2020) and map herbivore feeding habitat (Olsoy et al., 2020) 
using thermal and multispectral imagery, respectively. While hyper-
spectral sensors fit for UAVs can be costly and may require larger 
and heavier platforms, newer generation multispectral sensors are 
a fraction of the cost and can be readily integrated into small com-
mercial UAVs that can be operated without specialist knowledge or 
certification (see CASA, 2019).

These sensors contain near-infrared (NIR) and red-edge bands to 
capture reflectance >750 nm wavelength that are needed to distin-
guish absorption features related to foliar N (Curran, 1989). These 
bands, along with the three visible-light bands (red, green, blue) 
are also useful for developing a range of vegetation indices asso-
ciated with plant productivity and nutrition (Xue & Su, 2017). High 
correlations have been reported between N levels of plants, plant 
productivity, and indices derived from spectral reflectance (Coops 
et al., 2003; Huang et al., 2004; Munoz-Huerta et al., 2013; Wang 
& Wei, 2016). These can provide additional metrics alongside direct 
reflectance for assessing environmental energy availability as a key 
determinant in wildlife population dynamics and habitat selection 
(Munoz-Huerta et al., 2013; Pettorelli et al., 2011). Plant produc-
tivity determined remotely by spectral indices has been linked to 
greater glider abundance and habitat suitability as well: Youngentob 
et al. (2015) found that animal detection and abundance increased 
with higher readings of the normalized difference vegetation index 

(NDVI), putting additional emphasis on the utility of vegetation indi-
ces and remote-sensing spectroscopy to identify high-quality feed-
ing habitat for Eucalyptus folivores.

With a continuing population decline and evidence of habitat 
contraction into the cooler and wetter areas of their distribution due 
to recent climate change (Kearney et al., 2010; Smith & Smith, 2020; 
Wagner et al., 2020), conservation planning for the greater glider is 
calling for a better understanding of the factors that determine habi-
tat suitability (DELWP, 2019). Research has focused on the impact of 
fires and timber harvesting on changes in greater glider occurrence 
(Lindenmayer et al., 2013; Taylor & Lindenmayer, 2019); however, 
declines occur in areas not impacted by these disturbances as well 
(Lindenmayer et al., 2011). Understanding the impacts of climate ex-
tremes and foliar nutritional value on habitat suitability is key to de-
veloping comprehensive conservation strategies for greater gliders 
and other arboreal folivores. Incorporating methods that can detect 
potential feeding habitat at finer scales such as the greater glider's 
home-range would enhance current management and conservation 
planning at an operational scale. The ability to map favorable feed-
ing habitat and identify highly nutritious trees will be beneficial for 
the management and conservation of arboreal folivores that have 
strict requirements for feeding and nesting resources (Eyre, 2006; 
Kavanagh & Lambert, 1990; Lindenmayer et al., 2004). In this study, 
we tested whether high-resolution multispectral imagery, collected 
by a lightweight and low-cost commercial UAV, can be used to model 
and predict N and digN at the tree canopy level and identify favor-
able feeding habitat for southern greater gliders at a stand- or home 
range scale (4  ha). We explore the potential for mapping feeding 
habitat and test for relationships between spatial feeding metrics 
such as potential favorable feeding area and detectability.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The East Gippsland region in eastern Victoria, Australia, has a high di-
versity of Eucalyptus species and contains considerable areas of greater 
glider habitat. East Gippsland has ~1.2 million ha of mixed species eu-
calypt forests (Dept. of Agriculture & Water Resources, 2018), ranging 
from open lowland forests dominated by Eucalyptus sieberi, E. tricarpa, 
and E. globoidea to dense, high-elevation forests (~1000–1300 m a.s.l.) 
with E. delegatensis, E. viminalis, E. cypellocarpa, E. croajingolensis, and 
other high-elevation species (Opie et al., 1990; Sebire & Fagg, 2009). 
Eucalyptus obliqua is the most abundant tree species and occurs 
across the entire elevation gradient (Dept. of Conservation & Natural 
Resources, 1995). Mean annual rainfall and temperature for the region 
are 648–1178  mm (1980–2020, Stewart et al., 2020) and 6–15.8°C 
(1980–2020, Stewart & Nitschke, 2017), respectively. Greater gliders 
have been recorded across the elevational range and in a variety of 
forest types, making this area especially suitable to study inter- and 
intraspecific differences in leaf nutritional quality and their influences 
on greater glider habitat suitability. Greater gliders are most common 
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above 700 m in closed cool and wet forests where their thermoregula-
tory requirements are consistently met (Bennett et al., 1991; Henry, 
1984; van der Ree et al., 2004; Wagner et al., 2020).

2.2  |  Survey design

We selected study sites based on the region's elevational and topo-
graphic range (i.e., aspect and slope). Survey plots were located 
within three elevation bands (lowlands: 0–420  m; mid-hills: 420–
840 m; and high elevation: 840–1260 m a.s.l). In each of these three 
elevation bands, we established 10 plots (total N = 30 plots, Figure 
S1, Table 1, and Table S1). Within each elevation band we captured 
variability in topography by establishing four plots in flat or gully 
floor locations, four in mid-slope positions (north or south facing), 
and two plots on ridges (Figure S2). We only selected study sites 
that had not been subject to timber harvesting or burnt 30–40 years 
prior to sampling. We collected multispectral imagery using an un-
occupied aerial vehicle (UAV) and leaf samples from individual trees 
in early summer 2018 and 2019. The plot network was designed to 
cover the range of eucalypts known to act as forage resources for 
the greater glider, as well as several species not known to be uti-
lized (Comport et al., 1996; Cunningham et al., 2004; Kavanagh & 
Lambert, 1990).

2.2.1  |  Forest structure

The position of each plot center was recorded to an accuracy of ~5 m 
with a handheld GPS (Garmin, Olathe, USA) using waypoint aver-
aging for a minimum of 90 min per plot. In each plot, we recorded 
elevation, slope, aspect, crown cover, and basal area of the dominant 
tree species. Basal area was measured using a Kramer's dendrometer 
and a basal area factor (BAF) of four. This variable radius approach 
ensured the sampling would capture the large, mature, and dominant 
trees that form the canopy, and which are preferred nesting and 
feeding trees for greater gliders that may occupy sites (Kavanagh & 
Lambert, 1990). The largest plot size resulting from this method was 
4 ha, which is congruent with the home range size of greater gliders 
in mature forests (Lindenmayer et al., 2004; Pope et al., 2004). For 
trees within BAF = 4, we recorded the species, diameter at breast 
height (1.3 m, DBH), height, crown widths (both measured using a 
Vertex IV, Haglof, Långsele, Sweden), estimated tree health, and 
counted the number of hollows using binoculars. This information 
was used for another aspect of this study (see Wagner, 2021). All 
other vegetation (i.e., ground-level vegetation) were recorded for 
presence only in a 100-m2 subplot around the plot center.

