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Abstract: The characteristics of P. vivax recurrent episodes were examined using a centralized sec-
ondary source of malaria records in Nicaragua and in the two most affected municipalities in the
RACCN. The study of 36,787 malaria cases due to P. vivax or P. falciparum revealed that, nationwide,
3624 patients had at least one recurrent infection. This was achieved by matching names, gender, age,
community/municipality, ethnicity, etc. P. vivax was responsible for 88% of recurrent infections of
25–450 days of latency (51.9% were women and 48.1% were men), and these were assumed to be
relapse episodes. Of them, 88.2% and 4.4% occurred in the municipalities of Puerto Cabezas and
Rosita, respectively. The proportion of P. vivax patients having presumed relapse episodes rose with
elevated transmission rates in both municipalities, reaching 7% in Rosita (2017) and 14.5% in Puerto
Cabezas (2018). In both areas, relapse episodes were evident over time and were characterized by the
production of a continuous stippling pattern with a slope evolving from one transmission peak to the
next. During the dry season, short-latency relapse episodes were more robust, while long-latency ones
increased just before the P. vivax transmission season began, with a high proportion of long-latency
relapses during this period. The abundance of recurrent P. vivax infections, the wide range of relapse
latency lengths, and temporal distribution tended to favor year-round transmission. It is necessary to
evaluate compliance with and the effectiveness of primaquine treatment and contemplate the use of
an alternative drug, among other actions.

Keywords: Plasmodium vivax; recurrent cases; relapse; latency; transmission intensity; malaria cases;
secondary case report; Nicaragua

1. Introduction

Malaria is a parasitic disease causing a public health problem in tropical and subtrop-
ical areas globally [1]. Plasmodium falciparum and Plasmodium vivax are the main species
causing human malaria and are transmitted by Anopheles species [1]. The transmission
of P. vivax is difficult to interrupt, largely because this species generates relapse episodes
in patients after the primary blood infection is cured. Under certain circumstances, the
dormant form of P. vivax (hypnozoites) develops in the liver and can be activated shortly
after the infection or over a year later. Therefore, patients might suffer recurrent blood
infections due to hypnozoites. The pattern of P. vivax relapse episodes varies [2], with
about 8–80% of patients having at least one relapse episode, depending on the geographic
region [3]. Regarding the latency of recurrent infections, tropical strains are expected to
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favor short incubation of the primary infection and several early relapse episodes, while
strains from temperate and subtropical areas seem to produce hypnozoites of long or mixed
latency [4].

Primaquine (PQ) has been used worldwide to treat hepatic hypnozoites since 1960 [3].
In the Americas, a total dose of 3.5 mg of PQ per kg of body weight administered within
14 days is the most effective scheme, reducing to 10% the occurrence of relapse in patients [5].
In El Salvador, without PQ treatment, 46–68% of patients developed recurrent P. vivax
episodes by a 9-month follow-up. Contrarily, in patients that received a 5-day PQ treatment,
the proportion of recurrent infections diminished to 28% [6]. An examination of the malaria
records in El Salvador showed that the first recurrent P. vivax infection had a latency
after the primary infection of 8–52 weeks (56–364 days) [7]. Similarly, in Mexico, the
predominant latency period of the first relapse episode was between 31 and 352 days [8,9].
In the Mesoamerican region, a pattern of relapse episodes was detected, in which the first
infection might be followed by one or various episodes with shorter latency [10].

Plasmodium vivax was responsible for ∼75% of the 596,200 confirmed malaria cases in
the Americas in 2020, while ∼25% were produced by Plasmodium falciparum [11]. Malaria
cases and deaths decreased by 20% in the Americas from 2010 to 2020 [11]. However,
P. vivax has played a substantial role in the stagnation of malaria reduction efforts as of
2015 [12]. During 2015–2020, there was a drastic rise in malaria cases in the Bolivarian
Republic of Venezuela, Panama, and Nicaragua, along with outbreaks in Costa Rica, the
Dominican Republic, and Ecuador [11]. In Nicaragua, malaria cases declined gradually
during the period of 2000–2010, reaching a total reduction of over 90% in incidence (from
23,281 cases in 2000 to 896 in 2010). The number of malaria cases fluctuated slightly in the
following years (2011–2014), from 1171 to 1564 per year, and then continuously increased
from 2886 in 2015 to 25,530 in 2020 [11,13], returning to the high level of transmission found
before the year 2000. At present, Nicaragua reports the greatest number of malaria cases
in Central America. Although P. falciparum and P. vivax coexist in Nicaragua, the latter
caused more than 80% of malaria cases in 2019 and over 52% in 2020 [11]. At present, a
7-day treatment with 0.5 mg/kg/day is employed in different countries of the Americas,
including Nicaragua, to eliminate P. vivax infections [13].

The current contribution is an observational and retrospective analysis of recurrent
P. vivax infections in Nicaragua from 2013 to 2018. The proportion, periodicity, temporality,
and parasitemia of recurrent P. vivax episodes were evaluated at a national level and
in the two municipalities with the highest malaria transmission in the RACCN, based
on a centralized secondary source of malaria records compiled by the Ministry of Health.
Because P. vivax coexists with P. falciparum in Nicaragua, an additional analysis was executed
to make comparisons.

2. Materials and Methods
2.1. Description of the Study Area

Nicaragua is a multi-ethnic and multicultural country located in the middle of the
Central American isthmus. In 2020, the population was estimated at 6,518,478 [14] inhab-
itants, 51% of which were female and 49% male. Of the economically active population,
74% were under 40 years of age. The country encompasses 120,339.2 km2, divided into
15 departments and 2 autonomous regions, with a total of 153 municipalities.

