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Abstract

Motivation: Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-to-
cell variation and cell populations at a single-cell resolution. These large amounts of data, require dedicated, inter-
active tools for translating the data into knowledge.

Results: We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytome-
try data. Cyto is a workflow-based open-source solution that automates the use of state-of-the-art single-cell analysis
methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from per-
ipheral blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably
capture the immune cell sub-populations from peripheral blood and cellular compositions of unique immune- and
cancer cell subpopulations in HGSOC tumor and ascites samples.

Availabilityand implementation: The method is available as a Docker container at https://hub.docker.com/r/anduril/
cyto and the user guide and source code are available at https://bitbucket.org/anduril-dev/cyto.

Contact: sampsa.hautaniemi@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell technologies, such as Cytometry by Time-Of-Flight
(CyTOF), multiplexed imaging or single-cell RNA sequencing, have
enabled characterizing tumor-microenvironment compositions and
cell populations at a single-cell resolution (Galli et al., 2019).
However, currently the pace at which insight is extracted from mas-
sive single-cell datasets remains the same as with the previous low-
throughput technologies (Brodin, 2019). Common CyTOF analysis
steps have steadily reached a quasi-standard workflow that involves
manual gating with FlowJoTM or other 2D scatter plot tools fol-
lowed by dimensionality reduction with t-SNE (Van Der Maaten
et al., 2008) and unsupervised clustering. Typically, these analyses
are executed with different software or platforms, which makes the
results prone to errors and biases. Meanwhile, each new experiment
requires a new set of custom scripts to fit the analysis needs, and
new computational methods and algorithms are being developed at

a fast rate (Angerer et al., 2016; Höllt et al., 2016; Qiu, 2017). The
most comprehensive semiautomatic workflow available is CytoBank
(Kotecha et al., 2010), a commercially available service that allows
the users to load the data to a cloud and perform analyses without
the need for advanced technical skills. Also, open-source workflows
with graphical interface, such as Cytofkit (Chen et al., 2016), or
command-line functions, such as cytofWorkflow (Nowicka et al.,
2017) have been published. These tools, however, integrate methods
available within the R ecosystem where parallelization is not the de-
fault for most methods, which is a necessary feature to analyze very
large datasets. Other, more complex solutions, such as Cytosplore
(van Unen et al., 2017) and CYT (Amir et al., 2013), allow for only
one method for each step of the analysis, one transformation type,
one sampling approach, one clustering algorithm and one dimen-
sionality reduction method. Furthermore, none of these software
support iterative analysis, which is required for rapidly testing
hypotheses and ideas during analysis. Iterative analysis is recognized
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as a key requirement for workflow languages (Almeida, 2010), and
it is particularly important in the analysis of mass cytometry data as
the datasets are complex and require testing different parameter set-

tings, algorithms, etc. in an iterative and interactive fashion. We
have designed and implemented an analysis software Cyto that ena-

bles interactive analysis and meets the need for accessibility to and
reporting of reproducible methods.

We demonstrate the utility of Cyto with two CyTOF datasets.
Firstly, we use control data from peripheral blood mononuclear cells
(PBMC) (Van Unen et al., 2016) to demonstrate fast quality assess-

ment of the data and recapitulation of the previous findings in only
two iterations of analysis. Secondly, we applied Cyto on a dataset

from high-grade serous ovarian cancer (HGSOC). By applying Cyto
on this dataset, we were able to rapidly measure abundance of cell
types, and single-out specific tumor cell populations facilitating bio-

logical discovery and clinical interpretation of high dimensional
single-cell cytometry data.

2 Materials and methods

Cyto is built on top of the workflow framework Anduril 2 (Cervera
et al., 2019), a language-agnostic framework that enables rapid inte-
gration of new and old methods as building blocks.

2.1 Cyto modules
2.1.1 Graphical user interface

The user interface was developed as a light Flask application server
within a Docker container. By distributing Cyto as an already built
Docker image it avoids dependency installation and versioning

issues, and therefore eases compatibility between researchers. The
application handles data upload and download and saves user con-
figuration changes. All projects are saved locally in the user’s com-

puter in case Docker is restarted.

2.1.2 Interactive results browser

To make Cyto modular, the user-data interaction was implemented
as a separate web application built with Python dashboards, a

powerful framework that supports interactive Plotly components.
The choice of visualization strategies are based on those reported in

relevant publications, particularly in Nowicka et al. (2017).

