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Metalloporphyrins are structural analogs of heme and their potential use in the manage-
ment of neonatal hyperbilirubinemia has been the subject of considerable research for
more than three decades. The pharmacological basis for using this class of compounds to
control bilirubin levels is the targeted blockade of bilirubin production through the competi-
tive inhibition of heme oxygenase (HO), the rate-limiting enzyme in the bilirubin production
pathway. Ongoing research continues in the pursuit of identifying ideal metalloporphyrins,
which are safe and effective, by defining therapeutic windows and targeted interventions
for the treatment of excessive neonatal hyperbilirubinemia.
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INTRODUCTION
Metalloporphyrins (Mps) and their potential use in the man-
agement of neonatal hyperbilirubinemia has been the subject of
considerable research for more than three decades. The therapeu-
tic approach for using this class of anti-hyperbilirubinemia drugs
is the targeted blockade of bilirubin production through compet-
itive inhibition of heme oxygenase (HO), the key enzyme in the
heme degradative pathway (Tenhunen et al., 1968).

Neonatal jaundice is one of the most common problems for
newborn infants during the first weeks of life, affecting approx-
imately 60–70% of term babies and almost all premature babies
(American Academy of Pediatrics, 2004). Hyperbilirubinemia is
due to a transitional imbalance between bilirubin production and
elimination processes. To date, the most commonly used treat-
ments of pathologic bilirubin levels only remove bilirubin that has
already accumulated in the body, by initiating phototherapy or,
in the extreme cases, performing an exchange transfusion (Amer-
ican Academy of Pediatrics, 2004; Stevenson and Wong, 2010).
However, the total serum or plasma bilirubin (TB) concentration
at which to begin phototherapy is still controversial and difficult
to define to a precise number that can be applied universally to
all newborn infants. Instead, it differs according to age (term or
preterm), genetic, and ethnic backgrounds, hepatic conjugation
capacity, albumin binding, blood/tissue distribution of biliru-
bin, physiological homeostasis, presence of pre-existing hemolytic
conditions, and also individual susceptibility to bilirubin toxic-
ity. In addition, the use of intravenous immunoglobulin (IVIG)
has been shown to be effective in reducing TB levels in infants
with ABO hemolytic disease, reducing the degree of hemolysis by
stabilizing red blood cells (RBC; American Academy of Pediatrics,
2004). Adverse effects related to IVIG therapy include fever, allergic
reactions, rebound hemolysis, and fluid overload.

The pharmacologic use of Mps for controlling bilirubin pro-
duction rates may be strategically a more effective approach
(Drummond and Kappas, 1981, 1982a; Stevenson et al., 1989).

Its efficacy as a therapeutic and preventive treatment strategy in
the management of neonatal hyperbilirubinemia has been con-
firmed in a large number of animal and clinical studies. In spite of
this, Mps still have not left the clinical study stage for their actual
application in human neonates, mainly due to the photosensitizing
potential of these compounds. This property becomes particularly
problematic in preterm infants, a very vulnerable patient group,
with thin, transparent skin, reduced antioxidant capacity, a high
surface to volume ratio, and frequent potential exposure to pho-
totherapy (Morris et al., 2008). Moreover, a selective review of
only available randomized, controlled clinical trials, comparing
Mp treatment with placebo or conventional treatments, shows
that the combined number of subjects studied is actually relatively
small and the authors conclude that more studies are still needed to
evaluate the reduction of bilirubin-induced neurological dysfunc-
tion (BIND) compared to other treatments (Suresh et al., 2003).
Also the short- and long-term effects of Mps, such as the possible
release, accumulation, and toxicity of the metal moiety (Hiles,
1974; Maines, 1992), and effects on oxygen radical diseases of
prematurity (e.g., bronchopulmonary dysplasia, intraventricular
hemorrhage, patent ductus arteriosus, retinopathy of prematu-
rity, and necrotizing enterocolitis) need to be further elucidated
(Suresh et al., 2003).

Ongoing research continues in the pursuit of identifying ideal
Mps, and, most importantly, of allaying concerns about toxic-
ity, through defining therapeutic windows, and safe treatment
strategies of potential candidate compounds.

NEONATAL HYPERBILIRUBINEMIA
When bilirubin levels in circulation become excessive, it may lead
to bilirubin deposition in the brain, and if left untreated, cause
severe and permanent neurological damage (or BIND; Penn et al.,
1994; Gourley, 1997; Govaert et al., 2003; Stevenson et al., 2011).
Bilirubin derives from the degradation of heme, the prosthetic
group of hemoglobin, and other hemoproteins, which occurs
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primarily in the spleen and liver. In this enzymatic pathway, HO
catalyzes the rate-limiting oxidation of heme to release equimo-
lar amounts of free iron (Fe2+), carbon monoxide (CO), and
biliverdin. The latter is subsequently and rapidly reduced to biliru-
bin by biliverdin reductase. Both reactions require NADPH as a
reducing agent (Tenhunen et al., 1968, 1970; Figure 1).

Once in circulation, bilirubin becomes bound to albumin and
is then transported to the liver, where it is conjugated to mono-
and diglucuronic acids by uridine diphosphoglucuronate glu-
curonosyltransferase (UGT). Being water-soluble, the conjugated
bilirubin is excreted in the bile and finally eliminated from the body
through the bowel. However, the glucuronides are relatively unsta-
ble and can be hydrolyzed to unconjugated bilirubin, which can
be absorbed by the intestinal mucosa, and re-enters the circulation
(enterohepatic circulation). Besides increased enterohepatic reab-
sorption of bilirubin, decreased hepatic uptake, and conjugation,
are the major factors contributing to the impaired elimination of
bilirubin observed after birth (Kaplan et al., 2011).

THE RATIONALE FOR THE USE OF METALLOPORPHYRINS
The bilirubin production rate of newborn infants is normally two
to three times higher than that of adults, which is mainly due to an

increased circulating RBC mass and a shortened RBC lifespan, and
hence an increase in RBC turnover (Stevenson et al., 1994). Since
all newborn infants have impaired bilirubin clearance, any con-
dition causing an increased production rate, such as hemolysis,
represents a serious risk. This unconjugated hyperbilirubinemia
occurs primarily in infants with isoimmune hemolytic diseases
caused by blood group incompatibilities between mother and
fetus, such as Rh isoimmunization and ABO incompatibility, or
by glucose-6-phosphate dehydrogenase (G6PD) deficiency. When
uncontrolled, it can lead to the development BIND. Normally,
peak TB concentrations in term infants range from 5 to 6 mg/dL
(86–103 μmol/L) at 48–120 h after birth in Caucasian and African-
American infants and from 10 to 14 mg/dL (171–239 μmol/L)
at 72–120 h after birth in Asian-American infants. In premature
infants, TB levels peak by the fifth day of life, reaching 10–12 mg/dL
(171–205 μmol/L; Kaplan et al., 2011).

