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Humans detect changes in the air pressure and understand the surroundings through

the auditory system. The sound humans perceive is composed of two distinct

physical properties, frequency and intensity. However, our knowledge is limited how the

brain perceives and combines these two properties simultaneously (i.e., intra-auditory

integration), especially in relation to motor behaviors. Here, we investigated the effect of

intra-auditory integration between the frequency and intensity components of auditory

feedback on motor outputs in a constant finger-force production task. The hierarchical

variability decomposition model previously developed was used to decompose motor

performance into mathematically independent components each of which quantifies a

distinct motor behavior such as consistency, repeatability, systematic error, within-trial

synergy, or between-trial synergy. We hypothesized that feedback on two components of

sound as a function of motor performance (frequency and intensity) would improve motor

performance and multi-finger synergy compared to feedback on just one component

(frequency or intensity). Subjects were instructed to match the reference force of 18

N with the sum of all finger forces (virtual finger or VF force) while listening to auditory

feedback of their accuracy. Three experimental conditions were used: (i) condition F,

where frequency changed; (ii) condition I, where intensity changed; (iii) condition FI,

where both frequency and intensity changed. Motor performance was enhanced for the

FI conditions as compared to either the F or I condition alone. The enhancement of

motor performance was achieved mainly by the improved consistency and repeatability.

However, the systematic error remained unchanged across conditions. Within- and

between-trial synergies were also improved for the FI condition as compared to either the

F or I condition alone. However, variability of individual finger forces for the FI condition

was not significantly decreased as compared to I condition alone. This result indicates

an improvement in motor performance is consistent with Bayesian estimation, and
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changes in multi-finger interaction mostly result in the enhanced motor performance.

These findings provide evidence that the central nervous system can take advantage of

the intra-auditory integration in a statistically optimal (Bayesian) fashion to enhance motor

performance by improving multi-finger synergy.

Keywords: intra-auditory integration, multi-finger synergy, multi-finger pressing, motor performance, hierarchical

variability

INTRODUCTION

For nearly every real-world case of motor behavior, the central
nervous system (CNS) simultaneously receives information from
a variety of sensory modalities, including visual, tactile, and
auditory signals (Ernst and Banks, 2002; Stein and Stanford,
2008; Berniker and Kording, 2011), and is required to coordinate
multiple effectors (e.g., motor units, muscles, joints, limbs) to
effectively perform the movement (Babinski, 1899; Castiello,
1997; Alexandrov et al., 1998; Shim et al., 2003b). Many theories
of motor control argue that integration of these multiple sensory
modalities with the synergistic control of multiple effectors is
critical for successful or optimal motor performance (Ernst
and Banks, 2002; Berniker and Kording, 2011; Pantall et al.,
2012; Scholz et al., 2012). In effectively integrating multi-sensory
information and controlling multi-effector system, the CNS
faces at least two challenges: it must estimate the state of the
system with sensory information that is corrupted by noise and
transmission delays (Körding and Wolpert, 2004; Faisal et al.,
2008), and it must solve the motor redundancy problem when
deciding how effectors are used from a theoretically infinite
set of possibilities (Bernstein, 1967; Gel’Fand, 1971; Ting and
Macpherson, 2005; Latash et al., 2007).

Concerning the first problem (state estimation), previous
studies on inter-sensory integration (e.g., visual and auditory
modalities) have suggested that the CNS combines multiple
sensory modalities to produce minimum variance in the state
estimate. Bayesian inference is a promising approach to interpret
integration of multiple sensory modalities and to define the
statistically optimal way to maximize accuracy of the state
estimation (Ernst and Banks, 2002; Berniker and Kording, 2011).
Relatedly, each individual sensory modality consists of multiple
components that can be perceived distinctively by the CNS, such
as the color and shape of an object in vision, or the frequency and
intensity of a sound in audition (Helmholtz and Ellis, 1885; Bloj
et al., 1999). However, our knowledge of how the CNS integrates
these different components within a modality (i.e., intra-sensory
integration) is very limited. For example, most previous studies
on intra-sensory integration were on vision (Jacobs, 1999; Knill
and Saunders, 2003; Hillis et al., 2004), with relatively little known
about intra-sensory integration of auditory feedback. Sound is
physically a pressure wave transmitted through the air, and
humans can normally hear sound waves with frequencies up to
∼10,000Hz and intensities up to ∼120 dB. These two physical
quantities (frequency, intensity) are the most salient features
of sound that contribute to its perception, and they appear to
be perceived independently by the CNS (Helmholtz and Ellis,
1885; Zagorski, 1975). However, it remains unclear if and how

the CNS integrates auditory frequency and intensity for state
estimation.