Two of the municipalities in the North Caribbean Coast Autonomous Region (RACCN)
most affected by malaria are Puerto Cabezas and Rosita (Figure S1). They have a very humid
(subtropical) climate and an annual rainfall of between 1900 and 3290 mm, and the rainy
season takes place from May to November. Puerto Cabezas has a multi-ethnic population of
111,803 inhabitants (predominantly Miskitos) and a territorial extension of 5985 km2 on the
Caribbean coast. Approximately 95% of the people are under 49 years old. The economy is
driven mainly by fishing, forest extraction, subsistence agriculture, animal husbandry, and
informal trade. The majority of the population lives in flood zones. The urban area of the
city of Puerto Cabezas is divided into 26 wards, while the rural areas of the municipality
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consist of 99 localities [15]. Rosita has a territory of 2205 km2 with 36,309 inhabitants,
comprised mostly of mestizos. There are also other ethnic groups, such as the Miskitos,
Magnyas, and Creoles. The principal economic activity is based on agriculture and animal
husbandry. The majority of the people live in the rural areas, consisting of 80 localities.
The urban area is divided into 11 wards. Malaria diagnosis is routinely confirmed by
microscopy of the thick blood smear in lab facilities or by applying rapid diagnostic
tests (RDTs) in inaccessible and remote areas [16]. In Nicaragua, Anopheles albimanus
and An. pseudopunctipennis are the main vectors involved in the transmission of malaria.
An. albimanus is the principal species in the rainy season throughout the country, with few
exceptions. It has greater populations in the municipalities of higher transmission [17]. In
contrast, An. pseudopunctipennis prevails in the dry season, especially in the municipality
of Chinandega, because there is an abundance of hatcheries created by the conditions of
sugarcane cultivation [18].

This study was approved by the Institutional Committee for Ethics Review (CIRE) at
the Ministry of Health in Nicaragua (NIC-MINSA/CNDR CIRE-08/08/16-071). After using
the patients’ names and surnames to seek evidence of recurrent infections, the identity
of each patient was protected, being encrypted with a unique code before the analysis of
recurrent infections was carried out.

2.2. Data Cleaning and Analysis

The secondary source of malaria cases was compiled on spreadsheets by the Malaria
Component at the central level of the Ministry of Health. The records from 2013 to 2018
were reviewed for consistency of information by examining the first and middle name(s),
surname(s), age, gender, ethnicity, locality and municipality of origin, and date of blood
sample collection for parasitological diagnosis. Additional data were carefully checked, in-
cluding the medication and days of treatment (the dates for starting and ending treatment),
whether the delivery of the treatment was supervised “in mouth”, the date of the onset of
symptoms prior to taking the blood sample for diagnosis, and the possible existence of
parasitemia (by performing parasite counts). The total number of cases per malaria species
was counted for the entire period and per year by utilizing the corrected databases on
Excel sheets.

The analysis of data was divided into two stages. Firstly, a search was conducted
to find patients with at least two malaria cases from 2013 to 2018. Accordingly, malaria
records were examined for each three-year period: 2013–2015, 2014–2016, 2015–2017, and
2016–2018. Two investigators manually filtered the data, matching the identity of each
patient suspected to have two or more infections. For this purpose, four columns were
prepared, with the patients’ first name, middle name, first surname, and second surname.
Other parameters, such as age, gender, ethnicity, locality, and municipality of the patients,
were taken into account to confirm a match. A list of patients with more than one confirmed
malaria case (regardless of parasite species) was compiled in an “R-database”, and the
full name of each patient was encrypted by using a unique code. Secondly, the recurrent
(R) malaria cases were scrutinized. A patient with a recurrent infection was defined as
one with two or more malaria attacks caused by the same malaria species (perhaps mixed
with an infection from the other species). Excluded from the analysis were 178 patients
either duplicated or with a latency <7 days (n = 356 cases). Latency was expressed as the
time interval in days between two consecutive infections (the primary infection and first
recurrent episode (R1), R1 and R2, and so on).

In Nicaragua, because of historical coexistence of P. vivax and P. falciparum [11,19],
frequencies in the recurrent cases were contrasted. If the primary infection was produced
by P. vivax and the following infection by the homologous species or by P. falciparum, the
second one was herein defined as a reinfection. The proportion of recurrent cases triggered
by P. vivax and P. falciparum was established. Short latency was considered as probable
recrudescence: 7–24 days for P. vivax [5] and 7–60 days for P. falciparum [20,21].
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Calculations were performed with Microsoft Excel, and the statistical analysis (at 95%
confidence) was carried out on Stata v14.2 (StataCorp LLC, College Station, TX, USA). The
variables under evaluation had no normal distribution, and non-parametric statistics were
used. Median and 25–75% interquartile range (IQR) were calculated for numeric variables,
and the Mann–Whitney U test or the Kruskal–Wallis test of ranks was used to compare
two or more independent groups, respectively. Spearman coefficient evaluated the level of
correlation between two independent numeric variables. Chi-square (χ2) test was used to
determine differences in the frequency of two or more independent groups.

3. Results
3.1. Malaria Cases per Species per Year at a National Level

The secondary database of malaria records revealed 36,787 cases from 2013 to 2018, of
which, P. vivax was responsible for 86.8%. The annual number of malaria cases caused by
P. vivax, P. falciparum, or mixed Plasmodium species is shown in Table 1. Annually, P. vivax
cases ranged from 79.5 to 91.4%, and their prevalence in mixed infections (with P. falciparum)
varied from 0.1 to 0.3%.

Table 1. Malaria records from the secondary database in Nicaragua (2013–2018).

Plasmodium Species
Years (Number of Cases)

Total
2013 2014 2015 2016 2017 2018

P. vivax 950 924 1880 4343 8959 14,501 31,557
P. falciparum 211 139 320 1104 2033 1319 5126
Mixed Pv–Pf 0 0 3 17 35 49 104

Total 1161 1063 2203 5464 11,027 15,869 36,787
% P. vivax 81.8 86.9 85.3 79.5 81.2 91.4 85.8

% P. falciparum 18.2 13.1 14.5 20.3 18.4 8.3 13.9
% Pv–Pf 0 0 0.1 0.3 0.3 0.3 0.3

NI 4 2 0 70 0 1 77

NI, the malaria species is not indicated and not included in the counts; Pv, P. vivax; Pf, P. falciparum.