In addition to an immature and temporally insufficient biliru-
bin clearance and a physiological increased production in newborn
infants, genetic vulnerabilities, such as polymorphisms in the
UGT1A1 promoter (low bilirubin eliminator) and/or in the HO-
1 promoter (less GT repeats equals high bilirubin producer) and
G6PD deficiency (high bilirubin producer) can place the infant at

FIGURE 1 | Heme degradation pathway. The turnover of hemoglobin (Hb)
and other hemoproteins yields heme. This heme is metabolized to equimolar
quantities of carbon monoxide (CO), iron (Fe2+), and biliverdin. Biliverdin is
subsequently reduced to form bilirubin. CO is bound to circulating red blood

cells (RBC) and is excreted through the lungs, where it can be measured as
the rate of total body CO excretion (VeCO) or as a concentration in end-tidal
breath, corrected for ambient CO (ETCOc). Modified from Vreman et al.
(2001).
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high risk for developing hyperbilirubinemia (Cohen et al., 2010).
The use of CO detection technologies, e.g., end-tidal breath CO
measurements, corrected for ambient CO (ETCOc; Vreman et al.,
1994, 1996, 1999), or total body excretion rates of CO (VeCO), can
provide estimates of total CO production, which is a direct index
of bilirubin production (Stevenson et al., 1979) under steady state
conditions, where the CO produced from other sources (15–20%),
such as lipid peroxidation or photo-oxidation, are controlled for
(Dercho et al., 2006). Thus, the antenatal diagnoses of genetic pre-
dispositions and the use of ETCOc could allow the identification
of high bilirubin producers, who could be targeted for treatment
with Mps before TB levels become excessive. No clinical device
is presently commercially available. However, a prototype instru-
ment (Co-Sense, Capnia, Inc., Palo Alto, CA, USA) is currently
evaluated for use in clinical studies.

Although phototherapy can be regarded as a “drug” for the
treatment of hyperbilirubinemia, its therapeutic use not only
differs from “classic” pharmaceuticals, but also has several char-
acteristic limitations. Ideally, phototherapy devices should deliver
light with: an emission spectrum between 400 and 520 nm (blue–
green; Vreman et al., 2004); an irradiance footprint which exposes
at least one entire horizontal body surface plane; an irradiance
(intensity) level of ≥30 μW/cm2/nm; and an optimized duration
of exposure (American Academy of Pediatrics, 2004; Maisels and
McDonagh, 2008). Compared to a traditional drug, photother-
apy is a non-specific, instead of a targeted, treatment strategy
and it only removes bilirubin, which already has been formed.
Moreover, its therapeutic dose is not a fixed number, but a still
debated light intensity range, which is dependent on an accurate
measurement of the irradiance of a given light source, often prob-
lematic itself (Vreman et al., 2008). Also, the spectral characteristics
of phototherapy devices are quite different and may account for
variations in efficacy and safety (Vreman et al., 2008).

Nonetheless, phototherapy is generally considered safe, effec-
tive, and simple to administer and therefore used routinely in
the clinical setting. Recently, however, concerns have been raised
about its safe use in extremely low birth weight (ELBW) infants
(501–750 g). Because their antioxidant capacity is often limited,
phototherapy has been shown to promote oxidative stress in this
patient group (Gathwala and Sharma, 2002). Evidence of injuri-
ous effects of phototherapy has been found in a National Institute
of Child Health and Development trial comparing the use of
aggressive vs. conservative phototherapy. Although there was a
significant decrease in neurodevelopmental impairment in ELBW
infants, post hoc analyses revealed an increased mortality in this
cohort, which did not reach statistical significance (Morris et al.,
2008). Moreover, some studies have reported that re-opening
of the ductus arteriosus has been associated with phototherapy
use for premature infants (Barefield et al., 1993; Benders et al.,
1999);whereas, others failed to show this correlation (Scheidt et al.,
1987; Travadi et al., 2006).

A more strategic approach may be through the direct inhibi-
tion of bilirubin production using Mps. Targeting high bilirubin
producers (such as infants with hemolytic diseases, the most
common cause of pathological unconjugated hyperbilirubinemia)
would be the most beneficial application for Mps, and there-
fore may reduce or eliminate the need for exchange transfusion

in this infant population. The effectiveness in reducing severe
hemolytic hyperbilirubinemia and thereby preventing the need
for an exchange transfusion has been described in a case report
using SnMP (Reddy et al., 2003). Additionally, phototherapy has
been shown to have limited effect in modulating elevated TB levels
due to Coombs-positive hemolytic disease and cannot be consid-
ered as a substitute for exchange transfusion (Maurer et al., 1985).
It is also conceivable that hyperbilirubinemia treatment with Mps
could be beneficial for premature infants, which have very thin
skin, thus light can penetrate deeper into tissue and cause photo-
oxidative injury (Vreman et al., 2004; Hintz et al., 2011). This
effect might be reduced with Mps treatment, if they are used alone
and not in combination with phototherapy. A clinical study by
Valaes et al. (1994), using SnMP to control TB in premature babies
described no adverse effects of SnMP treatment alone (without
phototherapy). However, to state unequivocally that the use of Mps
is advantageous over phototherapy for these ELBW infants, who
appear to be more sensitive to the adverse effects of phototherapy,
is complex and mostly speculative.

PHARMACODYNAMICS OF METALLOPORPHYRINS
Porphyrins (Greek for “purple”) are a class of tetrapyrrole macro-
cycles with a skeleton of 16-atom rings containing four nitrogen
atoms. The porphine free base has 11 double bounds and can eas-
ily be transformed into an Mp by replacing the inner two pyrrole
protons with a metal ion. The porphyrin ring itself has a pla-
nar structure due to the high number of double bonds (Fleischer,
1970). Depending on the side chains and central metal ion, a large
number and variety of Mps are possible (Figure 2).