2.1.3 Cytometry analysis pipeline

The analysis pipeline (Supplementary Fig. S1) is ran in the back-
ground. This means that, when the user clicks on ‘Run analysis’,
Cyto will perform all steps of the analysis and parallelize when pos-

sible automatically. For �300 000 cells with default settings it takes
less than 15 min on a standard MacBook Pro, for large datasets

Cyto may run overnight unattended or in a computational environ-
ment with Docker support. Briefly, integration of cytometry specific
methods was achieved through addition of new Anduril components

built with MATLABVR , R, Python, Java or Bash scripts, depending
on the programming language of the original implementation of

each method. A list of the currently integrated methods for data
processing, clustering, 2D embedding and descriptive statistics built
into interactive dashboard elements are listed in Supplementary

Table S1.

2.2 Materials and methods for peripheral blood case

study
2.2.1 Data acquisition of peripheral blood myeloid cells

We downloaded the mass cytometry FCS files from Van Unen et al.
(2016) and selected the control (Ctrl) samples (n¼14) to recapitu-
late the PBMC cell subtypes. No preprocessing of the data was
required before the Cyto analysis.

2.2.2 Cyto analysis of data quality

We selected the channels used in Van Unen et al. (2016). The com-
plete dataset contained 48 611 486 cells, of which we randomly sub-
sampled to 300 000 cells and transformed all selected channels with
an arcsinh transformation (cofactor 5). The parameters and their
values are listed in Supplementary File S1. Multidimensional scaling
(MDS) and non-redundancy scores (NRS) visualization within Cyto
Dash report were used to identify outlier samples.

2.2.3 Cyto recapitulation of cell types

After excluding the outlier samples 52_CtrlAdult5_PBMC and
53_CtrlAdult6_PBMC we ran Cyto analysis (Supplementary File S2)
on the remaining 12 Ctrl samples. This dataset contained
41 779 615 cells which were randomly downsampled to 300 000
cells. The same parameters as in the previous iteration were used but
clustering was done with FlowSOM algorithm (k¼18) and dimen-
sionality reduction by tSNE (n¼10 000; perplexity¼20;
theta¼0.3). The cell type labels used and prior knowledge of mark-
er expression profiles are described in Van Unen et al. (2016).

2.3 Materials and methods for case study HGSOC case

study
2.3.1 Data acquisition of high-grade serous ovarian cancer

Tissue and ascites specimens were collected from 15 consented
patients (Supplementary Table S2) at the Department of Obstetrics
and Gynecology, Turku University Central Hospital. Samples were
analysed with CyTOF 1 mass cytometer (DVS Sciences Fluidigm).
The antibody panel was manually curated with focus on markers of
cell populations that compose the tumor compartment and less at-
tention to the microenvironment (Supplementary Table S2). For fur-
ther details about sample preparation and CyTOF assay see
Supplementary Methods.

2.3.2 Tumor compartment identification with Cyto
The FCS files and the CSV file with clinical annotations were
uploaded to Cyto and processed as shown in Supplementary File S3.
300 000 cells were randomly sampled from a total of 65 331 333
cells in the complete dataset. After the cyto run with signal trans-
formation log1p, sample-wise mean centering, clustering with
Phenograph (k¼200) and dimensionality reduction by UMAP
(n¼10 000, min-dist¼0.1, knn¼90). We associate cell types to
each cluster based on the expression of canonical cell type markers
(Supplementary Fig. S5). The clustering results were downloaded
from Cyto to label the clusters and compare global cell type abun-
dances. To maximize the number of tumor cells we ran a second it-
eration of analysis using a density-biased downsampling while
keeping all other parameters unchanged (Supplementary Fig. S6).
The resulting CSV file was filtered in AWK to keep only the tumor
cells for the next iteration.

2.3.3 Tumor cell population analysis

All tumor cells were used with no preprocessing (setting none). We
applied all clustering methods to show the different effect of com-
plex cell populations that do not follow a clear lineage on clustering
results, each analysis is detailed with the method name within the
configuration file Supplementary File S4.