Concerning the second problem (motor redundancy), the
control of multiple motor effectors has been studied at the
level of muscles (Babinski, 1899; Smith, 1993; Ting and McKay,
2007), joints (Castiello, 1997; van der Kamp and Steenbergen,
1999; Latash and Jaric, 2002), and body segments (Alexandrov
et al., 1998; Kim et al., 2012), including fingers (Latash, 2000;
Latash et al., 2002, 2007; Shim et al., 2003b, 2005b, 2008).
From these studies, the notion of motor synergy has been
developed to describe the interactions between multiple motor
effectors for the successful completion of a given motor task
(Latash et al., 2007). One of our previous simulation studies
suggested a central back coupling hypothesis showing that it was
theoretically possible to generate the synergistic actions between
motor effectors in a feedforward system without an active
involvement of sensory feedback (Latash et al., 2005). However,
several previous studies suggested that sensory feedback plays
an important role in synergistic interactions between motor
effectors (Ranganathan and Newell, 2008; Shim et al., 2012;
Koh et al., 2015). Ranganathan and Newell (2008) found that
the removal of visual sensory feedback from combined visual
and tactile feedbacks resulted in decreased synergistic actions
between finger forces in both within-trial (online) and between-
trial (offline) duringmulti-finger pressing. In addition, our recent
work showed that the removal of tactile feedback in multi-finger
pressing tasks resulted in decreases in multi-finger synergies for
online control (Koh et al., 2015). These studies suggest that
sensory feedback plays critical roles in multi-finger synergies
and sensory integration may also systematically influence the
synergistic interactions between motor effectors. Especially, the
results of these studies imply that sensory integration may lead to
improvements in multi-finger synergy (i.e., decrease covariance
between finger forces).

Previous studies have shown that multi-finger actions are
controlled in a hierarchical manner with at least two hierarchical
levels: individual finger actions at the lower level, and virtual
finer (VF: an imagined finger producing the same mechanical
effect as all fingers together) actions through the combined
mechanical outcomes of individual finer actions at the higher
level (Arbib, 1985; MacKenzie and Iberall, 1994; Baud-Bovy and
Soechting, 2001; Shim et al., 2005a,b), at the higher level. In our
recent work, we developed hierarchical variability decomposition
(HVD) model to quantify the hierarchical organization of multi-
finger actions with the separate analysis of within-trial (online)
and between-trial (offline) motor behaviors (Koh et al., 2015).
The HVD model decomposes the variability in the motor system
into mathematically independent components each of which
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quantifies a distinct motor behavior. In the HVD model, the
systematic error, consistency, and repeatability are quantified
at the higher level. In a constant force production task, the
systematic error reflects the CNS’s ability to estimate the target
force, and consistency reflects the CNS’s ability to perform the
task on amoment-to-moment basis (i.e., online variability), while
repeatability reflects the ability to reproduce the same task goal on
trial-to-trial basis (i.e., offline variability). The analysis of online
and offline variability were previously used to infer different
aspects of the control mechanism in redundant motor systems
(Scholz et al., 2003; Ranganathan and Newell, 2008; Koh et al.,
2015). In the HVD model, both consistency and repeatability
can be explained by the sum of individual finger force variances
and the amount of error compensation (or amplification) among
individual finger forces (i.e., motor synergy; Latash et al., 2005;
Martin et al., 2009) at the lower level. Here, we tested how the
intra-auditory integration affects these several aspects of multi-
finger actions quantified through the HVD model.

In the present study, we therefore investigated the effect
of intra-auditory integration between frequency and intensity
of sound on motor performance and motor synergy during a
constant multi-finger force production. We hypothesized that
motor task errors would decrease when both frequency and
intensity components are presented to subjects as compared
to the conditions that present only one of these auditory
components to them, which would support Bayesian integration
between frequency and intensity of sound. We also hypothesized
that intra-auditory integration would be associated with
enhanced multi-finger synergy, which would indicate an
evidenced role of intra-sensory integration in the interactions
between redundant motor effectors in humans.

METHODS

Participants
Ten right-handed male volunteers (age 24.2 ± 1 years)
participated in the study. Participants were free of neurological,
psychiatric, speech-language, and motor impairments. No
participant had more than 1 year of musical training.
Participants provided written informed consent. All procedures
were approved by the University of Maryland College Park
Institutional Review Board.