The inhibition of HO by Mps was initially reported in 1981 by
Maines (1981) and Drummond and Kappas (1981). Zinc (Drum-
mond and Kappas, 1981; Maines, 1981), tin (Drummond and
Kappas, 1981; Maines, 1981), and manganese protoporphyrin
(Drummond and Kappas, 1981; ZnPP, SnPP, MnPP, respectively)
were the first Mps observed to be competitive inhibitors for
HO in the liver (Drummond and Kappas, 1981; Maines, 1981),

FIGURE 2 | Ribbon diagram of HO-1. The N-terminus is blue and the
C-terminus is red, with green in the middle. Heme is shown by the arrow.
Adapted from Schuller et al. (1999).
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spleen (Drummond and Kappas, 1981; Maines, 1981), kidney
(Drummond and Kappas, 1981; Maines, 1981), and skin tissue
(Drummond and Kappas, 1981) in vitro and in vivo. These
compounds have a much higher binding affinity (e.g., SnPP:
K i = 0.011 μM in rat spleen tissue; Drummond and Kappas,
1981) than heme to HO-1 and HO-2 (K m = 0.24 and 0.67 μM,
respectively; Ryter et al., 2006). They are not oxidatively degraded
because they have no oxygen-binding capacity. Chromium pro-
toporphyrin (CrPP) has also been shown to inhibit HO activity
in vitro (rat and human spleen) and in vivo (rat liver and spleen)
and thus prevent hyperbilirubinemia in neonatal rats (Drummond
and Kappas, 1982b). Protoporphyrins with cobalt (Co; Drum-
mond and Kappas, 1981; Maines, 1981), iron (Fe; Drummond and
Kappas, 1981; Maines, 1981), or cadmium (Cd; Drummond and
Kappas, 1981) as central metals have been found to induce HO; but
only iron containing Mps, such as heme (FePP), act as actual sub-
strates. CoPP is a unique Mp exhibiting a dualism: significantly
inhibiting HO activity in vitro (Maines, 1981; Yoshinaga et al.,
1982) and enhancing HO activity in vivo (Drummond and Kap-
pas, 1981; Maines, 1981) due to its strong activation of HO-1 gene
expression (Maines, 1981; Kappas and Drummond, 1986; Shan
et al., 2006). Subsequent studies showed that iron deuteropor-
phyrin is also significantly metabolized by liver tissue homogenates
in an HO-like mechanism (Vreman et al., 1993). In contrast, HO
activity is largely unaffected by protoporphyrins with nickel (Ni),
copper (Cu), and magnesium (Mg) as central atoms (Drummond
and Kappas, 1981).

SnPP has been shown to be effective toward inhibiting HO
activity in vivo and in vitro, preventing the development of
neonatal hyperbilirubinemia shortly after birth in the rat (Drum-
mond and Kappas, 1981, 1982a) and rhesus neonate (Cornelius
and Rodgers, 1984). A decrease in TB has also been demon-
strated in adult mice with congenital forms of hemolytic anemia
(Sassa et al., 1983), in the postnatal suckling rat with heme- or
δ-aminolevulinic acid-induced hyperbilirubinemia (Drummond
and Kappas, 1984), in the bile-duct ligated rat (Kappas et al., 1984;
McMillan et al., 1987), and in a number of clinical studies with
human adults (Anderson et al., 1986; Berglund et al., 1988, 1990)
or newborns (Kappas et al., 1988). However, studies showing that
SnPP is a photosensitizer of bilirubin destruction in vitro (McDon-
agh and Palma, 1985), and phototoxic in vivo (Hintz et al., 1990)
led to its abandonment for use in human infants. Nonetheless,
it should be noted that the photosensitizing properties of SnPP
can be advantageous, such as in the photodynamic treatment of
psoriasis (Emtestam et al., 1989).

The naturally occurring ZnPP appeared to be especially attrac-
tive as it is relatively inert to light activation and thus has no
photosensitizing/phototoxic effects in vivo (Hintz et al., 1990;
Labbe et al., 1999). Early studies by Maines showed that the sub-
cutaneous (s.c.) application of ZnPP at a dose of 40 μmol/kg body
weight (BW) was effective in inhibiting HO activity in neona-
tal rats and neonatal rhesus monkeys (Maines, 1981; Qato and
Maines, 1985). The same ZnPP dose given intravenously (i.v.) also
significantly reduced total body VeCO in rhesus neonates (Rodgers
et al., 1990), and, in the newborn rhesus with iatrogenic hemolysis,
VeCO, carboxyhemoglobin, TB, and spleen HO activity (Vreman
et al., 1990b).

Further research demonstrated that tin mesoporphyrin (SnMP;
Drummond et al., 1987), chromium mesoporphyrin (CrMP; Vre-
man et al., 1993), and zinc deuteroporphyrin IX bis glycol (ZnBG;
Martasek et al., 1988; Chernick et al., 1989; Vreman et al., 1991)
are also attractive candidates for use in the treatment of neonatal
jaundice primarily due to their high potency.

Three HO isoenzymes have been identified to date (Maines
et al., 1986; Cruse and Maines, 1988; McCoubrey and Maines,
1994). Whereas HO-1 and HO-2 actively catalyze heme to
biliverdin and CO, HO-3 is regarded as a pseudogene of HO-
2 and its functional activity is still uncertain (McCoubrey et al.,
1997; Ryter et al., 2006).

The HO-2 isoform (∼36 kDa) is constitutively expressed in all
tissues, primarily expressed in the brain and highest in the testes
(Trakshel et al., 1986, 1988). Conversely, under homeostatic con-
ditions, most tissues express HO-1 at relatively low levels, but can
respond to stress with rapid transcriptional activation of the HO-1
gene. The spleen and reticuloendothelial cells in the liver and bone
marrow degrade senescent RBCs, and thus highly express HO-1
under basal conditions (Ryter et al., 2006). The catalytic pocket of
the HO-1 enzyme with its substrate heme is shown in Figure 3.

Different enzyme kinetics and heme K m values are known for
HO-1 and HO-2 (K m = 0.24 and 0.67 μM, respectively; Maines
et al., 1986; Ryter et al., 2006) and make varying interactions
of Mps with HO-1 and HO-2 very plausible. A recent study by
Wong et al. (2011) characterized the in vitro potency of a vari-
ety of Mps toward inhibiting HO-1 and HO-2 isoenzymes, using
rat and mouse spleen and brain tissue, respectively, as sources of
the isoenzymes. SnMP, CrMP, and ZnBG were shown to have the
highest potency toward suppression of HO-1 and HO-2 activities.
Interestingly, all Mps more selectively inhibit the HO-2 isoenzyme
over HO-1. However, CrMP had the highest selectivity toward
HO-1 inhibition of all Mps tested, followed by ZnBG and ZnPP.
SnPP appeared to be most selective for HO-2. It is conceivable
that inhibition of the inducible HO-1 is preferable in a clinical
setting because its activity increases in response to hemolytic con-
ditions. Moreover, a strong and a prolonged inhibition of HO-2
may be detrimental as HO-2 is the predominant form in most
organs under homeostatic conditions. An early report using rats
also describes a selectivity of SnPP toward HO-2 inhibition in
addition to a dramatic disruption of the integrity of the HO-2
protein, which may add to the significant suppression of TB for-
mation by SnPP (Maines and Trakshel, 1992a). Similar results
regarding the potency of various Mps have also been described by
Vreman et al. (1993) comparing their efficacy to inhibit rat liver
HO activity, with HO-1 and HO-2 equally contributing to the total
HO activity under non-stimulated conditions. Whereas CrMP was
most effective in inhibiting total liver HO activity in vitro, SnPP,
SnMP, ZnPP, and ZnMP appeared nearly equally potent.