3 Results

Cyto is an open-source application that enables running cytometry
analysis pipelines that integrate state-of-the-art tools with reliable
reporting and reproducibility as shown inFigure 1 (Dix et al., 1998).
Importantly, Cyto is designed to support key agile data analysis
principles, for example, interactive visualization of the results with
other scientists places focus on the individuals and takes it away
from complex processes and plans. Saving and sharing Cyto config-
uration files supports systematic reporting and removes the need for
ad hoc editing analysis script collections.
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3.1 Software architecture supports reproducibility and

accessibility requirements
The design of Cyto was driven by both the need of iterative analysis

characteristic to the high dimensional cytometry field and the re-
quirement for easily reporting of methods and parameters used in
each step of an analysis, which are critical for reproducibility. With
this in mind, we developed Anduril components to integrate the
most popular cytometry tools into fully customizable analysis pipe-
lines (https://bitbucket.org/anduril-dev/cytometry and https://bit

bucket.org/anduril-dev/tools).
Our cytometry analysis pipeline includes tools from different

fields and in different languages that are wrapped into modular
units, called components, which are interchangeable and reusable

throughout the pipeline development process. To enable rapid
changes to the choice of components and to support non-
bioinformaticians to interact with CyTOF datasets, we built a light-
weight user interface that runs a generalizable Anduril pipeline
(Supplementary Fig. S1). This is achieved with two web-based
Python applications: the first one is the data importer where the user

defines their analysis parameters, while the second one is the results
browser to enable interactive data visualization through Plotly fig-
ures. Finally, to simplify installation requirements and thus enhance
accessibility, we packaged this system into an interactive Docker
container which can run on most operating systems. To our know-
ledge, Cyto is the first open-source solution that features access to

multiple cytometry tools with a low learning threshold for non-
bioinformaticians.

3.1.1 Mass cytometry data analysis with Cyto

On a general scale, Cyto follows a common CyTOF workflow
(Fig. 1A and Supplementary Fig. S1), however, each step enables
agile and fast iterations. The preprocessing components are a critical
step of a CyTOF pipeline. An arcsinh transformation is usually
applied and it works well in many experiments, however, it may
truncate high values to an artificial maximum. For this reason, users

may choose also logarithmic or quadratic scaling. Other important
parts of the preprocessing implemented in new components are
quality assessment, normalization, gating and filtering components.
By generalizing these steps in the Cyto pipeline instead of running
multiple independent scripts or manual analysis, the user has a com-
prehensive log of methods tested, and complete control of the

preprocessing steps without having to code all the logic that is al-
ready included in each component.

Because of the flexibility to adapt new tools as components to
this bundle, Cyto supports dimensionality reduction and unsuper-
vised clustering methods, along with new tools that can be included
when available. The third popular toolbox contains lineage infer-
ence methods; we integrated them to produce an output that can be
further analysed with any component or visualized with the inter-
active visualization components. The interactive visualization com-
ponents transform data into plotly objects to be used either locally
in the user’s browser or included in a Dash application, as demon-
strated in the Cyto method. Lastly, Anduril counts with a large tools
bundle with components for statistical analysis, CSV file manipula-
tions and machine learning analysis, all of which are fully compat-
ible with our cytometry components.

3.1.2 Cyto design enables customized analysis steps

Worfklow for a standard cytometry analysis project is depicted in
Figure 1A. First, the user sets the input data and parameters for the
analysis in the data importer. Different types of research questions
require different settings. Questions about population abundance
can analyze all cells or a random sample, while detection and identi-
fication of rare cell populations requires a density-biased sample as
implemented in SPADE package (Qiu et al., 2011) to preserve
smaller populations. Commonly used clustering algorithms in the
field are tailored for different research setups (Weber et al., 2016).
Algorithms based on a k-nearest neighbors approach are suitable for
samples where the expression of markers varies smoothly, e.g., are
expected to belong to an evolving. However, samples with distant
subpopulations will benefit from a more fragmented clustering
method, such as k-means. Thus, it is important to support the use of
the right tool for the right question, not just the easiest to use.
Second, the user saves the settings. At the moment of saving these
options, Cyto validates the inputs and creates a new execution fold-
er, which is used to archive the configuration, to support reproduci-
bility, and to store the intermediate results, to support re-running
only necessary steps on following iterations. Third, starting the ana-
lysis will launch the cytometry analysis pipeline and build the results
browser. Upon completion of the analysis, the browser will enable
the user to build new hypotheses and make informed decisions for
the next iterations. The browser helps interacting with high-dimen-
sional data and multiple results effectively, from assessing signal
quality and sample selection quality to examining individual or

Fig 1. Workflow for cytometry analyses. (A) Diagram of steps showing cytometry analysis as an iterative process and how our framework enables knowledge discovery. (B)

Schematic of the analysis environment to enable multi-system compatibility. On top screenshots of the data importer and the results browser as the two separate python

applications
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groups of cell populations. In the data importer, we can also down-
load the results as a table that includes all preprocessed data and
clustering results, and the results browser can also be downloaded
to be hosted on a web server as supporting material for complex
publication results.