Experimental Setup
Finger pressing forces at the distal phalanges were collected
using load cells (Nano 17, ATI Industrial Automation, Apex,
NC, US) at a sampling frequency of 1000Hz with data
acquisition hardware (6024E, National Instruments Corporation,
Austin, TX, US) using a custom LabVIEW program (LabVIEW
8.2, National Instruments Corporation, Austin, TX, US). The
program interfaced with a function generator (Agilent 33522A,
Keysight Technologies, Inc., Santa Rosa, CA, US) to register
the individual finger forces and calculate the virtual finger (VF)
force as the sum of individual finger forces. The program also
generated auditory signals played through the left and right ears
of headphones worn by the subjects (AE2, Bose Corporation,
Framingham, MA, US).

In order to minimize distortion of sound due to headphone
frequency response characteristics (Jackson and Vinegar, 1979),
the auditory signal was calibrated to produce a constant
intensity across all frequencies. Calibration was performed in
a soundproof room by manipulating frequency from 20 to
10,000Hz in 1Hz increments and normalizing intensity at each
increment.

Procedures
Subjects sat on a chair, wore the headphones, and placed the
tips of their right hand’s fingers (index, middle, ring, and little)
on the load cells (Figure 1). The subjects were asked to use
these fingers to produce a constant VF force of 18 N over 20 s
while they received auditory feedback tones on the reference
force (left ear) and on the VF force (right ear). The tone
for the reference force (i.e., the reference tone) had frequency
of 1000Hz and intensity of 70 dB. The tone for VF force
(i.e., the tracking tone) varied in three different experimental
conditions:

1) Frequency condition (F): the frequency of the tracking tone
was modulated with the deviation of the subject’s VF force
from 18 N, while the intensity of the tracking tone was kept
constant at 70 dB.

2) Intensity condition (I): the intensity of the tracking tone
was modulated with the deviation of the subject’s VF force
from 18 N, while the frequency of the tracking tone was kept
constant at 1000Hz.

FIGURE 1 | Experimental setup. The subjects sat and placed their right

hand finger tips on the sensors, wearing the headphones (A). During the task,

the reference force (18 N) was provided as an auditory signal, a sinusoid signal

with frequency 1000Hz and intensity 70 dB (i.e., reference tone), played to the

subject’s left ear (B in red). The force generated by the subject was also

provided as a sinusoid signal (i.e., tracking tone) to their right ear according to

three feedback conditions: frequency (F) in which the frequency of the tracking

tone changed, intensity (I) in which the intensity of the tracking tone changed,

and frequency and intensity condition (FI) in which both the frequency and the

intensity of the tracking tone changed according to the force the subject

generated (B in blue).
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3) Frequency and Intensity condition (FI): both frequency
and intensity of the tracking tone was modulated with the
subject’s VF force.

The frequency of 1000Hz for the reference tone was used
to minimize the influence of binaural beats (Oster, 1973;
Wahbeh et al., 2007), and the intensity of 70 dB for the
reference tone was selected as mid-level hearing. The feedback
gains of frequency and intensity were 7Hz/N and 0.7 dB/N,
respectively, according to “just noticeable differences” of
frequency and intensity previously reported assuming a change
in force of 1 N (Moore, 1973; Ozimek and Zwislocki,
1996). Prior to the data collection, participants were given
five familiarization trials that were excluded from analysis.
From each 20-s trial, the 11-s window from 6 to 17 s
where the VF force was relatively constant was extracted for
analysis (Koh et al., 2015) in order to avoid the initial force
stabilization in the beginning of each trial and premature
cessation of force production at the end. Subjects completed
15 trials and with rest 30 s rest between trials to prevent
fatigue. The order of conditions was balanced across the
subjects.

Analysis and Bayesian Model
The Bayesian approach in sensory integration research describes
how sensory information can be used to update our knowledge
of some quantity of interest (Jacobs, 1999; Ernst and Banks,
2002; Berniker and Kording, 2011). Our study had the following
assumptions for analysis:

1. The Bayesian model for the sensory integration appropriate
for static performance can also be used for dynamic
performance (Ronsse et al., 2009). Let the random variable S
be the true unknown VF force. If S has the specific value s,
then (i) the estimated VF force based on frequency feedback,
ŜF , and estimated VF force based on intensity feedback,
ŜI , are independent Gaussian random variables with means
s+ bF and s+ bI and variances σ

2
F and σ

2
I , respectively,

where bF and bI and are biases; (ii) the estimated VF force
based on both frequency and intensity feedback, ŜFI , is the
Bayesian estimate assuming a uniform prior over the range
of feasible VF forces and ignoring the biases bF and bI
(Scarfe and Hibbard, 2011; Shi et al., 2013). Let s+ bFI
and σ

2
FI denote the mean and variance, respectively, of the

random variable ŜFI , where bFI is the bias of the combined
estimate.