In vivo, the efficacy of Mps is dependent on several factors: route
of administration, plasma and tissue distribution, and also under-
lies species differences. Although ZnPP appeared less potent than
SnPP, both Mps effectively suppressed HO activity in liver, spleen,
kidney (ZnPP only rat tissue), and TB levels with a long duration of
action (ZnPP up to 12 days in rhesus neonates; SnPP up to 42 days
in rats; Drummond and Kappas, 1981, 1982a; Maines, 1981; Cor-
nelius and Rodgers, 1984; Qato and Maines, 1985; Rodgers et al.,
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FIGURE 3 | Basic porphyrin IX structure with central metal and two ring substitution sites (R). Oxidation of susceptible porphyrins, catalyzed by HO,
occurs at the α-position to yield a tetrapyrrole. Modified from Vreman et al. (2001).

1990). Variations of the porphyrin side chain enhanced the effec-
tiveness toward HO inhibition 10-fold for SnMP compared to
SnPP (Drummond et al., 1987). However, ZnBG seems to be one
of the most potent inhibitors in vivo, but with a short duration of
action (Vreman et al., 1991; He et al., 2011).

Besides having HO isoform selectivity, Mps also differ in tis-
sue distribution, potency, photosensitivity, and other side effects.
Although the bioavailability and photosensitivity of Mps are
dependent on certain aspects of the Mps structure, as the
hydrophilicity of the side chains, and the electronic configura-
tion of the metal atom, in general, there is no set pattern, which
can allow one to predict the behavior of a given Mp in vivo.

CLINICAL STUDIES
To date, clinical efficacy studies have only been performed with
SnPP and later with SnMP. An early human trial with a limited
number of adult subjects (n = 6) given SnPP (0.25–2.0 μmol/kg
BW i.v.) demonstrated a decrease in TB from 7 to 23% in patients
with cholestasis secondary to primary biliary cirrhosis, and 29–
43% in patients with Gilbert syndrome (Anderson et al., 1986).
However, some treated subjects (4/28 normal subjects, and 3
with hyperbilirubinemia) developed mild to moderate transient

erythema and conjunctival irritation after sunlight exposure. In
term newborns with hyperbilirubinemia due to direct Coombs-
positive ABO incompatibility, SnPP diminished TB compared
to control infants with significant differences in the incremen-
tal changes in TB concentration after two or three intramuscular
(i.m.) doses of 0.75 μmol/kg BW. The effect of a single dose of
0.5 μmol SnPP/kg BW did not reach statistical significance. The
need for phototherapy was reduced in the SnPP-treatment group,
but following light treatment, 2 of 24 infants treated with SnPP
developed transient erythema (Kappas et al., 1988). In several
other studies with healthy human subjects or patients with hepatic
dysfunction affecting heme metabolism or bilirubin conjugation,
SnPP administration was described as being relatively innocuous,
despite causing transient photosensitizing effects after single or
multiple applications (Kappas et al., 1984; Berglund et al., 1988,
1990; Galbraith et al., 1992).

Since SnMP has been shown to be at least 10-fold more potent
than SnPP in inhibiting HO activity (Drummond et al., 1987),
clinical studies were pursued with the expectation that its high
potency would allow for its use at much lower doses, and there-
fore its photosensitizing effects would be minimized or maybe
even eliminated. In spite of this rationale, SnMP was used in a
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dose of 1–6 μmol/kg BW, which was equal to or higher than the
dose of SnPP used in earlier studies. Clinical studies in human
preterm (Valaes et al., 1994), full-term (Martinez et al., 1999),
and near-term newborns (Kappas et al., 1995) showed that SnMP
substantially moderated the course of hyperbilirubinemia, signif-
icantly decreasing the mean peak incremental TB concentration
(Valaes et al., 1994), phototherapy use (Valaes et al., 1994; Kap-
pas et al., 1995; Martinez et al., 1999), and length of hospital stay
(Kappas et al., 1995; Martinez et al., 1999) compared to controls.
However, no significant difference in the TB concentrations was
shown between control groups, who mostly received phototherapy
vs. SnMP groups (Kappas et al., 1995). Several infants who needed
phototherapy in addition to SnMP treatment developed tran-
sient erythema similar to that observed in SnPP-treated newborns
(Valaes et al., 1994; Kappas et al., 1995). These studies used“special
blue” Philips F20T12/BB fluorescent tubes, with an emission spec-
trum (maximum intensity 440–460 nm), which does not extend
into the Soret peak as full spectrum white light does (Valaes et al.,
1994). Delaney et al. (1988) demonstrated that the triplet lifetime
of SnPP decreases ∼95% when excited at 450 nm, which presum-
ably also decreases its phototoxicity in the emission range of the
special blue lamp compared to full spectrum light from any source.
Moreover, the irradiance of these earlier studies was relatively
low (12–14 μW/cm2/nm) compared to that recommended in the
2004 American Academy of Pediatrics (AAP) practice guideline
(≥30 μW/cm2/nm; American Academy of Pediatrics, 2004). The
phototoxicity of Mps appears to be strongly dependent on the irra-
diance and spectral quality of the light source (Schulz et al., 2012),
and therefore the occurrence of more worrisome photosensitizing
side effects should not be excluded. In G6PD-deficient newborns,
a preventive or therapeutic SnMP administration supplanted the
need for phototherapy, but SnMP showed no advantages over pho-
totherapy in its effectiveness in controlling TB levels (Valaes et al.,
1998).

Suresh et al. (2003) reviewed the available data from clini-
cal studies with Mps in order to determine the efficacy of Mps
in reducing TB levels, the need for phototherapy or exchange
transfusion, and the incidence of BIND in neonates with uncon-
jugated hyperbilirubinemia. We have summarized the clinical
studies described to date in Table 1. A multicenter clinical trial
conducted by InfaCare Pharmaceutical Corporation evaluating
the long-term effects of SnMP (Stannsoporfin) was begun in 2008
and the results from this study are still pending.

SIDE EFFECTS
A question that surfaced early was the fate of the potential cytotox-
icity of heme after blockade of its metabolism. Studies performed
using bile-cannulated rats have demonstrated that after admin-
istration of exogenous heme or heat-damaged RBCs together
with SnPP, the amount of heme excreted into the bile markedly
increased; whereas, the biliary output of bilirubin diminished
(Kappas et al., 1985; Hintz et al., 1987). Therefore, it appears that
no accumulation of the cytotoxic and irritant heme occurs after
HO inhibition. An enhanced excretion of heme in the bile after
SnPP-mediated HO inhibition has also been shown in a study
with 10 healthy adults, using duodenal intubation (Berglund et al.,
1988).