3.2. Patients with Recurrent P. vivax Infections Nationwide

A total of 3624 patients in the records had at least one recurrent (R) Plasmodium
infection (by one of the two species or mixed infection) with a latency ≥7 days. Of
these patients, 88.2% corresponded to a first recurrence (R1) with P. vivax (3196 patients,
with an accumulated 7324 P. vivax infections or 13.2% of total P. vivax cases recorded).
Recurrent infections were grouped by the latency between the primary infection (PI) and
R1, between R1 and R2, and so on (Figure 1). Of the total recurrence of P. vivax episodes,
88% corresponded to R1 with a latency of 25–450 days (51.9% corresponded to women and
48.1% to men); this range of P. vivax latency to relapse has been suggested previously for the
region [5,7]. In this group, there was a slight difference in age by gender: 22 years for women
(IQR 15–34) and 21 years for men (IQR 14–32; Mann–Whitney, z = 3.009, p = 0.002). Aside
from this, in relation to the remaining recurrent infections of longer latency, no differences
in age by gender were detected (n = 375, z = 0.16, p = 0.86). No significant differences were
detected between latency of recurrent cases and age or gender (χ2(5) = 8.48; p = 0.131)
(Figure S2).

Considering the R1 latency of 25–450 days, the median was 186 days (IQR 105–275).
The interval between P. vivax R1 and R2 episodes was shorter than that between the primary
infection and R1 and so on (χ2 (3) = 136.2, p = 0.0001; Figure 1). The latency of R1 in patients
with P. vivax recurrent infections was portrayed according to age and gender, and no
significant difference was detected (χ2(5) = 8.48; p = 0.131) (Figure S2). In relation to PQ
administration, 88.6% of those patients were annotated to receive the 7-day treatment,
and all doses were recorded as supervised “in mouth”. Of the other 11.4% of patients, no
information existed for 9%, while the medication was taken over a period of 4–34 days
(excluding 7 days) for 2.4%.
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Figure 1. Number of patients in Nicaragua with recurrent P. vivax infections, categorized by latency,
from 2013 to 2018. Interval between the primary infection (PI) and the first recurrence (R1) (in blue;
median = 207/IQR, 113–331), between R1 and R2 (in orange; median = 109/IQR, 62–200), between R2 and
R3 (in grey; median = 71/IQR, 54–132), and between R3 and R4 (in yellow; median = 64/IQR, 59–142).
The latency of recurrent cases decreased as the number of R episodes increased (χ2 (3) = 136.2, p < 0.001).

There were 34 cases of recurrent P. vivax infection with a latency of 7–24 days (detected
in both genders and for different ages; z = −0.462, p = 0.643). Of them, one patient had a
total of three and another four P. vivax episodes. The recurrence of P. falciparum infections
also took place in both genders and all ages (z = −0.307, p = 0.758) (Figure S3).

Of the total number of patients with recurrent P. vivax infections (latency of 25–450 days),
88.2% were identified in the municipality of Puerto Cabezas, 4.4% in Rosita, and 3.1% in Waspam
in the RACCN (Figure S1). The rest were distributed among the remaining municipalities.

3.3. Proportion and Latency of P. vivax Recurrent Cases in Municipalities: Puerto Cabezas and
Rosita, RACCN (2013–2018)

The municipalities of Puerto Cabezas and Rosita each had a distinct number of cases
and proportion of P. vivax to P. falciparum infections during 2013–2018 (Figure 2a1,b1) and
were selected for a more detailed analysis. The percentage of patients with one or more
recurrent P. vivax infections with an interval of ≥25 days before R1 is illustrated in Table 2.
The nation as a whole and Puerto Cabezas had a similar pattern in the proportion of patients
with one or more recurrent cases (R1–R6) (χ2 = 1.7, p = 0.78), while, in Rosita, >90% of
patients had only one P. vivax recurrent episode. Contrarily, in both municipalities, patients
with recurrence of P. falciparum tended to have only one homologous recurrent infection.

During 2013–2018, the municipality of Rosita accumulated 10.5% of total malaria cases
in Nicaragua. Of these, 66.5% corresponded to P. vivax and 33% to P. falciparum, with
0.4% being mixed infections. Of the P. vivax cases, 82% were reported for the mestizo
population, followed by 13% for the Miskitos and 4.9% for the Mayangnas. Of all malaria
cases in Rosita, 90% were detected by passive surveillance, with 45.5% corresponding to
women and 54.5% to men. On the other hand, 67.6% of the total number of malaria cases in
Nicaragua from 2013 to 2018 was located in the municipality of Puerto Cabezas, RACCN.
Of these, 91.5% were triggered by P. vivax, 8.1% by P. falciparum, and 0.3% by mixed species.
Passive and active surveillance strategies detected 63% and 37% of malaria recurrent cases,
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respectively, and 50.7% were found in women and 49.2% in men, and 95% of patients were
Miskitos (the predominant ethnic group in the region).

Figure 2. P. vivax cases per year and the quantity of patients with recurrent P. vivax infection (R1) in two
municipalities of RACCN, Nicaragua, from 2013 to 2018: (a) Rosita, (b) Puerto Cabezas. In (a1,b1), the
number of total cases per municipality and proportion of P. vivax cases are indicated. Cases per year:
Puerto Cabezas (2013 = 145 cases, 2014 = 133, 2015 = 588, 2016 = 2117, 2017 = 7049, 2018 = 12,683); Rosita
(2013 = 221 cases, 2014 = 239, 2015 = 310, 2016 = 834, 2017 = 575, 2018 = 413). In (a2,b2), the P. vivax
recurrent cases are represented as a percentage of the total number of P. vivax patients. Recurrence is
illustrated according to latency (between the primary and first recurrent (R1) blood infection): from 25 to
450 days (in brown, the highest number of patients with recurrent infections) and over 450 days (in blue).
For years 2014–2016, the proportion of P. vivax recurrent cases was higher in Rosita than in Puerto Cabezas
(2014: χ2 = 4.6, p = 0.031; 2015: χ2 = 5.9, p = 0.015; 2016: χ2 = 67.5, p < 0.0001), and, for 2018, the percentage
was higher * in Puerto Cabezas than in Rosita (χ2 = 26.1, p < 0.0001).