The presented cytometry components can also be integrated into
Anduril pipelines independently of our proposed analysis pipeline
within the Cyto system. Independent pipelines are specially useful
for laboratories with highly specific research questions that cannot
be addressed within the Cyto system but benefit from some of the
steps. The modular design of our method enables other researchers
to follow this design for specialized needs (Fig. 1B and
Supplementary Fig. S1).

3.2 Case study I: peripheral blood myeloid cells dataset
3.2.1 Interactive browser enables outlier detection

The results browser generates summary figures to assess data qual-
ity. Multi-dimensional scaling visualization of the average expres-
sion on each sample (Fig. 2A) highlights sample
53_CtrlAdult6_PBMC as an outlier at the general level. While visu-
alization of Non-Redundancy Scores (Fig. 2B), identifies also sample
52_CtrlAdult5_PBMC due to artifactually low signal, seen as lowest
NRS for more than 50% of the antibodies. Further assessment of
outlier samples is possible by exploring the profiles of cell popula-
tions predominant in the outlier population (Supplementary Fig.
S2). In this analysis, sample 53_CtrlAdult6_PBMC shows over-
representation of myeloid cells, possibly caused by preanalytical
conditions. Sample 52_CtrlAdult5_PBMC shows a very low
Simpson’s diversity index (0.34) compared with the rest of the sam-
ples (m¼0.67; r¼0.003) (Supplementary Fig. S3). By creating a new
analysis from the data importer, we were able to rapidly discard
poor quality samples and repeat the analysis with the same settings.

3.2.2 Cyto recapitulates cell-type identification from PBMCs

We set out to test the performance of Cyto in detecting immune cell
populations from the PBMC dataset. By using density-biased sam-
pling, we quickly recapitulate the cell types present in these samples
in line with the authors of the data. Figure 3 shows the results from
Cyto manually colored by the cell type classification for each cell.
Visual separation of some cell types can be further explored by

intensity t-SNEs and lineage trees (Supplementary Fig. S4).
Interactive visualization of relevant markers shows slight differences
in expression within the same cell type. In addition, the lineages pre-
sented as the minimum spanning trees can be applied to the result of
any clustering algorithm. Cyto analysis workflow herein reliably
identifies biological cell populations from PBMC facilitating bio-
logical interpretation of CyTOF data.

3.3 Case study II: cancer cell populations on HGSOC
To assess the performance of Cyto in enabling clinical and CyTOF
data integration we next performed an iterative analysis on a dataset
of 15 clinical samples (Supplementary Table S2) from HGSOC
patients at diagnosis (primary), after neoadjuvant chemotherapy
(interval) or at tumor progression. In this analysis Cyto also takes
advantage of a detailed clinical metadata to assist variable associ-
ation in the results browser.

Phenograph successfully detects main immune, stromal and
tumoral cells (Fig. 4A and Supplementary Fig. S5). The immune
compartment is the largest; we annotated the clusters to be CD8þ
T-cells, CD8- CD3þ likely CD4þT-cells and CD45þ T-cell marker
negative likely Myeloid-lineage inflammatory cells. The stromal
compartment is divided into CD90 positive and negative stromal
cells, with the negative cells showing closer similarity to the tumor
cells. The tumor compartment, identified as Cluster-7 is character-
ized by high expression of EpCAM, MUC1, E-Cadherin and
CA125, and low expression of pan-leucocyte marker CD45.
Abundance difference (Fig. 4B) show ascites samples (n¼10) have
more myeloid cells, and less tumor and stromal cells than solid
tumor samples, while no apparent differences were observed on T-
cell abundance. Interestingly, Cluster-6 shows expression for stem-
ness markers CD117 and CD44, the tumor markers CD125, HE4
and EpCAM, and is negative for the immune and stromal markers,
presenting as a potential cancer stem cell population.