2.2.2  |  Sample collection

Leaf samples of mature leaves were collected from five dominant 
trees per plot. The trees were selected to be tall mature Eucalyptus, 

to be later identified in aerial UAV imagery. One tree was sampled 
in each quadrant of the plot (i.e., northeast, southeast, southwest, 
northwest) with an additional dominant tree selected randomly 
(Figure S3). These five sample trees were selected to capture both 
the mixture (number of trees) and dimensions (diameter and height 
distribution) of Eucalyptus species in the plot. Leaf samples were col-
lected using a throw-line launcher and rope, creating a sling around a 
branch to break it (see Youngentob et al., 2016 for details). A total of 
150 trees were sampled, with ~100 g fresh leaf sample material col-
lected from each tree. Individual samples were put in an airtight zip 
lock bag and frozen after collection. The location of each sampled 
tree was recorded using GPS waypoint averaging for a minimum of 
30 min, as well as bearing and distance from the plot center to later 
georeference sample trees in the aerial UAV imagery. Leaf samples 
were measured for average Normalized Difference Vegetation Index 
(NDVI) using a handheld GreenSeeker crop sensor (Trimble) on a 
black tarp after collection. Index values (Table S1) were used as a 
mask before pixel extraction from multispectral imagery to distin-
guish leaves from other parts of the crowns (e.g., branches).

2.2.3  |  Capturing canopy reflectance

We collected aerial multispectral imagery for an area of ~20  ha 
around each plot center using an autopiloted Phantom 4 Pro V2 mul-
tirotor UAV (DJI, Shenzhen, China), modified to carry a Rededge-M 
multispectral sensor (MicaSense, Seattle, USA, Figure S4). The sen-
sor captures data on five separate spectral bands (red, green, blue, 
red-edge and near-infrared [NIR]) at center wavelengths 475, 560, 
668, 717, and 840  nm, respectively. This range is associated with 
leaf absorption features for chlorophyll a and b, lignin, and protein 
(Curran, 1989; Curran et al., 2001; Ferwerda et al., 2006; Huang 
et al., 2004; Peñuelas et al., 1994). Flight paths were preprogrammed 
using Ground Station Pro (DJI, Shenzhen, China) and planned in ac-
cordance with Australian Civil Aviation Safety Authority regulations 
at a maximum flight altitude of 120 m above ground and within visi-
ble line of sight (CASA, 2019). Due to the homogenous canopy struc-
ture in many plots, an image front- and side-overlap ratio of 90% was 
chosen and flights were executed between two  hours before and 
after solar equilibrium of the survey day to avoid shadows and en-
sure consistent ambient light conditions in all images (Dandois et al., 
2015). To accurately map ground elevation, the UAV was launched 
from canopy openings or forest roads, which ensured sufficient ref-
erence ground imagery was captured for later processing. The aerial 
imagery had a spatial resolution of ~2.5 cm.

2.2.4  |  Wildlife surveys

Spotlighting surveys on 1-km transects along a forest track adjacent 
to, or (where possible) through the plot center, were undertaken at 
all plots. An average pace of 10  min per 100  m was used by two 
observers walking 10 minutes apart to maximize the probability of 
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detection (Kissling & Garton, 2006; Nelson et al., 2018). The loca-
tions of all arboreal fauna detected were estimated from distance 
and bearing to the observer position. In addition, we collected data 
on tree species on which an animal was observed, height in tree, 
behavior (e.g., feeding or not feeding), color morph, and time of 
observation.

2.3  |  Sample and data processing

2.3.1  |  In vitro chemical analyses

Collected fresh leaves were frozen after collection and later dried 
using a VirTis BenchTop Pro freeze dryer (SP Industries, Stone Ridge, 
USA) for 24–72 h. Dried samples were ground to pass a 1-mm screen 
using a Cyclotec 1093 sample mill (Foss, Hilleroed, Denmark) and 
kept frozen at −20°C until further analysis. Total nitrogen (N) was 
determined using combustion based on the Dumas procedure in a 
TruMac CN analyzer (Leco, Castle Hill, Australia). Digestible nitrogen 
(digN) was quantified through in vitro digestion using cellulose and 
pepsin according to Degabriel et al. (2008). Briefly, duplicate 0.5-g 
samples were weighed into F57 fiber filter bags (Ankom, Macedon, 
USA) and sealed, before sequential digestion in buffer, pepsin, and 
cellulase over 5 days. Residues were weighed and residual N content 
determined as for N. Both N and digN were reported as % dry mat-
ter (% DM).

2.3.2  |  Multispectral imagery processing

Unoccupied aerial vehicle multispectral imagery was processed in 
Metashape (Agisoft, St. Petersburg, Russia) using Structure from 
Motion (SfM), a technique of photogrammetric range imaging to es-
timate 3D structure from 2D overlapping image sequences (Ullman, 
1979). First, all images were calibrated from raw pixel values to ab-
solute spectral radiances for the day of image acquisition using im-
ages collected from a reflectance panel exposed to direct sunlight, 
recorded before and after each flight. The processing in Metashape 
produced 3D point clouds and georeferenced, multispectral stitched 
images of all photos (orthomosaics) for each plot and its surround-
ings (Figure 1a). Orthomosaics were exported as multilayer raster 
stacks with one band for each wavelength, while point clouds were 
used to compute a canopy height model (CHM) of each plot. All 
spatial processing was carried out in R (R Core Development Team, 
2020) using the packages raster, sf, and lidR and their dependencies 
(Hijmans, 2019; Pebesma, 2018; Roussel & Auty, 2019).