Table 2. Percentage of patients with recurrent P. vivax infections (with an interval ≥25 days between
the primary infection and the first recurrence) versus total patients with recurrent infections in
Nicaragua and municipalities of RACCN during the period of 2013–2018.

Number of P. vivax Infections Nationwide (%)
n = 3163 Patients

RACCN, Puerto Cabezas (%)
n = 2789 Patients

RACCN, Rosita (%)
n = 139 Patients

2 77.2 75.3 90.7
3 16.7 17.9 7.2
4 4 4.4 2.1
5 1.2 1.3 0.7
6 0.6 0.7 -
7 0.09 0.1 -

RACCN, North Caribbean Coast Autonomous Region. The frequencies of patients with different recurrent
infections between Puerto Cabezas and Rosita were different (χ2 = 14.1, p = 0.006), but there was no difference
between data nationwide versus data for Puerto Cabezas (χ2 = 1.71, p = 0.78).

In Rosita, 185 patients had at least one recurrent infection by a Plasmodium species
25–450 days after the primary blood infection. Of such patients, 66.4% displayed a recur-
rence of P. vivax, and 8.9% of them suffered from a P. falciparum infection. Only three had a
mixed infection (Pv–Pf ), considering PI or R1. Of the 2702 patients from Puerto Cabezas
with at least one recurrence of a Plasmodium infection that occurred 25–450 days after the
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primary blood infection, 91% of recurrences were produced by P. vivax. Additionally, 2.2%
of those patients with recurrent P. vivax infections suffered from a P. falciparum infection at
some point during the period under study.

Figure 2 portrays the number of P. vivax cases and the proportion of recurrent versus
total P. vivax cases categorized by year. In Rosita, during 2013–2015, P. vivax predominated
(91–95%), and, in 2016–2018, the number of cases increased, but the proportion of P. vivax
cases decreased to 64, 50, and 65% each year, respectively (Figure 2a1). While Puerto
Cabezas had fewer malaria cases than Rosita in 2013 and 2014 (145 vs. 221 and 133 vs. 239,
respectively), the number of cases in Puerto Cabezas increased to 588 in 2015 and to 12,683
by 2018. The percentage of P. vivax infections in Puerto Cabezas in 2015–2018 varied from
83 to 94% of total malaria cases (Figure 2b1).

Recurrence with a latency of 25–450 days ranged from 1.8 to 7% of total P. vivax
cases in Rosita (Figure 2a2) and from 0.8 to 14.5% in Puerto Cabezas (Figure 2b2). The
highest proportion of recurrences was detected in 2017 in Rosita, and it was similar to the
proportion in Puerto Cabezas. In this municipality, the rate of recurrent cases increased
with the number of P. vivax cases, especially from 2016 to 2018 (χ2 = 367.8, p < 0.0001),
while, in Rosita, this tendency was not observed (χ2 = 6.9, p = 0.13).

For the entire period and for P. vivax affected population, the proportion of recurrent
infections R1 with latency of 25–450 days was higher in Puerto Cabezas (10.8%, n = 22,715)
than in Rosita (4.8%, n = 2593; χ2 = 92.5, p < 0.0001).

3.4. Temporal Distribution of First Recurrent Episodes (by the Latency) and Total P. vivax
Infections in Rosita and Puerto Cabezas, RACCN

The number of P. vivax cases and the recurrent episodes (by their latency) were ac-
cumulated on a monthly basis and plotted. It was observed that the height and width
of transmission peaks varied each year and between municipalities. In Rosita, P. vivax
cases were low during January–June 2015; after that, the transmission season began and,
in August, reached a plateau and presented some fluctuations that lasted until January
2016. In the same year, in September, another sharp peak of cases was observed; then, the
number of cases descended gradually to a moderate level for three months (from December
2016 to February 2017). In April 2017, the cases decreased to the lowest number (Figure 3a).
Afterward, the number of cases per month was low and fluctuated over time. Regardless of
the number of recurrent infections (R1), a stippling pattern was apparent, with a slope from
one transmission peak to the next one, which is most evident from 2015 to 2017 (Figure 3a).
In Puerto Cabezas, P. vivax cases increased discretely in August–December 2015, rising even
more after June 2016, with a plateau that continued until June 2017. Afterwards, the cases
increased rapidly, presenting a peak in December that, in the following month, decreased
to a moderate level which it maintained until April 2018, after which, in May, it decreased.
Again, in June, the cases increased and reached a peak in October. The cases decreased in
December, the last month analyzed. In this municipality, the recurrent infections formed a
stippling pattern (as found in Rosita), which normally emerged from the peaks of cases to
beyond next peak. The recurrent cases of all intervals increased with transmission in the
latter years. Indeed, a very crowded dotting pattern resulted for 2017–2018 when plotting
only R1 cases (about 73% of all recurrent cases detected). When transmission approached
its peak in November 2017, 1400 P. vivax cases occurred in just one month: four times more
than in the previous year.
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Figure 3. Portrayal of the temporal distribution (grouped by month) of total P. vivax infections from
2013 to 2018 (brown line), the first recurrent P. vivax infections with a latency of 25–450 days (blue
diamonds). The diamonds are placed according to the interval time (in days) of the first recurrent
infection after the primary infection. (a) Rosita; (b) Puerto Cabezas. R1 depicts 91.8% and 73.6% of
all recurrent cases in patients affected by P. vivax and latency of 25–2450 in R1 in Rosita and Puerto
Cabezas, respectively. Black arrows point out the extension of main transmission peaks.