Mps have been found to also interact with other heme-
containing enzyme systems, such as nitric oxide synthase (NOS;
Luo and Vincent, 1994; Meffert et al., 1994), soluble guanylyl
cyclase (sGC; Ignarro et al., 1984; Grundemar and Ny, 1997),
and cytochrome P450 (CYP450; Drummond et al., 1989; Trak-
shel et al., 1992). They also affect hematopoiesis (Maines and
Trakshel, 1992b; Lutton et al., 1997), steroidogenesis (Maines and
Trakshel, 1992b; Drummond et al., 1996), and the iron status of
the body (Kappas et al., 1993; Berglund et al., 1999). However, the
most prominent and concerning side effect is the photosensitizing
property of the majority of Mps.

Photosensitivity
It is understood that the Mp-sensitized photodynamic damage is
mainly caused by the absorption of light at wavelengths of 400
(Soret band), 540, and 580 nm, the peak absorptions of Mps. This
subsequently causes the formation of triplet excited states, long
triplet lifetimes, and high quantum yields for sensitizing the for-
mation of singlet oxygen, which reacts with biological substrates
(e.g., amino acids, guanine bases of DNA and RNA, and unsatu-
rated lipids, including cholesterol and fatty acids; Tonz et al., 1975;
Land et al., 1988). In vitro studies with SnPP demonstrated that
its photophysical parameters (high quantum yield and long triplet
lifetime) and singlet oxygen-sensitizing ability are similar to metal-
free porphyrins, and it was thus expected to have phototoxic effects
in vivo (Land et al., 1988). The triplet lifetime of SnMP has been
found to be much higher than SnPP; the addition of quenching
groups, like iodine, to the macrocycle reduced the triplet lifetime
[tin diiododeuteroporphyrin (SnI2DP)] (Fort and Gold, 1989).
As expected, also the excitation wavelengths influenced the triplet
lifetimes of these Mps (Delaney et al., 1988). In vivo, all three
compounds caused photosensitization in guinea pigs, with SnPP
being the strongest photosensitizer and, SnI2DP and SnMP hav-
ing less photoreactivity probably due to the higher potency and
thus use at lower doses for SnMP and the quenching iodine for
SnI2DP (Fort and Gold, 1989). In general, it appears that the pho-
tophysical properties found in vitro do not completely translate to
in vivo conditions. In a different study, mortality was detected in
rats treated with SnPP and SnMP and simultaneous exposure to
cool white fluorescent light, with an LD50 of 11.7 μmol/kg BW for
SnPP and 40% mortality for SnMP at a dose of 20 μmol/kg BW
(Hintz et al., 1990). No mortality was observed in rats exposed to
similar light conditions after treatment with ZnPP and ZnMP. In
human subjects, transient erythema have been reported follow-
ing treatment with SnPP and SnMP (Kappas et al., 1988, 1995;
Berglund et al., 1990; Galbraith et al., 1992; Valaes et al., 1994).
The underlying mechanisms, which lead to lethality in the rats
after SnPP or SnMP treatment and light exposure are not known.
Interestingly, toxicity has also been reported in a study with rhesus
monkeys given 25 and 100 μmol SnPP/kg BW. The study was not
designed to investigate photosensitizing effects, and information
about the quality of light exposure is not given. Nonetheless, death
associated with light exposure is conceivable at these high doses,
especially, since biopsies revealed cutaneous bullae and dermal
inflammation. Moreover, gross histology of livers, spleens, and
kidneys showed evidence of infarction (Cornelius and Rodgers,
1984).
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In recent studies by our laboratory, we observed phototoxic
effects of ZnBG in neonatal mice and found a significant increase
in lipid peroxidation in liver and heart tissues after intraperi-
toneal (i.p.) administration of 30 μmol/kg BW and light exposure.
This was accompanied by elevations in aspartate aminotransferase
(AST) and creatine kinase activities, inferring the possibility of
heart and liver damage (Schulz et al., 2012). We also established
that the LD50 for ZnBG was 19.5 μmol/kg BW, which is similar to
an LD50 of 23 μmol/kg BW shown in earlier studies in rats (Vre-
man et al., 1991). In general, ZnPP and ZnMP appear to be far
less photoreactive than the tin derivatives in vitro (Vreman and
Stevenson, 1990; Vreman et al., 1990a, 1993) and with no pho-
totoxicity in vivo at concentrations up to 60 and 45 μmol/kg BW,
respectively (Hintz et al., 1990). Also, the chromium derivatives are
not photoreactive in vitro (Vreman and Stevenson, 1990; Vreman
et al., 1990a, 1993), and we have recently found that CrMP showed
no phototoxicity in vivo. However, we did observe a chemical tox-
icity with CrMP (Schulz et al., 2012), which is in agreement with
a previous study by Lutton et al. (1997), who showed that CrMP
given at a dose of 10 μmol/kg was lethal in rabbits. In summary,
the in vivo phototoxicity potential of the studied Mps appears
to follow this pattern: SnPP > SnMP ≥ ZnBG > ZnMP > ZnPP.
Moreover, these studies indicate that the degree of photodam-
age caused by Mps can be influenced by several factors, including
the dose, route of administration, state of Mp aggregation, the
time between administration and light exposure, and the spectral
quality of the light.

Other side effects
Due to the blockade of heme metabolism, Mps subsequently
reduce the CO and free iron status of cells. This, as well as
their heme analog structure, may affect hemoproteins and other
enzymes. Several studies demonstrated that SnPP diminishes
CYP450 capacity and, thus reduces corticosterone levels, CYP450-
related drug metabolism, and the CYP450 content in testes (Stout
and Becker, 1988; Maines and Trakshel, 1992b; Trakshel et al.,
1992). Others showed that hepatic CYP450 content is only tran-
siently altered after administration of SnPP or SnMP to neonatal
rats and does not persist into adulthood. The studies used several
different doses and application routes to adult or neonatal rats
(Drummond et al., 1989, 1996). Overall, SnPP and SnMP decrease
CYP450 activity and thus affect CYP450-dependent enzymes of
adrenal synthesis and drug metabolism in animal models. How-
ever, clinical studies with SnPP and SnMP lack information about
these parameters (see Clinical Studies). Although the zinc deriv-
atives appear to not affect the hepatic CYP450 system (Trakshel
et al., 1992), inhibition of hematopoiesis by ZnPP and ZnMP
was found in vitro in animal and human bone marrow (Lut-
ton et al., 1997). ZnMP, but not SnMP, also displayed inhibitory
action on hematopoiesis and on mobilization of progenitor cells
in vivo (Lutton et al., 1999). The underlying mechanisms are still
unclear, and might not exclusively be attributed to the type of cen-
tral metal (Zn), but also to the side chains of the porphyrin ring,
because ZnBG did not affect bone marrow cell growth (Lutton
et al., 1991). Most Mps seem to interact with NOS and sGC, but
to different degrees. CrMP and ZnBG have been shown to mar-
ginally impair the activity of NOS and sGC at concentrations that
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effectively inhibit HO activity, and thus seem to be more selective
toward HO than ZnPP and SnPP (Appleton et al., 1999). In a
different study, SnMP was also found to have minimal effects on
hippocampal NOS activity similar to that of ZnBG (Meffert et al.,
1994). Recently, it has been shown that CrMP (also SnPP and
SnMP) negatively affects systemic macro hemodynamics and the
hepatic microcirculation. Intravenous administration of 40 μmol
CrMP/kg BW to rats decreased mean arterial pressure, sinusoidal
diameter, and hepatic blood flow, and induced hemolysis, marked
inflammatory responses, and increased AST levels. SnMP dis-
played the least effects on those parameters in this study compared
to SnPP and CrMP (Scheingraber et al., 2009). The described side
effects of CrMP could be responsible, at least in part, for its toxicity
seen in certain animal models (see Photosensitivity) and thus its
use in human neonates should be discouraged.