2.3.3  |  Canopy height models and tree detection

To create CHMs for each plot, 3D point clouds were normalized to 
a 0-m ground elevation. During processing, a digital terrain model 
(DTM) and a digital surface model (DSM) were calculated, expressing 

both the ground elevation and point elevation above ground. The 
CHM is the difference between DSM and DTM (CHM = DSM − DTM ) 
and extracted as a 2D raster, expressing each raster cells height 
above ground in meters (Figure 1b). These were derived using lidR’s 
grid_canopy function with a resolution of 0.5 m and a subcircle al-
gorithm using a 0.5-m disk on each point return to close empty cells 
(pits) in the final output (Khosravipour et al., 2014). A tree detection 
algorithm was applied to each CHM, informed with a fitted function 
of tree height and mean crown width, derived from field measure-
ments (see Popescu & Wynne, 2004), to approximate the position 
of each dominant tree in the area covered by UAV multispectral 
imagery around the plot center. Approximate crown outlines for 
each detected tree were then extracted using a tree segmentation 
algorithm based on marker-controlled watershed object detection, 
using the approximate tree positions extracted earlier as markers 
(Gaetano et al., 2014). These approximate crown outlines were used 
to aid in delineating sample trees from the orthomosaics for crown 
pixel reflectance extraction (Figure 1c). Using the GPS positions of 
plot centers and sample trees, we cross-referenced both CHM and 
orthomosaics to confirm ground accuracy of <1 m.

2.3.4  |  Index calculation

To test the performance of UAV multispectral imagery in predict-
ing measures of foliar nitrogen, we used direct reflectance (radiance 
band values), spectral indices, and simple ratios derived from the five 
initial bands as predictor variable in a multivariate model. Indices 
matching available bands and wavelengths were chosen from stud-
ies testing different spectral bands and indices as predictors of plant 
chemistry (see Chen, 1996; Pastor-Guzman et al., 2015; Xue & Su, 
2017; Wu et al., 2019). We derived a total of 14 indices using band 
calculation on raster stacks of each plot's orthomosaic (Table S2). 
Together with the 5 initial spectral bands, a total of 19 variables were 
considered.

2.4  |  Canopy nitrogen data analysis

2.4.1  |  Extracting reflectance and index values for 
sample trees

The accuracy of tree positions and crowns from CHM delineation 
was assessed visually using true- and false-color composites of 
plot orthomosaics. In cases where sample trees were not correctly 
delineated (~10% of all trees), the position and crown shape were 
corrected manually using image interpretation and distance and 
bearing from the plot center, aided by the structural measurements 
collected in the field (e.g., height or crown width). From confirmed 
crown outlines, a vector polygon layer was created, covering the 
crown of each sample tree as extraction masks. Using raster's ex-
tract function, we extracted all crown pixel values from the 19 band 
raster stacks of canopy reflectance and indices using the tree crown 
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polygons (n = 150). To create a canopy dataset, we removed pixels 
not associated with foliage (e.g., branches or bare ground) by apply-
ing a NDVI mask using the minimum NDVI field value of each foliage 
sample, measured with the crop sensor (Table S1). We then subsam-
pled 1000 random pixels (pixel size = 2.5 cm2) from each tree and 
calculated the mean value of each variable (wavelengths and indices) 
from the extracted pixels. This resulted in a dataset containing each 
tree's mean crown reflectance (n = 150) of five multispectral bands 
and the mean value for each of the 14 indices.

2.4.2  |  Modelling total and digestible nitrogen

We used Random Forests (RF) to model canopy N and digN from 
spectral reflectance and indices. We chose this machine-learning 
method as it is commonly used for predicting leaf chemistry from 

multispectrakal imagery in different vegetation types. RF accounts 
for interactions and nonlinearities, and produces reproducible out-
comes (see Abdel-Rahman et al., 2013; Breiman, 2001; Li et al., 2014; 
Ramoelo et al., 2015). RF modelling and model evaluation were car-
ried out in R using the packages randomForest and caret (Liaw & 
Wiener, 2002; Kuhn, 2008). We reduced the number of initial predic-
tor variables to eight by removing highly correlated pairs (Pearson's 
correlation coefficient r ≥ |.8|). We used a stratified random sampling 
design to ensure data across the entire range of variable values are 
covered in training and testing datasets. The data were separated 
into 70% of total data (training dataset) and 30% of total data (vali-
dation/testing dataset), by randomly choosing datapoints covering 
the range of measured N and digN values using the function create-
DataPartition from caret. To find the best combination of variables, 
we tested multiple models on combinations of the predictor vari-
ables and compared mean squared residuals and percent variance 

F I G U R E  1  Examples of UAV imagery data products and spatial model prediction workflow. (a) True-color (RGB) orthomosaic of a plot 
center (High elevation—Plot 6) and surrounding forest area (4 ha). (b) Final canopy height model of the same plot with sample-tree crown 
outlines in red. These crowns were detected using the point-cloud and CHM and corrected manually using aerial interpretation. (c) Raw 
spatial predictions from the supervised classification RF model to the sample area of 4 ha indicating likelihood of finding >1% N DM in 
a pixel from 0 to 1, where 1 is 100% likelihood (suitability). (d) Finalized spatial predictions after removing pixels not associated with the 
forest canopy using the CHM and minimum subcanopy heights measured as a mask, as well as classifying spatial predictions from percent 
suitability to the presence and absence of a favorable feeding habitat (≥1% N DM) based on Cohen's kappa (maximum true-positive and true-
negative rate)
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explained. The optimal number of decision trees was chosen by mini-
mum error rate. To increase model performance, only variables that 
contributed ≥5% increase in mean square error (IncMSE) if removed, 
were considered. Models were built on training data (70%) only and 
performance was tested using cross- and independent validation. 
We evaluated the predictive performance of the models by calcu-
lating the R2, root mean squared error (RMSE), mean absolute error 
(MAE), and correlation (p) between observed and predicted N and 
digN values. As model predictive performance varied depending on 
the random data split, we created 100 independent models based on 
100 random splits. We evaluated the standard deviation (SD), stand-
ard error (SE), and coefficient of variation (CV), as well as mean and 
median of R2, RMSE, and MAE among all models for both cross- and 
independent validation. The best models were chosen based on the 
highest R2 and the lowest RMSE to report maximum predictive per-
formance of canopy N from canopy leaf reflectance and vegetation 
indices. Removing outliers (through interpreting data visualization) 
assured that respective performances were not deviating markedly 
from other observations.

2.5  |  Home-range scale data analysis

We built models to predict spatial patterns of high concentrations 
of foliar nitrogen and favorable feeding habitat at home range scale 
(4 ha) using a supervised classification RF model based on a prede-
fined N threshold (1% N DM). For this, we used the same predictor 
variables we identified to be important in predicting canopy N.