Comparison of the frequencies of recurrent cases categorized as short (25–180 days) or
as long (181–450 days) latency that occurred during the dry and rainy seasons, comprising
the high transmission peaks in Rosita and Puerto Cabezas, was carried out (Figure 4,
Table 3a,b). In both municipalities, when the high malaria transmission season took place,
recurrent cases of both latency periods were found to fluctuate across time (Figure 4). In
Rosita, during the rainy season of 2016 and 2017, a higher proportion of recurrent cases of
long latency than of short latency was detected (Table 3a). For the same years and during
the dry season, an opposite pattern was observed; a higher proportion of recurrences of
short latency than of long latency was estimated. In Puerto Cabezas, during the period of
the highest transmission in 2017, 52.6% of recurrent cases were of short latency, and, in the
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next period, this proportion increased to 65%. It was observed that moderate transmission
was maintained until April the next year (2018) (Figure 3b, Table 3b). In the following
period, the proportion of short versus long recurrent cases was inverted; the long-latency
ones increased to 65% (Table 3b). In Rosita and Puerto Cabezas and for all periods analyzed,
P. vivax primary cases linked to posterior recurrence were detected at different proportions,
and the overall proportion was higher for Puerto Cabezas (χ2 = 150.4, p < 0.0001; Table 3a,b).
Moreover, the higher number of those cases coincided with the period of the maximal
number of P. vivax cases recorded (Figure 4).

Figure 4. Dynamics of short- and long-latency P. vivax recurrent cases (R1) and for primary infections
(PI, only those connected to posterior recurrent episodes) in Rosita (a) and Puerto Cabezas (b), RACCN,
Nicaragua. In both municipalities, recurrent cases with short (25–180 days) or long (181–450 days)
latency were present before and/or during the peak of transmission with certain alternation at some
time periods. The transmission peak taking place in 2018 was not evaluated, since at least a one-year
window ahead is required (2019 malaria cases). Grey arrows point out the peaks of transmission drawn
in Figure 3.

No differences were detected in the distribution of days of latency within 25–450 days
between R1 cases from Puerto Cabezas and Rosita (z = 0.44, p = 0.65) nor between genders
(χ2 = 0.20, p = 0 0.64). Regarding age, the female group from Puerto Cabezas was older
when compared to that from Rosita (Rosita: n = 61, median = 19/IQR 14–16 vs. Puerto
Cabezas: n = 1265, median = 23/IQR 15–35; z = −2.479, p = 0.013).
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Table 3. (a) Comparison of P. vivax short and long latency recurrent cases and primary cases linked
to recurrence between rainy and dry seasons in Rosita, RACCN, Nicaragua (June 2015–November
2017); (b) Comparison of P. vivax short and long latency recurrent cases and primary cases linked
to recurrence between rainy and dry seasons in Puerto Cabezas, RACCN, Nicaragua (December
2016–November 2018).

(a)

Parameters

Season/Period

Statistics (Comparing
All Groups)

Rain Dry Rain Dry Rain

June–November
2015

December
2015–May 2016

June–November
2016

December
2016–May 2017

June–November
2017

Number of P. vivax cases 216 302 533 241 338
χ2 = 9.6, p = 0.046Linked to recurrent

patients (%) 8.3 3.9 7 3 3.7

Number and latency of R1:

χ2 = 11.04,
p = 0.026

n 6 9 21 28 13
Short: 25–180 days

(%) 66.6 88.8 33.3 71.4 15.3

Long: 181–450 days (%) 33.3 11.2 66.7 28.6 84.7

Statistics:
χ2 = 7.7, p = 0.005 χ2 = 16.6, p < 0.0001

χ2 = 1.1, p = 0.69 χ2 = 9.03, p = 0.007

(b)

Parameters

Season/Period

Statistics (Comparing
All Groups)

Dry Rain Dry Rain

December
2016–May 2017

June–November
2017

December
2017–May 2018 June–November 2018

Number of P. vivax cases 1439 4251 5062 n.d.
χ2 = 76.7, p < 0.0001Linked to recurrent

patients (%) 20 20 14 * n.d.

Number and latency of R1:

χ2 = 211.8, p < 0.0001

n 142 325 598 1111
Short: 25–180 days (%) 64.7 52.6 65 35
Long: 181–450 days (%) 35.3 47.4 35 65

Statistics:
χ2 = 5.9, p = 0.014 χ2 = 132.2, p < 0.0001

χ2 = 10.1, p = 0.001

For latency of R1, only significant differences between periods are indicated. For the period June–November
2018, the number of P. vivax cases linked to upcoming recurrent cases was not possible to determine (not
determined = n.d.), information of recurrent cases for 2019 is not included. The number of recurrent cases was
calculated for the same period as they were mostly linked to primary cases that occurred in 2017. * numbers might
be underestimated as no information from 2019 was included in the analysis.

3.5. Parasitemia (Parasites/µL) in Patients with Recurrent P. vivax Infections

From the total P. vivax recurrent patients with a latency of 25–450 days, 73% and 80%
had records of parasite density for the primary and R1 cases, respectively. These data were
registered for years 2017 and 2018 only, and the vast majority (>94%) of cases with a recur-
rent P. vivax infection and parasite density were from Puerto Cabezas, RACCN. Spearman’s
rho value between parasitemia in PI or R1 infections and age was close to zero (n = 1986;
Spearman’s rho = −0.06; p = 0.029). Additionally, there was a poor positive correlation
between parasitemia in the P. vivax primary infection and the days with symptoms prior to
diagnosis (n = 1903; Spearman’s rho = 0.209; p < 0.001). Moreover, parasitemia in R1 and
the latency of the same had a negative and very low value for Spearman’s rho = −0.109
(n = 2123, p < 0.001).