Iron deficiency anemia has been reported following long-term
treatment with SnMP in rats (Boni et al., 1993) and patients
with Crigler–Najjar Syndrome Type I (110 doses of SnMP 0.5 or
1.0 μmol/kg BW during a 400-day study; Boni et al., 1993; Kap-
pas et al., 1993). Because SnMP inhibits intestinal HO (Vreman
et al., 1989) and decreases intestinal heme–iron absorption (Boni
et al., 1993), this may account for the iron deficiency-like anemia
that results after long-term SnMP exposure. Kappas et al. (1993)
reported that the deficiency was easily reversed by supplementa-
tion with iron. It is also interesting to speculate that Mps may be
useful clinically in the treatment of iron overload.

Administration of SnPP or SnMP transiently increased the
acute phase protein ferritin, in healthy volunteers as well as in
patients with primary biliary cirrhosis or idiopathic hemochro-
matosis (Berglund et al., 1999). The underlying mechanism is
unclear, particularly, since it would be expected that, due to the
release of free iron, ferritin levels would increase in response to
HO activation, but not due to inhibition (Figure 1).

Of interest is also the possible passage of Mps through the
blood–brain barrier and the subsequent effects in this tissue. A
study by Drummond and Kappas (1986) showed that SnPP given
s.c. crossed placenta and blood–brain barrier of neonatal rats and
subsequently inhibited brain HO activity. The blood–brain bar-
rier is most permeable immediately after birth up to a period
between 20 and 28 days of postnatal life, suggesting that the ability
of SnPP to enter the brain is age-dependent. However, its clear-
ance t1/2 was 1.7 days and therefore relatively rapid compared to
other tissues (Drummond and Kappas, 1986). Studies with adult
rats also observed low but detectable levels of SnPP in the brain,
which are cleared relatively rapidly (Anderson et al., 1984). Intra-
venous administration of SnPP to adult rats markedly decreased
HO and NADPH–CYP450 reductase activity in the brain (Mark
and Maines, 1992). In contrast ZnPP, SnMP, CrMP, ZnMP did not
appear to affect brain HO activity after i.v. (ZnPP) or s.c. admin-
istration to adult rats (Mark and Maines, 1992; Bundock et al.,
1996). In the adult brain, HO-2 is the isoenzyme predominantly
expressed. In contrast, HO-1 expression in the brain is develop-
mentally regulated, being highest in the early gestational ages and
progressively decreasing during the perinatal period to adulthood
(Zhao et al., 2006). The constitutive HO-2 isoform is important in
the maintenance of neuronal function,whereas HO-1 is believed to
play a protective role (Snyder et al., 1998; Maines, 2000). Therefore,

it is conceivable that HO inhibition in the brain is not desired,
although some have speculated that it may be advantageous in
premature infants with intracranial bleeding, where a possibil-
ity of enhanced local bilirubin formation exists (Drummond and
Kappas, 1986). In studies using hippocampal slices, CrMP, SnMP,
ZnPP, and ZnBG all inhibited HO, however only CrMP and ZnPP
reduced long-term potentiation (LTP) and also inhibited NOS,
which is speculated to be the underlying mechanism for LTP
reduction (Meffert et al., 1994).

HO-1 promoter activation
HO-1 gene expression is induced by its substrate heme and a
variety of stimuli, e.g., heat shock, oxidative stress, hyperoxia,
hypoxia, heavy metals, ultraviolet A radiation, pro-inflammatory
mediators, Mps, and many others (Ryter et al., 2006).

Using our HO-1-luc transgenic mouse model where the trans-
gene contains the full-length HO-1 promoter driving expression of
the reporter gene luciferase (luc), we found increased reporter gene
expression after SnMP and ZnPP treatment, which depended on
the route of application, differing from 3-fold to 10-fold (Zhang
et al., 2002). Further studies in mice confirmed that the SnMP-
mediated induction of the HO-1 gene subsequently leads to a
significant increase in HO-1 protein (Morioka et al., 2006). Clini-
cal studies do not report about induced HO-1 protein expression,
but describe sufficient reductions of TB levels without a rebound.
Therefore it is conceivable that the induction of HO-1 is negligible
in the doses used in human studies, which are at least one to two
orders of magnitude less than those used animal studies (see Clin-
ical Studies), reinforcing the observation that care must be taken
when extrapolating animal studies to the human circumstance.

Several regulatory elements have been shown to be crucial for
the activation of the HO-1 gene in response to different stim-
uli. Bach1, a leucine zipper protein, is a transcriptional repressor.
Upon exposure to heme, Bach1 dissociates from its heterodimer-
ization partners within the distal enhancer of the HO-1 promoter
and is exported out of the nucleus. Displacement of Bach1 leads
to recruitment of the activating NF-E2-related factor 2 (Nrf2)
and thus, stimulates HO-1 gene expression (Abate et al., 2007).
Bonkovsky and co-workers have demonstrated that CoPP, and
ZnMP upregulate HO-1 expression through the repression of
Bach1 and upregulation of the Nrf2 protein (Shan et al., 2006;
Hou et al., 2008). Our laboratory has shown that SnMP not only
induces HO-1 expression by binding to Bach1, but also by increas-
ing Bach1 protein degradation, and thereby affecting the HO-1
promoter directly and indirectly, respectively (Abate et al., 2007).

ZnBG appears to be less effective in HO-1 upregulation, only
producing small changes in HO-1 transcription and protein in
newborn and adult mice given a heme load (Morioka et al., 2006;
He et al., 2011). This induction of HO-1 by ZnBG might be an
indirect effect due to the accumulation of heme after inhibition
of HO enzyme activity and not a direct interaction with Bach1
(unpublished data).