2.5.1  |  Data extraction and compilation

For spatial predictions of foliar nitrogen, we used the sampled 1000 
pixels per sample tree (N = 150,000 pixels, pixel size = 2.5 cm2) in 
the supervised classification model. Pixel values were classified into 
favorable (≥1% N DM) and unfavorable for folivore feeding (<1% 
DM), according to Cork (1992), based on the respective tree's esti-
mated canopy N. We subsampled pixels based on the ratio of suit-
able to unsuitable points in the dataset (4:1, 25,000 pixels each) to 
ensure a balanced sample and reduce the chance of biases that may 
result in model overfitting (Liu et al., 2005; McPherson et al., 2004). 
The final plot-level dataset contained 50,000  value combinations 
of all bands and indices as predictor input for a binomial response 
variable describing concentrations of foliar nitrogen based on the 
nitrogen threshold (0 = <1% N DM, 1 = ≥1% N DM).

2.5.2  |  Modelling favorable feeding habitat

The supervised classification dataset was also split into training and 
validation data (70:30%) and a binomial RF built on training data 
only. Model performance was assessed using accuracy, area under 
the curve (AUC), sensitivity, specificity, and the true skill statistic 

(TSS, see Allouche et al., 2006) of the independent validation (on 
15,600 pixels). Cohen's kappa was used to determine the threshold 
distinguishing favorable from unfavorable feeding habitat. The value 
represents maximum model fit and was used to accurately classify 
spatial predictions into two classes (Elith et al., 2006, 2008).

2.5.3  |  Mapping favorable feeding habitat

To analyze the spatial distribution and configuration of favorable 
and unfavorable habitat based on N, we first cropped raster stacks 
for each plot to an equal area to enable inter-site comparisons. A 
square 4-ha area around each plot center was chosen. This aligned 
with the maximum recorded plot area in the field based on the vari-
able radius sampling using a BAF = 4 prism and average documented 
greater glider home range sizes in mature forests (Pope et al., 2004). 
We used the binomial RF model to predict the probability of finding 
favorable feeding habitat in each pixel of the cropped raster stacks 
(Figure 1c). As foliage sample collections were restricted to the 
upper canopy in order to ensure compatibility with the multispectral 
UAV imagery, we excluded all pixels below the minimum subcanopy 
height measured in the field (Table S1). We used each plot's CHM 
and field canopy height measures to crop the prediction rasters to 
the tree canopy layer and excluded all pixels that represented un-
derstory vegetation or ground and other non-canopy features. We 
calculated the mean and SD of predicted likelihood of a pixel being 
associated with ≥1% N DM for each plot. To assess the proportion 
of favorable feeding habitat, we classified each raster into areas of 
≥1% N DM or <1% N DM, using Cohen's kappa (maximum sensitiv-
ity and specificity). We assigned a separate class (non-habitat) from 
previously removed pixels of non-canopy area to ensure intersite 
comparability (Figure 1d). We calculated the area and proportion of 
total area of each class and derived clumpiness, a measure of con-
nectivity and spatial aggregation, using the package landscapemet-
rics (Hesselbarth et al., 2019). These metrics were used to compare 
plot-specific configurations of favorable feeding habitat with struc-
tural measurements, canopy N and digN measurements and to test 
for relationships with greater glider detection and abundance using 
linear models. For this, we also extrapolated the number of favorable 
and unfavorable trees from the five sampled trees per plot to one 
hectare according to Bitterlich sampling, using an expansion factor 
of 25 (c, according to BAF = 4) and the trees diameter (d):

3  |  RESULTS

3.1  |  Structural assessment and canopy nitrogen

Our 30 plots ranged in elevation from 32 to 1185 m a.s.l. and cov-
ered slopes from 1 to 55%, as well as aspects from 26 to 355°. 
Dominant canopy species were Eucalyptus consideniana, E. globoidea, 

Represented number of trees =
10, 000

�c2d2
i
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and E. sieberi in the lowlands, E. obliqua, E. cypellocarpa, and E. fasti-
gata in the mid-hills, and E. croajingolensis and E. viminalis in the 
high-elevation plots (Table 1 and Table S1). Our 150  sample trees 
covered 17 canopy Eucalyptus species. They varied in leaf total nitro-
gen (N) from 0.63 to 1.92% DM (Figure 2). Mean plot-level nitrogen 
(meanN), based on averaging the five sample tree measurements in 
each plot for a representative sample of the forest structure and 
canopy species composition, ranged from 0.87% DM in the low-
lands to 1.74% DM at high elevation (Table 1). Due to sample loss, 
we could only analyze 116 samples from 15 Eucalyptus species (out 
of the original 150 samples from 17 species) for digestible nitrogen 
(digN). Digestions and/or chemical analyses created one true outlier, 
which was removed from further analyses. DigN ranged from 0.45% 
to 1.73%DM (Figure S5).

3.2  |  Animal observations

We recorded 44 individual greater gliders while surveying nocturnal 
arboreal fauna across our plots. Greater gliders were found in 10% of 
lowland, 20% of mid-hill, and 60% of high-elevation plots at varying 
densities. In the lowlands only two greater gliders were observed 
in a single plot. In contrast, we found up to 14 individuals during a 
single survey along a high-elevation plot (Table 1). Greater gliders 
were observed in seven Eucalyptus species, which were all measured 
to have leaf N ≥1% DM within our samples (Figure 2).

3.3  |  Evaluating performance of canopy and 
spatial models

All selected predictor variables were found to improve model 
performance and contribute ≥5% increase in mean square 
error (incMSE) to the model. Five predictors were indices 
(GDVI, VARI, NDIB - NIR, NDIRE - NIR, RI, Table 2), while three were 
direct reflectance averages (green-, NIR-, and red-edge bands). 
Averaged crown GDVI was the most important predictor with 19.3% 
incMSE. Overall, indices contributed more to model performance 
(~53%) than direct reflectance averages (~35%). The most important 
direct reflectance variable was the green band with 13.5% incMSE 
(Figure 3).

3.3.1  |  Best canopy nitrogen model predictions

Canopy-level predictive performance for both N and digN % DM 
across 100 independent models is reported in Figure S6, Table 3, 
and Table S3. Model performance for N was good with mean cross-
validation R2 of 0.69 (±0.04). The highest R2 model explained 79% 
of variability between predicted and observed N % DM for all trees 
(n  =  150) in cross-validation and 49% in independent validation 
(Figure 4). The lowest RMSE was found at 0.15 for cross-validation 
and 0.20 for independent validation (Figure S6). For digN, cross-
validation also resulted in 79% of the variability explained, but only 

F I G U R E  2  Total nitrogen (N % DM) concentration of the 17 sampled Eucalyptus species. Species in which greater gliders were observed 
are circled in grey. Total number of samples was 150 (n = 5 per plot). The number of samples per species can be found in Table S4. E. 
pseudoglobulus = E. globulus subsp. pseudoglobulus
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12% in independent validation, indicating that models for N yielded 
more robust relationships between canopy nitrogen levels and mul-
tispectral reflectance and indices than digN. As all selected variables 
available were used for predicting both N and digN, there was little 
scope to improve independent model performance for digN with-
out adding additional spectra or developing new spectral indices. 
Therefore, total nitrogen (N) was used for developing the spatial 
models with supervised classification. Because the overall inde-
pendent validation performance was better in the highest R2 model 
(R2 = 0.49) at a similar RMSE (0.21), we chose this model for a re-
gression of meanN (mean N of five sampling trees per plot) and the 

respective average of predictions. This model explained 90% of the 
variability between predicted and observed meanN % DM (Figure 5).