Cumulative data of parasite densities for primary and recurrent P. vivax infections
are depicted in Figure 5. A parasite density of higher than 10,000 parasites/µL was
more frequent in R1 (n = 2123, 19%), R2 (n = 545, 9.8%), and R3 (n = 312, 16.2%) than
in PI (n = 37, 3.7%). Therefore, recurrent infections (R1–R3) exhibited a higher median
for parasite density than the primary infections (Figure 5). Regardless of the latency, a
significant difference was detected between groups (Kruskal–Wallis: χ2 (5) = 79.7, p < 0.001).
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Figure 5. Distribution of P. vivax parasitemia (parasites/µL) in relation to the primary and recurrent
blood infections in patients from Puerto Cabezas, RACCN, Nicaragua. Aggregated data of the primary
infection (n = 1986) and recurrent infections, R1 (n = 2123), R2 (n = 545), R3 (n = 132), R4 (n = 37), and R5
(n = 17). Kruskal–Wallis: χ2 (5) = 79.7, p < 0.001. The comparisons with significance at 95% are indicated
(*). PI (median = 1200, IQR 360–3120) versus R1 (median = 1740, IQR 660–3870); z = −7.78, p < 0.001. PI
vs. R2 (median = 1860, IQR 720–3750; z = −5.95, p < 0.0001), and PI vs. R3 (median = 1875, IQR 885–3990;
z = −3.76, p = 0.0002).

Furthermore, a poor correlation was detected when comparing parasite density in the
primary and R1 infections (n = 1784, Spearman’s rho = 0.138; p < 0.0001), as well as between
R1 and R2 infections (n = 495, Spearman’s rho = 0.109, p = 0.015); instead, blobs of dots were
observed (Figure S5). At the individual level, the parasite density for PI and subsequent
recurrent infections showed no pattern (some examples are provided in Figure S6).

In regard to asymptomatic parasitemia, only 34 cases were categorized for primary
infections in P. vivax recurrent patients. Of the first recurrent infections (R1), there were 108
presumably asymptomatic cases versus 2015 symptomatic cases with parasitemia records;
the former displayed a lower density of parasites in the blood than the latter (median = 960
(IQR, 360–1830) versus 1800 (IQR, 690–3960) parasites/µL (z = 5.23, p < 0.0001).

For Rosita, parasite density was recorded in few PI cases (n = 23, median 2700, IQR
701–6045) and R1 episodes (n = 40, median 2108, IQR 693–3730); only the parasite density
of PI was higher than that from Puerto Cabezas (z = 2.74, p = 0.006), but no differences in
R1 were estimated (z = 0.22, p = 0.82).

3.6. Comparison of Recurrent P. vivax and P. falciparum Infections (25–450 Days) in RACCN
Municipalities: Puerto Cabezas and Rosita

Rosita depicted a lower rate of P. vivax cases (66.8%, n = 3881) than Puerto Cabezas
(94.5%, n = 24,036; χ2 = 3024, p < 0.0001). In Rosita, from the total recurrent cases with
a latency of 25–450 days (n = 185), 66.5% had homologous P. vivax infections while 8.6%
experienced homologous P. falciparum infections. Another 24.8% were presumably rein-
fections: 9.7% with a P. vivax recurrence after primary infection of P. falciparum and 15.1%



Int. J. Environ. Res. Public Health 2022, 19, 6195 12 of 18

vice versa (Figure S6a). Of patients in Rosita with a P. vivax primary infection, a second
episode occurred with P. vivax for ∼4.8%, and, in P. falciparum patients affected by a ho-
mologous species, recurrent cases were fewer (∼1.2%, n = 1288); χ2 = 30.8, p < 0.0001). In
Rosita, for the period 2016–2018, differences in the proportion of recurrent patients were
detected between P. vivax and P. falciparum (χ2 = 20.0; p < 0.0001); a mere subtraction of the
P. falciparum recurrent cases estimated that at least 60% of P. vivax recurrent cases of latency
within 25–450 days were not reinfections.

In Puerto Cabezas, from the total number of recurrent episodes R1 (n = 2702), P. vivax
recurrent patients accounted for 90.9%, while 0.4% of P. falciparum patients had a recurrent
infection. Patients with reinfections (caused by heterologous species) accounted for 8.5%;
5.5% involved P. falciparum primary infections followed by P. vivax, and 3% involved P.
vivax primary infections followed by P. falciparum (Figure S6b). In this municipality, the
number of patients diagnosed with primary and recurrent infections of P. vivax, 10.8%,
was higher than the number of patients with primary P. vivax and recurrent P. falciparum
infections (0.05%, n = 1321) (χ2 = 2560, p < 0.0001).

4. Discussion

The resurgence of parasitemia and malaria in a previously infected individual can
be due to reinfection, recrudescence, or relapse. Following the inoculation of P. vivax
sporozoites into a person by an Anophelese mosquito species, these cells eventually enter
the liver and, under certain circumstances, remain dormant in the form of hypnozoites.
This dormant stage of P. vivax may be activated weeks, months, or years later and, thus,
produce a new blood infection or a relapse episode [22]. PQ is the worldwide drug of
choice for treating P. vivax infections in order to prevent relapse episodes [3]. Adequate
doses and the completion of the treatment are key elements for reducing the frequency
of relapse in patients [23,24]. While malaria cases in Nicaragua were decreasing in 2006,
treatment based on chloroquine (25 mg/kg administered in 3 days) and PQ (0.5 mg/kg daily
given over 7 days) was implemented. Its delivery involved supervision and cooperation
of volunteer personnel from the communities (Col-vols) [25]. During the period herein
analyzed (2013–2018), an outbreak of P. vivax cases took place in Nicaragua, and P. vivax
infections exceeded those of P. falciparum, ranging from 71 to 98% of the total number of
infections every year [12].

Based on the present data, at least 13.4% of P. vivax cases recorded in 2013–2018
corresponded to recurrent episodes. Of the total first recurrent infections (R1), the ones
occurring 25–450 days (approximately 1–15 months) after the primary infection constituted
88%, with a median interval of 186 days (105–275). Findings from Central America support
the fact that recurrent episodes R1 of 25–450 days might be related to relapse episodes. In
this region, the latency from the primary infection to the first relapse is variable, comprising
short and long intervals [2]. In El Salvador, recurrent infections that were relapse episodes
apparently happened 1 to 14 months after the primary infection [7]. From 1998 to 2008, in
southern Mexico, a hypo-endemic region, 8% of P. vivax primary infections led to recurrent
infections. For the majority of cases, the time interval between these two infections was
4–52 weeks [8], similar to that found in the municipality of Rosita. According to the
current results and assuming that, in Nicaragua, recurrent cases of 25–450 days were
relapse episodes, the latency is probably not dependent on gender or age as no statistical
associations were detected.