PHARMACOKINETICS OF SELECTED METALLOPORPHYRINS
Due to effects of the central metal ion and especially to the
lipophilicity or hydrophilicity of the side chains, Mps differ in their
pharmacokinetic properties, stability, and solubility. Because the
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protoporphyrin derivatives are the most lipophilic, their solubility
in aqueous solution is minimal. The meso derivatives share simi-
lar chemical properties. However, the incorporation of the two bis
glycol side chains to the porphyrin ring renders the molecule more
polar, thus increasing its solubility in aqueous solutions. In general,
all Mps are highly soluble and stable in alkaline aqueous solu-
tions or basic organic solvents, such as pyridine and ethanolamine
(Labbe et al., 1999). Although the pharmacokinetics of SnPP are
well-studied, its use was abandoned due to the described side
effects (especially phototoxicity). Thus, we will focus on the most
promising Mps to date: SnMP, ZnPP, ZnMP, and ZnBG.

SnMP
In general, successful oral administration of Mps would be clini-
cally most desirable. However, the chemical characteristics of most
Mps preclude this route of administration. Interestingly, absorp-
tivity appears also to be species-specific. For example, SnMP has
been shown to be not orally absorbed by rats (Vreman et al.,
1988) and by human subjects (Galbraith and Kappas, 1989), but
oral administration of SnMP to adult mice significantly decreased
VeCO levels, demonstrating an absorption by the intestine and
subsequent systemic effects (Morioka et al., 2006). Others have
also shown that SnMP inhibits intestinal HO activity after oral
administration (Drummond et al., 1992). Moreover, differences in
tissue distribution have been observed between adult and neona-
tal rats. Tissue concentrations of SnMP given s.c. peaked later in
neonatal rats than in adults. In general, SnMP is rapidly cleared
from the circulation, but appears to have high tissue “stickiness”
(up to 27 days in rats), especially in the liver and spleen, and is
also found in the kidney and brain. HO activity was reduced in
liver, spleen, kidney (neonates only), and brain (not significant)
up to 27 days (spleen), but at different time points after adminis-
tration and to a greater extent in neonates than in adults (Bundock
et al., 1996). A fast plasma clearance following i.v. administration
with a plasma half-life of 3.8 h and a log-linear decline (similar
to SnPP), was also found in adult healthy volunteers (Galbraith
and Kappas, 1989). Moreover, SnMP showed a very low excretion
rate in feces and urine, suggesting a rapid uptake into intra- or
extravascular spaces and tissue binding (Galbraith and Kappas,
1989). Effective doses in human adults and neonates ranged from
1 to 6 μmol/kg BW (Valaes et al., 1994, 1998; Kappas et al., 1995;
Martinez et al., 1999) and in animal studies from 1 to 30 μmol/kg
BW (Drummond et al., 1987; Morioka et al., 2006).

ZnPP
ZnPP also needs to be administered parenterally (Vreman et al.,
1988). Administration by s.c., i.m., or i.p. have been used fre-
quently in animal studies (Maines, 1981; Qato and Maines, 1985;
Rodgers et al., 1996). ZnPP at a dose of 40 μmol/kg BW given s.c.
to rhesus neonates reduced TB levels within 24 h and lasted up to
12 days. HO inhibition occurred in the liver and spleen, but not
in the kidney or brain (Qato and Maines, 1985; Rodgers et al.,
1990). Biliary and urinary excretion also was very low. However,
ZnPP is extensively incorporated into RBCs (≈45% of the admin-
istered dose; Qato and Maines, 1985). Furthermore, it is endoge-
nously generated in cases of iron deficiency and found located
primarily in the RBCs (Labbe et al., 1999). Studies in rats showed

that ZnPP is relatively fast-acting (∼4 h after s.c. administration),
with a duration of action of 1–4 days after the administration of
40 μmol/kg i.p for hepatic HO inhibition (Hamori et al., 1989).
In contrast to the rhesus neonate, concentrations of ZnPP found
in the spleen tissues of rats were low, and thus splenic HO inhi-
bition was marginal (Rodgers et al., 1996). The spleen is the site
of greatest heme catabolism, and therefore targeted inhibition of
splenic HO inhibition could increase the in vivo effectiveness of
Mps in reducing TB levels. This approach has been attempted
through incorporating Mps into liposomes. This strategy signifi-
cantly increased Mp delivery to the spleen and thus enhanced their
efficacy (Landaw et al., 1989; Cannon et al., 1993; Hamori et al.,
1993).

ZnMP
Interestingly, ZnMP binds very tightly to human serum albumin
(Greenbaum and Kappas, 1991), thus its tissue accessibility is actu-
ally very low (27%; Bundock et al., 1996). Therefore, it did not
significantly inhibit HO activity in any tissue after s.c. injection
(rat) with 1–10 μmol/kg BW. A similar dose range of SnMP sig-
nificantly reduced HO activity in liver and spleen rat tissue up to
4 and 27 days, respectively. In contrast, when 15-μmol ZnMP/kg
BW, bound to albumin in a 1:1 ratio, was administered i.v., it was
rapidly cleared from plasma (half-life = 3.6 h), with uptake occur-
ring primarily in liver and spleen (less in the kidney), but was not
detected in brain (rats). Inhibition of liver HO activity was still
50% 1 week after administration (Russo et al., 1995).

ZnBG
ZnBG has a higher hydrophilicity due to the bis glycol side chains.
It is, besides CrMP, the only Mp, proven to be orally absorbed by
mice and rats (Vallier et al., 1991a,b; Morioka et al., 2006). ZnBG
is absorbed relatively quickly (within 15 min; Vallier et al., 1991a),
highly effective toward inhibiting spleen and liver HO activities,
has a rapid onset of action (≈70% inhibition after 1–3 h of admin-
istration) and is cleared by the kidneys in 2-week-old suckling rats
(Vallier et al., 1991b). In adult rats, HO inhibition after an oral
dose of 30 μmol ZnBG/kg BW was approximately 20% (liver),
50% (spleen), and 0% (intestine) after 48 h compared to 60%
(liver), 80% (spleen), and 40% (intestine) inhibition with the same
dose of SnMP, demonstrating a short duration of action for ZnBG
compared to other Mps (Morioka et al., 2006). Supporting data
were conducted in a hemolytic mouse model with 1-week-old
mice, measuring the bilirubin production as VeCO. The biliru-
bin production returned back to baseline 6 h after oral gavage of
15 μmol ZnBG/kg BW (He et al., 2011). After i.p. injection to 3-
day-old mice of very low doses of ZnBG (0.325 μmol/kg/BW) HO
inhibition was 50% after 3 h and returned to baseline after 24 h
(Katayama et al., 2012). Negligible amounts of ZnBG (<0.001%
of the administered dose) have been found in the brain after oral
administration to neonatal rats (Vallier et al., 1991b). No inhibi-
tion of HO in the brain of mouse neonates was found after oral
gavage of up to 30 μmol ZnBG/kg/BW 3 h after administration,
which let us conclude that ZnBG does not pass the blood–brain
barrier (He et al., 2011). However, after i.p. administration of 3.75–
15 μmol ZnBG/kg BW to 3-day-old mice we observed 30–45%
HO inhibition in the brain 3 h after administration (unpublished
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Table 2 | Major advantages and disadvantages of promising metalloporphyrins.