3.3.2  |  Spatial model performance

Both accuracy and area under the curve (AUC) of supervised clas-
sification models were 0.78 and 0.88, respectively, with sensitivity 
(true positive rate, TPR) and specificity (true negative rate, TNR) 
both at 0.79, resulting in a true-skill statistic (TSS) of 0.59. This per-
formance indicated substantial agreement between observed and 

TA B L E  2  Spectral indices, their formulae, and literature reference of the five indices that were meaningful in predicting total canopy 
nitrogen

Index Full name Formula Reference

GDVI Generalized Difference Vegetation Index NIR − Green Wu (2014)

NDI B/NIR Normalized Difference Index -Blue/Near Infrared (Blue−NIR)

(Blue+NIR)
Wu et al. (2019)

NDI RE/NIR Normalized Difference Index Red Edge/Near Infrared (Red Edge−NIR)

(Red Edge+NIR)
Wu et al. (2019)

RI Redness Index (Red−Green)

(Red+Green)
Escadafal and Huete (1991)

VARI Visual Atmospheric Resistance Index (Green−Red)

(Green+Red−Blue)
Gitelson et al. (2002)

F I G U R E  3  Variable importance 
plot of the final model of total canopy 
nitrogen. Variable importance is given as 
the percentage increase in model mean 
standard error (% inc MSE) that would 
occur if the respective variable was 
removed

Evaluation Test Mean Median
Standard 
deviation

Standard 
error

MAE Cross-validation 0.128 0.128 0.003 0.00029

Independent 
validation

0.210 0.210 0.016 0.00163

RMSE Cross-validation 0.169 0.169 0.006 0.00061

Independent 
validation

0.256 0.255 0.018 0.00181

R2 Cross-validation 0.687 0.688 0.038 0.00381

Independent 
validation

0.203 0.194 0.088 0.00882

TA B L E  3  Average and median value 
of model evaluation metrics (mean 
absolute error (MAE), root mean squared 
error (RMSE), and r-squared from 100 
independent models of total nitrogen
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predicted N classes (Table 4). The model correctly predicted 78.6% 
(6133) of pixels associated with ≥1% N DM and 80.2% (6257) of pix-
els with <1% N DM (Figure S7). These metrics demonstrated that 
the spatial model was robust and could be used to map favorable 
feeding habitat across all plots. Cohen's kappa (maximum TPR+TNR 
rate) was 0.49 and used as the threshold to classify spatial predic-
tions into areas of <1% and ≥1% N DM.

3.4  |  Detection thresholds and spatial 
distribution and aggregation of favorable 
feeding habitat

An analysis of spatial predictions of N classes and favorable feed-
ing habitat area (Figure 1c,d) at the home range scale identified 
the likelihood of occurrence (on a scale from 0% to 100%) of pixels 
predicted to contain ≥1% N DM between 36% and 87%. The low-
est likelihood was observed in a lowland plot dominated by E. con-
sideniana and the highest in a high-elevation plot dominated by E. 
viminalis and E. croajingolensis. The proportion of favorable feed-
ing habitat (areas classified as ≥1% N DM) as a fraction of the total 
4-ha home-range scale considered here, varied from 7% to 88%, 
with the largest available feeding habitat area in the mid-hills, fol-
lowed by high-elevation plots (Table 1). Across our plot network, 
greater gliders were not detected where meanN was <1.1% DM, 

mean likelihood of ≥1% N DM pixel occurrence was below 50%, 
and the proportion of favorable feeding habitat was below 25%. 
We found greater gliders in one-third of surveyed plots with 
meanN between 1.1% and 1.4% DM and in two-thirds with meanN 
>1.4% DM. Half of all plots in the highest N category had greater 
glider detections and plots with >25% of the area classified as fa-
vorable feeding habitat, detections were made at one-third of all 
plots (Figure S8).

Large proportions of the plot area in the lowlands were classified 
as non-habitat (e.g., subcanopy crowns or canopy gaps). In addition, 
unfavorable feeding habitat (areas classified <1% N DM) was most 
aggregated at the lowland plots. Both favorable (areas classified ≥1% 
N DM) and unfavorable feeding habitats were on average equally 
aggregated and covered equal areas in the lowlands, indicating an 
equal spatial distribution of similarly sized clumps of areas ≥1% and 
<1% N DM in between large areas of non-habitat. A high aggrega-
tion and larger area of a favorable feeding habitat coupled with a 
lower aggregation of unfavorable feeding habitat in the mid-hills and 
highlands pointed toward larger clumps of interconnected favor-
able feeding resources, interspersed with small areas of unfavorable 
habitat (Figure 6d,e). When extrapolating our structural and chem-
ical measurements of the five leaf sample trees from the plot level 
to a hectare, we observed on average more trees with canopy N 
≥1% DM and <1% DM not only in the lowlands but also in the lower 
crown areas and tree basal area, indicative of a presence of more 

F I G U R E  4  Regression of predicted and observed total canopy nitrogen of the best models based on either R2 (top) or RMSE (bottom) for 
cross- (left, n = 150) and independent validation (right, n = 45)
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smaller trees with smaller leaf volume at lower densities. At high el-
evation there were almost no trees predicted to have <1% canopy 
N per hectare and crown areas and tree basal areas were highest 
(Figure 6a–c).

When testing whether N influenced greater glider detec-
tion using binomial GLMs, we found a significant relationship 

between the occurrence of greater gliders and meanN % DM 
(p  <  .05, Table 5). Mean plot foliar nitrogen concentration was 
positively associated with a likelihood of greater glider detec-
tions (Figure S9).