A second iteration of Cyto analysis, in which we focused on the
tumor cells (Fig. 5 and Supplementary Fig. S7), shows the integra-
tion of clinical annotations with a tumor subpopulation profiling
analysis. The intermediate run that shows the detection of the tumor
cells is shown in Supplementary Figure S6. Minimum spanning tree
(MST) representation of the detected clusters present distinct tumor
population abundance in Primary, Interval and Progression time of
sampling. Furthermore, Cluster-6 on the MST shows higher Ki67
and more abundant in Primary and Interval samples. Cluster-2

Fig 2. Outlier detection and characterization. (A) MDS plot shows sample

53_CtrlAdult6_PBMC separate from the other Ctrl samples. (B) Non-redundancy

scores visualization; sample 53_CtrlAdult6_PBMC has highest NRS on marker

CD14, and sample 52_CtrlAdult5_PBMC shows lowest for 18 out of 30 markers

Fig 3. Recapitulation of cell types in the 12 PBMC samples using tSNE (n¼30 000,

perplexity¼90, theta¼ 0.4) colored by the combined cluster labels produced by

FlowSOM
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shows highest E-Cadherin and is dominant in Interval samples, and
progression samples have larger representation of Cluster-10, which
are cells enriched for MUC1 and CD147, and are low on Ki67 and
ERK1-2 signaling. A Cyto visualization of Simpson’s diversity index
highlights also that Progression samples have the lowest
heterogeneity.

Interestingly, collapsing the MST by time from sample to the
next progression we see a clear enrichment of a stemness marker
CD24 in samples with shorter time to progression. Detailed profil-
ing of the tumor subpopulations can be explored in Supplementary
Material.

4 Conclusion

Rapid advances in single-cell technologies produce larger and more
complex data than ever before. The need for several analyses in-
crease the difficulty of reporting reproducible results, while accessi-
bility to and usability of highly specialized tools drive the choice of
algorithms in the analysis. A standard one-way analysis workflow is
sufficient on low-dimensional data but a more exploratory research
requires an iterative approach. We propose to level the usability of
different tools and to ease reproducibility of analysis by integrating
tools using a workflow paradigm design. First, by including popular
cytometry methods as Anduril components available, less experi-
enced bioinformaticians can easily build customized analysis work-
flows. Second, we present a generalized analysis pipeline that covers
cytometry questions from detection of rare cells to differential abun-
dance analysis, and from general sample profiling to deeper analysis
of single cell populations. Third, by making this pipeline accessible
as a Docker container with a user-friendly interface, non-
bioinformaticians are able to perform complex single-cell analyses
regardless of their experience level on software maintenance.

Fourth, a side-effect of utilizing Docker for accessibility includes the
potential to run it remotely on a server.

To our knowledge, Cyto is the first cytometry tool with a work-
flow paradigm design. Many R packages (Finak et al., 2014;
Simpson, 2019; Spidlen et al., 2019) have enabled compatibility
with the popular flowCore package (Ellis et al., 2019), and includ-
ing them in our cytometry components allow users to execute them
as part of larger pipelines on computing clusters if necessary. Future
integration of new cytometry tools was supported by Anduril syntax
as wrappers in the form of new components, components can be
written in the user’s language of choice due to Anduril’s language-
agnostic design.

In addition, this study demonstrates the key features of Cyto on
a public, well-known dataset, as well as on a new independent co-
hort. Here we are able to identify and characterize cell population
changes before and after chemotherapy, as well as at the time of pro-
gression. Ascites samples are valuable but underutilized due to the
large number of non-tumor cells. Our analysis characterized the
composition of the herein used ascites samples and the iterative ana-
lysis feature in Cyto enabled focusing on tumor cells without manual
setting of thresholds for each channel and sample. This allowed us
to compare tumor cell phenotypes between clinical presentations,
suggesting that HGSOC tumors at relapse phase are characterized
by lower heterogeneity while those with shorter time to next pro-
gression showed enriched stemness; both yield potential hypotheses
for further studies.

In summary, this work presents Cyto, which is an open-source,
accessible and customizable cytometry analysis method that takes

Fig 4. First iteration on high-grade serous ovarian cancer data. (A) Screenshot of all

cells from 15 HGSOC samples from different therapy time-points and different tis-

sue sites, Phenograph labels (colors) were computed with 300 000 cells randomly

sampled and k¼450. (B) Summary of proportions of cell types identified by

Phenograph for each sample annotated with sample type and tissue type

Fig 5. Screenshots of Cyto analysis of only tumor cell populations. (A) Minimum

Spanning Trees (MST) by Sample time summarizes the expression of CA125. (B)

Simpson’s diversity index by Sample time. (C) CD24 expression across MST nodes

grouped by time from sample to next progression
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advantage of workflow engines and enables easy integration of
existing tools. Cyto offers two levels for technical and non-technical
users. Further, to our knowledge this study presents the first CyTOF

experiments on comparison of chemotherapy naı̈ve and heavily
treated relapse samples from HGSOC.
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