Mps Advantages Reference Disadvantages Reference

SnMP Highly potent Drummond et al. (1987), Wong et al.

(2011)

Photosensitizer (animal/human

studies)

Galbraith and Kappas (1989),

Hintz et al. (1990), Kappas

et al. (1995), Valaes et al.

(1994)

Well-studied Kappas (2004), Wong et al. (2007) Phototoxic (animal studies) Hintz et al. (1990)

Clinical efficacy shown Kappas et al. (1995), Martinez et al.

(1999), Reddy et al. (2003), Valaes

et al. (1998), Valaes et al. (1994)

Affects NOS, sGC, CYP450 Appleton et al. (1999),

Maines andTrakshel (1992b),

Trakshel et al. (1992)

Activates HO-1 gene transcription Abate et al. (2007), Morioka

et al. (2006)

Not orally absorbable in rat and

human studies

Galbraith and Kappas (1989),

Vreman et al. (1988)

Crosses the blood–brain barrier

(controversial)

Boni et al. (1993), Bundock

et al. (1996), Galbraith et al.

(1992)

Long-term treatment possibly leads

to iron deficiency

Boni et al. (1993), Galbraith

et al. (1992)

Long-term tissue deposition.

Long duration of HO inhibitory

action (could also be advantageous

under certain circumstances)

Bundock et al. (1996), Gal-

braith and Kappas (1989)

ZnPP Contains an essential metal

atom

Least potent in this group Morioka et al. (2006), Wong

et al. (2011)

Naturally occurring Affects NOS, hematopoiesis Appleton et al. (1999), Lutton

et al. (1997)

Not phototoxic at doses

≤60 μmol/kg BW

Hintz et al. (1990) Incorporates into RBCs Labbe et al. (1999), Qato and

Maines (1985)

Effective in rhesus monkey Maines (1981), Qato and Maines

(1985), Rodgers et al. (1990),

Vreman et al. (1990b)

Activates HO-1 gene transcription Zhang et al. (2002)

May not cross the

blood–brain barrier

Qato and Maines (1985), Rodgers

et al. (1990)

Not orally absorbed Vreman et al. (1988)

Long-term deposition in tissue (see

above)

Qato and Maines (1985),

Rodgers et al. (1990)

ZnMP Contains an essential metal

atom

Binds tightly to human serum

albumin

Bundock et al. (1996), Green-

baum and Kappas (1991)

Not phototoxic at doses

≤45 μmol/kg BW

Hintz et al. (1990) Long-term deposition in tissue (see

above)

Russo et al. (1995)

May not cross the

blood–brain barrier

Russo et al. (1995) Affects hematopoiesis Lutton et al. (1997), Lutton

et al. (1999)

Activates HO-1 gene transcription Hou et al. (2008)

Less well-studied

ZnBG Highly potent Photosensitizer (animal studies) Schulz et al. (2012)

Contains an essential metal

atom

Phototoxic (animal studies) Schulz et al. (2012)

Only minimally affects NOS,

sGC

Appleton et al. (1999) Rapid onset with a short duration of

action (may require multiple dosing,

can also be advantageous in cases

of infants with protracted

hemolysis)

Katayama et al. (2012),

Katayama et al. (unpublished

data)

(Continued)
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Table 2 | Continued

Mps Advantages Reference Disadvantages Reference

Only minimally affects HO-1

transcription

He et al. (2011), Morioka et al.

(2006), Zhang et al. (2002)

Less well-studied

Orally absorbed Vallier et al. (1991a,b)

Short duration of action He et al. (2011), Katayama et al.

(2012), Morioka et al. (2006)

No known long-term tissue

deposition

Katayama et al. (2012), Katayama et

al. (unpublished data)

May not or minimally cross

the blood–brain barrier

He et al. (2011), Vallier et al.

(1991a,b)

Mps, metalloporphyrin; NOS, nitric oxide synthase; sGC, soluble guanylyl cyclase; CYP450, cytochrome P450; RBCs, red blood cells.

data). If this discrepancy between both studies may be due to the
route of administration, or the fact that the blood–brain barrier is
more permeable to many chemicals in the immediate postnatal
period (Drummond and Kappas, 1986), but possible not per-
meable to ZnBG anymore in the 1-week-old mice, needs further
investigation.

SUMMARY AND CONCLUSION
Although Mps have been studied extensively in animal models and
some human trials, their safety has not been unequivocally proven
yet. Ideally, a desirable Mp should have high potency and selectiv-
ity toward inhibiting HO without affecting other enzymes, not be
photosensitizing, not alter HO-1 gene expression and protein lev-
els, be short-acting, be easily eliminated without the subsequent
release of the sequestered metal or preferably contain an essen-
tial metal atom, and be orally absorbable (Vreman et al., 2001;
Table 2).

ZnBG appears to have many of these desirable pharmacologic
and pharmacokinetic properties, and thus appears to be a promis-
ing anti-hyperbilirubinemia drug. Its advantages due to in vitro
and in vivo animal studies include: its extremely high potency,
oral absorptivity, short duration of action, no long-term depo-
sition in tissues, minimal interference with hemoproteins, and
minimal effects on HO-1 gene expression and subsequent protein
synthesis. Even though ZnBG is photoreactive and shows pho-
totoxicity after i.p. administration, those effects appear negligible

when administered orally and in therapeutic doses (≤7.5 μmol/kg
BW established in newborn mice) due to its high potency and short
duration of action, which minimizes the time neonates need to be
protected from direct light exposure. Moreover, a short duration
of action would allow the pediatrician in a clinical setting to bet-
ter “titrate” more accurately the dose required to lower TB levels
without the danger of its accumulation in certain tissues and thus
minimizing long-term side effects.

Currently pediatricians are dependent upon one frontline treat-
ment strategy: phototherapy, which is well established, successful,
and generally safe, at least for larger infants. However, using CO
detection technologies and antenatal analyses of genetic predis-
positions to identify infants at high risk for developing hyper-
bilirubinemia, could enable us to seek and treat high producers of
the pigment, in particular those with hemolysis, who might benefit
most from targeted Mp treatment. Introduced in this strategic way,
Mps still represent a promising alternative in the management of
neonatal jaundice, although more work is required to define safe
preventive or therapeutic approaches.
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