4  |  DISCUSSION

As remote-sensing technologies advance, there are many opportuni-
ties to use them in spatial ecology and conservation. Here, we show 
that canopy total nitrogen (N), estimated using a commercial mul-
tispectral sensor mounted on an unoccupied aerial vehicle (UAV), 
can provide accurate high-resolution data on forest canopy nitro-
gen, which is useful for identifying favorable feeding habitat for a 
marsupial arboreal folivore of significant conservation concern. Our 
approach provides a mechanism for developing spatial models of 
potential feeding habitat to guide forest management and species 
conservation planning in forested landscapes.

4.1  |  Leading predictors of canopy nitrogen

While canopy N has been recognized as an important component 
of the diet of arboreal marsupials and is often determined using 
laboratory-based or handheld spectroscopy (Cork & Catling, 1996; 
Marsh et al., 2014; Moore & Foley, 2005), direct estimates from 
remote-sensing platforms have only recently been developed. 

F I G U R E  5  Regression of predicted and observed total nitrogen, averaged on the plot level (n = 30)
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TA B L E  4  Model evaluation metrics for the supervised 
classification model to spatially classify favorable (≥1% N DM) and 
unfavorable (<1% N DM) feeding habitat

Evaluation metric Value

Accuracy 0.79

Kappa 0.59

Sensitivity (TPR) 0.79

Specificity (TNR) 0.80

True Skill Statistic (TSS) 0.59

Area under the curve (AUC) 0.88

Correlation 0.67

max TPR+TNR at 0.49

Number of pixels held-out for validation 15,600

Correctly predicted absences 6257

Correctly predicted presence of favorable feeding 
habitat

6133

False presences 1543

False absences 1667
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For example, Youngentob et al. (2012) integrated measures of 
Eucalyptus foliar N and digestible nitrogen (digN) from imaging 
spectroscopy using aerial hyperspectral imagery, while Wu et al. 
(2019) showed that digN can be predicted by spaceborne multi-
spectral imagery. Both studies made use of spectral bands and/
or vegetation indices derived from these bands, encouraging the 
application of multispectral imagery in determining eucalypt foliar 
N as a measure of forage quality. Our eight uncorrelated predictor 
variables (Figure 3) utilized all available bands and wavelengths 
covered by our multispectral sensor (475–840 nm). All bands and 
indices used in our modelling process reflect known nitrogen or as-
sociated biochemical absorption features. Three predictors were 
averaged band reflectances, while five were derived spectral indi-
ces. The most important predictor was the Generalized Difference 
Vegetation Index (GDVI, ~19% increase in mean-squared error, in-
cMSE), which combines the near-infrared (NIR) and green band 
(Table 2). The index covers absorption features that have been 
detected at 570 nm (green) for chlorophyll and nitrogen (Peñuelas 
et al., 1994) and 800–900  nm (NIR) for tannins and chlorophyll 
(Ferwerda et al., 2006). GDVI is also strongly associated with leaf 

area index (LAI) and shows greater sensitivity to lower vegetation 
cover than other frequently applied vegetation indices (Wu, 2014). 
Its high importance in this study suggests that GDVI is capturing 
crucial absorption features for estimating N, while also being 
able to distinguish the different vegetation types and associated 
Eucalyptus species we encountered from dry lowland to highly 
productive high-elevation sites.

The second most important predictor was the averaged green 
band reflectance (13.5% incMSE). Green reflectance is known 
to relate to N absorption features directly, rather than associated 
biochemicals (Peñuelas et al., 1994). This band is highly sensitive 
to foliar N levels (Thomas & Oerther, 1972; Xue et al., 2004) and 
performs better than NIR- or red bands (e.g., used in the normal-
ized difference vegetation index, NDVI) at distinguishing vegetation 
from other features (Gitelson et al., 1996). It may, therefore, combine 
the ability to directly determine nitrogen through high N sensitivity, 
while reducing errors arising from background reflectance.

The averaged NIR and red-edge bands were equally important 
(~11% incMSE each). NIR is associated with nitrogen between 800 
and ~1000  nm (Coops et al., 2003; Curran, 1989), while red-edge 
wavelengths at 700–800 nm correlate with chlorophyll and meso-
phyll absorption, as well as tannins (Curran et al., 2001; Ferwerda 
et al., 2006; Filella & Peñuelas, 1994). Other important indices, such 
as the two normalized difference indices (NDI) used here (Table 2), 
were also found to be meaningful predictors of foliar N in other 
studies (see, e.g., Wu et al., 2019). Both the Redness Index (RI) and 
the Visual Atmospheric Resistance Index (VARI) combine the green 
band's features with other bands associated with chlorophyll (red 
and blue band) and lignin (blue band) absorption (Curran, 1989; 
Curran et al., 2001; Ferwerda et al., 2006).

F I G U R E  6  Structural (a–c) and spatial (d+e) differences between favorable (≥1% N DM) and unfavorable (<1% N DM) feeding trees per 
hectare or habitat (on a home range [4 ha] scale) and elevational bands. Aggregation of nonhabitat was not considered in Figure 6e because 
it was mostly 100% aggregated through all three elevation bands
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TA B L E  5  Model summary for a generalized linear model (GLM) 
describing the relationship between the detection of greater gliders 
and mean observed canopy nitrogen by plot

Response Greater glider detection (GLM)

Variable Estimate 95% CI p

(Intercept) −5.6 −11, −1.0 .03

Mean observed N 3.6 0.19, 7.7 .05

Abbreviation: CI, confidence interval.
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4.2  |  Observed detection thresholds and 
imperfect detection

We observed higher detection rates for greater gliders with increas-
ing amounts and quality of feeding resources (Figure S8). From 
canopy N measurements and spatial predictions, we derived three 
variables describing the quality of favorable feeding habitat: mean 
plot nitrogen (meanN), likelihood of finding pixels associated with 
≥1% N dry mass, DM, and favorable feeding habitat area within a 
plot (as a proportion of the total area, 4 ha). Greater gliders were de-
tected in plots that had ≥1.1% meanN (DM), ≥50% average likelihood 
of finding a favorable habitat, and more than a quarter of the plot 
area as a favorable feeding habitat. The larger crown sizes observed 
at high elevation (Figure 6b) also indicate a higher foliage volume, 
while a high aggregation of a favorable feeding habitat (Figure 6e) 
suggests that this foliage is of higher nutritional quality. Our find-
ings are in agreement with earlier studies demonstrating that greater 
gliders prefer sites with higher levels of foliar N (see, e.g., Kavanagh 
& Lambert, 1990). Braithwaite (1983) suggested and Cork (1992) 
later identified a nutritional threshold of 1% N DM as favorable for 
arboreal folivore habitat suitability. We found a similar, but slightly 
higher, nitrogen threshold (1.1% N DM) in our plots. Many studies 
have found that greater glider occurrence or abundance is higher 
where Eucalyptus species associated with high leaf N contents are 
present (Braithwaite et al., 1984; Cork & Catling, 1996). We found 
positive relationships between increasing meanN and detection 
across our sites (Table 5, Figure S9), providing further support for 
the importance of foliar nutrition on habitat selection of the greater 
glider in the study region.