The municipalities of Puerto Cabezas and Rosita in the RACCN each displayed a
distinct incidence of malaria. Puerto Cabezas was the site of 67.5% of the nationwide
malaria cases, 94% of which were due to P. vivax. In contrast, Rosita hosted 10.5% of the
nationwide malaria cases, with 66.5% due to P. vivax. The rate of recurrence of P. vivax
infections in either municipality was related to P. vivax transmission intensity. In this sense,
the highest proportion of first recurrent P. vivax episodes (with a latency of 25–450 days)
was 14.5% and 7% in Puerto Cabezas in 2018 and in Rosita in 2017, respectively, coinciding
with the high transmission intensity taking place the previous year. In Puerto Cabezas, the
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impact of the highest transmission peak observed in 2018, given by the number of cases,
might have been reflected in the next year. In this scenario, more than 80% of patients with
recurrent P. vivax infections seemed to receive a 7-day PQ treatment under supervision. An
increase in recurrent infections in the presence of an elevated level of transmission was
also observed in different geographical areas even with the use of PQ treatment, such as in
Oaxaca, Mexico [26].

In Puerto Cabezas and Rosita in the RACCN, malaria transmission is seasonal and fluctu-
ates over time. The main vector is An. albimanus, which is highly abundant during the rainy
season [17,27] and contributes to active malaria transmission, procreating hypnozoite carriers,
and preserving the genetic pool of parasites, as seems to be the case in other areas [6,8,10].
However, evidence of vector species that support the continuation of transmission during the
dry season when An. albimanus densities are considerably reduced is required. The fact that
hypnozoite carriers are highly generated during active transmission supports that recurrent
cases come from the activation of hypnozoites. In this study, relapses of long latency were
observed just before and in the first few months after transmission season begins, and those of
short latency were more frequent 1–2 months after transmission began, across this season and
until the middle of the dry season. The number of recurrent P. vivax infections, the wide-ranging
gradient of time intervals to relapse, and the temporal distribution (in the rainy and dry seasons)
guarantee year-round parasite transmission. Both short- and long-latency relapse episodes were
present during the dry season. Likewise, during this season in El Salvador, at least 60% of
patients with P. vivax symptomatic relapse episodes were present, according to estimates [10].
Short- and long-latency recurrent P. vivax infections at different rates might have sustained
transmission over time in Nicaragua.

Based on an analysis of malaria records in Iran, about 80–90% of malaria patients were
provided with a 14-day PQ treatment (1994–2001), resulting in 16–24% recurrence with a latency
from 3 to 18 months, found at a peak from 9 to 12 months [28]. A recent multicenter study
encompassing Afghanistan, Ethiopia, Indonesia, and Vietnam reported that patients given either
a 14- or 7-day treatment scheme had 2% versus 16% chance of relapse, respectively, within
12-month follow-up [29]. In the Americas, a total dose of 3.5 mg of PQ per kg of body weight
administered within 14 days is the most effective scheme, lowering to 10% the occurrence of
relapse in patients [5]. In Mexico (in Chiapas), with a supervised 14-day PQ treatment and a
12-month follow-up, 15% of patients had a relapse of long interval. In the same region, 50%
of patients that received single doses had one or more relapse episodes (at a wide range of
time intervals) after the primary infection [9]. In Suriname, South America, 10% and 30% of
recurrent P. vivax infections took place (before a three-month follow-up) subsequent to a 14- or
7-day treatment, respectively [30]. A study in Brazil described a higher frequency of relapse
episodes within a time interval of 25–100 days [31]. Upon reviewing 23,365 recorded cases of
malaria in 2009, relapse episodes were detected in 23% of the Brazilian patients, and these were
mostly with a short latency of 4–13 weeks (30–90 days) [32]. A 7- to 9-day PQ treatment is
recommended in this country [33], and 75% of patients reportedly complete the treatment [34].

It may not be possible to extrapolate the outcome of the 7-day treatment in South
America to Nicaragua, as both areas differ in their relapse temporality [2,6–9]. A limited
PQ treatment could be effective for diminishing short-term relapses while, at the same
time, compromising the reduction of long-term relapses [6,22]. In southern Mexico, a
14-day treatment prevented 100% of relapses before a 6-month follow-up and 86% from 6 to
12 months [9]. Cedillos et al. [6] reported that a 5-day PQ scheme mainly prevented relapse
episodes within the first 3 months. Globally, limited evidence exists on the effectiveness of
PQ administered for 7 days [5], and information is not available for Mesoamerica.

Because, in P. vivax, clinical immunity is acquired quickly [35,36] parasite density is
expected to be lower in relapse episodes compared to the primary infection, especially in
the event of genetically homologous infections, which often occur in low-endemic areas [8].
In contrast, parasitemia levels recorded in patients diagnosed in Puerto Cabezas point to a
higher parasite density in recurrent cases; however, these data cannot infer transmissibility
as no gametocyte densities were recorded. The lack of correlation between parasite density
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and the latency to relapse encountered in this study was reported earlier using the St.
Elizabeth strain; long latency seems not to favor the increase of parasite density [37]. In
southern Mexico (as in Nicaragua), parasitemia in R1 was not strongly associated with the
latency for this infection [9]. The lack or poor correlation between parasitemia and age
might mirror the effect of the recent malaria outbreak in Puerto Cabezas. In the current
contribution, the population of all ages was presenting symptomatic recurrent infections
due to P. vivax parasites. Even at an individual level, the parasite density seemed to vary
greatly from the first to fourth infections.