Some plots exceeded all three of the identified thresholds but 
did not have greater glider detections (n = 14, Table 1). While these 
may be true absence sites, they may also reflect imperfect detection 
(i.e., gliders were present, but not detected) (MacKenzie et al., 2005). 
Detection rates for greater gliders at occupied sites are ~66% when 
surveyed twice or employing two observers per survey (Nelson 
et al., 2018; Wintle et al., 2005). The observed spatial and structural 
patterns of potential feeding habitat at different forest types and 
elevations may explain our detection rates. Although at low eleva-
tion the number of both favorable feeding and unfavorable feed-
ing trees were higher when extrapolating from plot measurements 
to the hectare, both tree basal area and average crown sizes were 
much lower than at high elevation (Figure 6b,c). At the same time, 
an equal aggregation of favorable feeding- and unfavorable feed-
ing habitat within much larger areas of non-habitat indicates that 
foraging resources reaching levels ≥1% N DM were more dispersed 
and scarcer in the lowlands. Combined with lower tree density and 
less available feeding resources (i.e., lower crown area, smaller area 
of favorable feeding habitat), it can be assumed that greater gliders 
need to move between trees more frequently and travel further dis-
tances to reach favorable feeding habitat in suitable areas in the low-
lands. The ability to glide allows accessing favorable food resources 
at further distances while expending little energy (DeGabriel et al., 
2009). In fact, the scarcity of nutrients and occurrence of chemical 

antiherbivory defenses in Eucalyptus foliage has been proposed as a 
factor favoring the evolutionary development of gliding in greater 
gliders as the most energy-efficient type of movement between 
trees for continued feeding and detoxification (Youngentob et al., 
2011). Nevertheless, fewer and more dispersed foraging resources 
may lead to lower population densities in folivores (Chapman et al., 
2002, 2004; Wallis et al., 2012). For greater gliders, a combination 
of smaller areas of more dispersed favorable feeding habitat and 
lower population densities may require an increase in exploratory 
movements to reach nitrogen-rich foliage to forage on or find mating 
partners and may, therefore, lead to larger home ranges sizes.

While an increase in home range size due to forage quality has 
to date not been studied and represents a critical knowledge gap, 
greater gliders have been observed to increase their home range size 
due to sparse nesting resources (Pope et al., 2004; Smith et al., 2007; 
Wagner et al., 2021). We would expect a lower likelihood of detec-
tion when using a standardized survey method for a range of forest 
structures and configurations of feeding habitat or nesting resources. 
Even when assuming stable home range sizes (e.g., 2.6 ha, see Pope 
et al., 2004), a survey at a plot with only 30% favorable feeding hab-
itat (≈1.3ha) may only cover 50% of a greater glider's home range 
occupying the area (Figure 7a). Only when the plot has about ~60% 
favorable feeding habitat would an entire average home range be 
covered (Figure 7b, Table 1). At high elevation, structural and spa-
tial patterns such as larger crown sizes almost entirely consisting of 
favorable feeding habitat (high spatial aggregation and larger areas), 
lower areas of non-habitat, and higher basal areas would require less 
movement and may allow higher population densities and, therefore, 
smaller home ranges. Consistent with this, we detected up to 14 in-
dividuals per survey at high elevation plots, where animals were even 
observed in the same tree and often in close proximity (Figure 7b). It 
is therefore likely they had either overlapping or smaller home ranges, 
supported by a higher abundance of feeding resources. Based on our 
findings, survey standards may need to be adapted for differences in 
spatial arrangement of feeding habitat, home range sizes, and popu-
lation density at different forest types. Our metrics may therefore be 
a useful guide where non-detections may require additional survey-
ing efforts to ensure detection and confirm occupancy. Furthermore, 
the ability to map a potential feeding habitat may help in planning 
survey transects and increase the likelihood of detection in habitats 
where foliage quality is limited. Depending on management prescrip-
tions, this tool may then also be applied to protect or retain trees 
that are important to sustain nutritional suitability and connectivity 
within the greater glider's home range.

Plant secondary chemistry may influence greater glider forag-
ing, distribution, and, therefore, detection as well. Tannins binding 
proteins to plant tissue can cause large differences in N and digN in 
some tree species, while herbivory defenses from formylated phlo-
roglucinol compounds (FPCs) may limit the quality of foliage high in 
digN (Lawler, Foley, Eschler, et al., 1998; Lawler, Foley, Pass, et al., 
1998; Marsh et al., 2003). Some Eucalyptus species dominating our 
sites, such as E. polyanthemos or E. muelleriana, were high in N or digN 
(see Figure 2 and Figure S5), but we did not make any greater glider 
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observations, which can be explained by other leaf constituents. 
These species also have high levels of sideroxylonals, which greater 
gliders do not prefer feeding on (Wallis et al., 2002; Youngentob 
et al., 2011). The ability to similarly predict and spatially map digN 
(see Youngentob et al., 2012; Wu et al., 2019) and a method that can 
remotely sense FPC or unsubstituted B-ring flavanones concentra-
tions (Marsh et al., 2019) may, therefore, assist in distinguishing and 
classifying feeding habitat in more detail. To our knowledge, only 
few such attempts were successful, but the latter may be possible 
using hyperspectral leaf reflectance (Couture et al., 2016; Ebbers 
et al., 2002). Given FPCs only occur in one of the two Eucalyptus sub-
genera found in the study area (Symphomyrtus), while Monocalyptus 
contain unsubstituted B-ring flavanones as herbivore deterrents, 
there may also be potential to use multi- or hyperspectral canopy re-
flectance patterns for classification at the subgeneric level (Baldeck 
et al., 2015; Goodwin et al., 2005). This may further aid in character-
izing the nutritional suitability at the home range scale. Although we 
accounted for many possible factors that may explain non-detection 
or lower population densities, such as fires, drought, or timber har-
vesting and, therefore, lack of hollows for nesting during site selec-
tion, another explanation may be owl predation (see, e.g., Kavanagh, 
1988) or historical factors such as disease outbreaks.

4.3  |  Analytical and operational limitations

Both N and digN were significantly associated with the eight spec-
tral predictor variables. Models predicted nitrogen at the canopy 

level, as well as favorable feeding habitat at the home range scale 
(4 ha). However, our digN model was found to be explanatory only 
and lacked predictive power. Predictions exhibited poor performance 
in independent model validation (best R2 = 0.12, average R2 = 0.03, 
Table S3). The reason for this might be that digN is influenced by many 
constituents, such as N, lignin, tannins, and cellulose concentrations 
that modify digestibility (Degabriel et al., 2008) and might, therefore, 
not have a distinct direct relationship to spectral reflectances covered 
by our sensor or indices. Wu et al. (2019) found that digN was best 
predicted with blue multispectral bands at lower wavelengths (400–
450 nm), while Youngentob et al. (2012) reported the highest predic-
tive performance when integrating at least four hyperspectral bands 
with wavelengths between ~1300 and 2174 nm. It may, therefore, be 
the case that our multispectral sensor, which is limited to wavelengths 
between 475 and 840 nm was unable to register these spectral com-
ponents of the foliage. Nevertheless, we found that vegetation indi-
ces can be used to reduce the limitations small multispectral sensors 
using center wavelengths may have. Therefore, there can be other 
indices, not considered here, that may improve predictive perfor-
mance of digN models, which should be further explored. Indices 
contributed more to overall model performance than averaged spec-
tral reflectance and Youngentob et al. (2015) also found that spectral 
indices were useful for predicting greater glider abundance. While hy-
perspectral sensors may have advantages in terms of spectral range, 
multispectral imagery is more accessible and affordable, has better 
cross-platform integration, and can be easier to process.

When interpolating our canopy models to predict leaf nitrogen 
spatially at the home range scale, we encountered issues arising 

F I G U R E  7  A lowland plot (Plot 10) where two greater glider detections were made outside the plot area (a) and a high-elevation plot 
(Plot 6) with three observations within the plot and 14 total observations (b) along a 1-km spotlighting transect. Both plots have a similar 
area of unfavorable feeding habitat (<1% N DM in dark blue, ~10% of the plot area) but opposite amounts of favorable feeding habitat (≥1% 
N DM in green) and non-habitat (yellow). The lowland plot (a) is predicted to have ~60% non-habitat (e.g., subcanopy crowns or forest gaps) 
and ~30% favorable feeding habitat, whereas the highland plot (b) has ~30% non-habitat and 60% favorable feeding habitat. Assuming the 
spatial configuration of feeding habitat is constant beyond the plot boundaries, a resident greater glider would require twice as much area in 
the lowlands to access the same amount of favorable feeding habitat. Assuming average home ranges for greater gliders are constant (e.g., 
2.6 ha), a survey through the lowland plot (a) would only cover ~50% of the assumed home range of a potential greater glider occupying the 
site, while covering an entire home range in the highland plot (b), which has implications on the likelihood of detection

−37.780

−37.779

−37.779

−37.778

148.181 148.181 148.182 148.182 148.183

(a) (b)

−37.192

−37.191

−37.191

−37.190

148.843 148.843 148.844 148.844 148.845

<1% N/DM

>1% N/DM

non−habitat



18416  |    WAGNER et al.

from nonlinear averaging (i.e., Jensen's inequality, see Denny (2017)). 
Canopy models were based on reflectance averages of crown foli-
age, which had a lower variance than the variance in the predictors 
at the home range scale. The high variance of the home range scale 
predictors increased the effect of Jensen's inequality and, therefore, 
reduced the robustness of average-condition models for predicting 
across a wider range of conditions (Roussel & Auty, 2019). We used 
supervised classification on a binomial response variable describ-
ing the presence or absence of a favorable feeding habitat to over-
come this issue. Interpolation issues did not arise in similar studies. 
Youngentob et al. (2012) reported that the use of maximum spectra 
produced better models than averages, while Wu et al. (2019) used a 
pixel averaging approach much like ours. We did not find maximum 
spectra to improve models in our analyses. Our image resolution 
was much higher (~2.5 cm) than either of the other studies (1.24–
7.5 m), due to our UAV imagery being collected from only ~120 m 
flight altitude. The orders-of-magnitude increase in spatial resolu-
tion produced greatly improved tree delineation and the quality of 
our canopy height models (CHMs), which were crucial in classify-
ing spatial predictions and identifying non-habitat. Nevertheless, 
it may have exacerbated the effects of Jensen's inequality through 
the larger number of pixels, which led to greater variance in the raw 
spectral reflectance than canopy averages of thousands of pixels.

Using small and highly mobile UAVs with spectral sensors to map 
foliar nutrition quality over large areas has the potential to better 
integrate forest management and conservation planning. A prag-
matic issue that will arise is the type of UAV and the scale of sam-
pling. While our multirotor UAV can readily sample areas of up to 
20 ha per flight and, therefore, cover multiple greater glider home 
ranges, fixed-wing (FW) UAVs may be better suited to capture im-
agery over larger areas (Anderson & Gaston, 2013). This will allow 
for determination of canopy N and feeding habitat at the scale of 
several square kilometers in a few flights, potentially covering a 
population-range scale. However, these platforms require clear-
ings for take-off and landing, which may not be readily available in 
heavily dissected or mountainous terrain where, in our case, greater 
gliders typically occur. In more recent years, FW UAVs have been 
successfully equipped with vertical take-off and landing (VTOL) abil-
ities (Goodbody et al., 2017), which may be useful when capturing 
imagery of larger areas of tall forests in complex terrain.

5  |  CONCLUSION

We used UAV multispectral imagery, individual tree-sampling of fo-
liar nutrition and forest structure and transect-based wildlife surveys 
to successfully characterize and map favorable feeding resources in 
a landscape of a threatened arboreal folivore, the southern greater 
glider, in southeastern Australia. Our findings and models have im-
portant management implications for the detection and retention of 
high-quality feeding habitat at both the canopy level of individual 
trees and spatially at the home-range scale, as well as for survey 

design for arboreal folivores. Although successfully modelling and 
mapping total nitrogen, digestible nitrogen models could not be ex-
trapolated spatially using the spectral bands and vegetation indices 
available. The ability to map digestible nitrogen would enhance the 
classification of folivore habitat in more detail, considering the nega-
tive effects of plant secondary metabolites. Future research should 
focus on identifying additional spectral bands or indices to predict 
digestible nitrogen spatially. This study is a first step in expanding 
nutritional studies to larger scales. It is now important to integrate 
these methods into platforms that can capture larger areas, which 
will allow a swift and low-cost assessment of favorable greater glider 
feeding habitat to aid in their management and conservation at the 
landscape scale.
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