In addition, the level of parasitemia is apparently influenced by the opportune and
effectiveness of the treatment. Patients without treatment can harbor a blood infection
for weeks or months as a chronic infection [38,39]. Furthermore, in endemic regions,
constant exposure to the parasite induces clinical immunity, meaning that asymptomatic
infections could possibly exceed symptomatic ones in some areas [40]. Fewer asymptomatic
cases were recorded in Nicaragua apparently with lower parasitemia than symptomatic
infections. Consequently, there was probably an additional burden of undiagnosed and
unrecorded asymptomatic recurrent infections. Parasitological and RDT tests are known to
commonly miss a proportion of submicroscopic parasitemia [40,41].

The present study might have discovered only a portion of the recurrent infections
in endemic areas of Nicaragua. There are few published molecular studies focusing on
an analysis of paired P. vivax samples in the Mesoamerican region. Whereas 89.7% and
37% of homologous and heterologous recurrent infections, respectively, had a latency of
31–448 days after the primary infection in southern Mexico, a longer interval characterized
most subsequent recurrent infections [8]. In Nicaragua, several genotypes were reported
for the blood stage antigen pvmsp142 [42] and the multidrug resistance gene pvmdr1 [43] in
samples collected during 2012–2013 when transmission was at a low level. This information
is useful as a baseline to elucidate persistent genotypes and to examine recurrent P. vivax
infections in the affected areas as part of surveillance strategies.

Unlike that which was reported previously [44,45], no relation existed between P. vivax
infections and recurrent P. falciparum infections. Given the similar rate of P. vivax and
P. falciparum infections in Rosita during 2016–2018, a more similar risk of reinfection was
assumed. Considering primary P. vivax infections that were followed by a recurrent
P. vivax (∼4.8%) or P. falciparum infection for (∼1.5%), the 65% P. vivax relapsing episodes
estimated in Rosita followed the previously reported pattern in Iran [28]. This is lower
than the 76% rate of recurrent P. vivax infections (as a function of total relapse episodes)
described in a study involving a diverse range of P. vivax endemic settings [46]. Since
P. vivax predominated in Puerto Cabezas, and transmission was high from 2015–2018,
reinfections should have been more numerous, as observed elsewhere in the face of elevated
transmission [47]. To understand transmission dynamics, therefore, it is necessary to
analyze infective bites, among other factors.

In Nicaragua, malaria is associated with extreme poverty, social inequity, and low
educational level, as well as the isolation of some ethnic groups [48,49]. Changes in socioe-
conomic factors triggered human displacement into areas with low malaria transmission
or none at all, thus, having poor antimalarial measures. This phenomenon might have
contributed to the resurgence and increase of malaria transmission; a large population
movement occurred within the RACCN from Waspam to Puerto Cabezas and also from
Honduras to Nicaragua just before the outbreak began. These two countries share the
Miskito ethnic region, the borders of which are geographically delimited by the Coco River;
however, there is free flow of the “Miskito” population [46]. Other factors identified previ-
ously were the high population density living in overcrowded situations in flood zones,
lack of surveillance on the border, the irregular service of the GISI network in 2012–2013,
and the limited involvement of the municipalities in malaria control measures [25,49].

Regarding the task of diminishing malaria transmission in Nicaragua, the combi-
nation of routine diagnosis, treatment of infected patients, and vector control may be
insufficient. Tracking recurrent P. vivax infections through surveillance strategies is highly
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recommended, as is an evaluation of the feasibility of employing a unique malaria iden-
tification technique, as previously suggested [33,50]. Since the reduction of transmission
will potentially require strategies beyond supervising the completion of treatment for 70%
of patients, alternatives must be considered, such as the improvement of supervised or
semi-supervised treatment strategies and post-infection monitoring with a parasitology
test applied monthly for up to 6 months [34].

The main problem with the PQ treatment is that it requires supervision, optimally, for
14 days. A possible alternative is tafenoquine (TQ), which can be given in a single dose
of 300 mg/kg. TQ showed similar efficacy as the 14-day PQ scheme (0.5 mg/Kg weight),
and no safety issues were detected [51]. TQ was recently approved by the FDA (https:
//www.fda.gov (accessed on 17 May 2022)) and TGA in Australia (https://www.tga.gov.au
(accessed on 17 May 2022)). However, its administration is limited to people over 16 years
of age [52]. It is necessary to assess the performance of TQ against long-term relapse
episodes, as well as the 7-day treatment with PQ in Mesoamerica. Mass treatments with
radical cures can be deployed in areas with substantial transmission to drastically decrease
P. vivax infections [53,54].

5. Conclusions

The analysis of malaria cases before and during the outbreak of P. vivax in Nicaragua
revealed that the enormous increase in recurrent P. vivax infections correlated with high
transmission intensity. In the municipalities of Rosita and Puerto Cabezas in the RACCN
region, both short- and long-latency relapse episodes (of 25–450 days) occurred throughout
the year. However, short-latency (25–180 days of latency) relapse episodes were more
evident during the dry season and those of long latency (181–450 days of latency) were
more obvious just before malaria transmission season began and across the rainy season.
The number of recurrent P. vivax infections, the wide range of latency to relapse lengths, and
the temporal distribution of such episodes favor the continuity of transmission. Although
there was a similar incidence of P. vivax and P. falciparum infections from 2016 to 2018 in
Rosita, 60% of recurrent cases within 25–450 days were apparently caused by the relapse of
a P. vivax primary infection. A higher estimate was reported in the systematic review by
Commons et al. [46]. The continuation of the observational analysis of the secondary source
of malaria records from the most affected areas of Nicaragua, such as Puerto Cabezas, might
contribute to the understanding of transmission dynamics of recurrent cases, improve the
recording of malaria cases, and direct anti-malarial actions. Parallel to vector control,
it is necessary to evaluate the effectiveness and compliance of the current treatment, as
well as the possible use of alternative drugs. Moreover, malaria prevention strategies and
surveillance of recurrent cases must be strengthened.
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