2. The variances of VF force in the F, I, and FI conditions
primarily reflect the estimation variances, σ

2
F , σ

2
I , and σ

2
FI ,

respectively. Additional variability in VF force caused by noise
in other sensory systems and noise in the motor system is
assumed to be small in all experimental conditions. The biases
bF , bI , and bFI equal fT minus the mean VF force in the F, I,
and FI conditions, respectively, where fT is the reference force
of 18 N.

Based on these assumptions of the Bayesian model, the posterior
probability density describing our knowledge of S given specific
measurements ŜF = ŝF and ŜI = ŝI is:

p(ŜFI = s) = p
(

S = s|ŜF = ŝF, ŜI = ŝI

)

=
p
(

ŜF = ŝF|S = s
)

p
(

ŜI = ŝI |S = s
)

∫∞
−∞ p

(

ŜF = ŝF|S = s
)

p
(

ŜI = ŝI |S = s
)

ds
.

The posterior has a Gaussian distribution. Its mean, ŝFI , is a
weighted sum of the estimates ŝF and ŝI :

ŝFI = wF ŝF + wI ŝI,

where wF =
σ
2
I

σ
2
F + σ

2
I

and wI =
σ
2
F

σ
2
F + σ

2
I

. The variance of the

posterior, σ
2
FI , is smaller than the variances of the frequency

estimate, σ2F , and intensity estimate, σ2I :

σ
2
FI =

σ
2
Fσ

2
I

σ
2
F + σ

2
I

The combined bias bFI can also be expressed as a weighted
average of the F condition bias, bF , and the I condition bias, bI
with the weights, wF and wI (Scarfe and Hibbard, 2011; Shi et al.,
2013):

bFI = wFbF +wIbI

To test whether intra-auditory components, frequency
and intensity, are integrated for the motor performance
enhancement, we calculated the overall mean-squared error
(OMSE) from the experimental data, the averaged squared
deviation of the VF force from the reference force as a measure
of motor performance:

OMSE =
1

N

N
∑

i= 1

{

1

τ

∫

[

fT − yi (t)
]2
dt

}

where yi (t) is VF force at trial i, and τ is the duration of yi (t).
In order to examine if the intra-auditory integration

follows the Bayesian model, OMSEFI was also estimated
according to Bayesian model using the bias and variance
values we experimentally obtained from the F condition and I
condition:

OMSEFI = σ
2
FI + b2FI =

σ
2
Fσ

2
I

σ
2
F + σ

2
I

+
(

wFbF+wIbI
)2

OMSEFI estimated from the model was then compared to OMSE
obtained from the experiment (Figure 2).

Hierarchical Structure and Decomposition
of Motor Variability
The VF force for trial i, yi (t), was modeled as the sum of three
components:

yi (t) = Xi (t) + Ei + m

where Xi (t) is the demeaned VF force for trial i, m is the mean
VF force after averaging over all time steps of all 15 trials, and Ei
is the difference between the mean VF forces for trial i andm.
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FIGURE 2 | Left figures show VF force time courses for all 15 trials from a representative subject for F condition (red), I condition (green), and FI

condition (blue). Right Figure shows best fitted Gaussian distribution of VF force for all conditions and a Gaussian distribution calculated by the Bayesian model

(black).

OMSE was partitioned into three error components that
influence themotor performance following theHVDmodel (Koh

et al., 2015): the “online variance” σ
2
X , defined as the variance

within a trial, averaged over trials, the “offline variance” σ
2
E,

defined as the variance between trials, and the “systematic error,”
b2, defined as squared deviation between the reference force
and m. The sum of online and offline variances is the variance
of the VF force (σ2 = σ

2
X + σ

2
E), and the systematic error is

the squared bias of the VF force (b2FI = (18N −m)2). The
online and offline variances can also be defined in terms of
the individual finger force variances and covariances as shown
below.

OMSE = σ
2
X + σ

2
E + b2 =

n
∑

i= 1

σ
2
xi
+

n
∑

i 6= j

σxi,xj+

n
∑

i= 1

σ
2
ei

+

n
∑

i 6= j

σei,ej+b2

where n is the number of task fingers (n = 4), σ
2
xi

and σxi,xj

are a variance of within-trial ith finger force and a covariance
between within-trial ith and jth finger forces, respectively, and
σ
2
ei

and σei,ej are a variance and covariance for between-trial
finger forces, respectively. The overhead bars indicate means over
trials.

According to the HVD model (Figure 3), the online and
offline errors can be further defined as the sum of the individual
finger force variances, plus between-finger covariances. Here,

we use the covariances between finger forces,
∑

σxi,xj and
∑

σei,ej , as indices of multi-finger synergy for online and
offline, respectively (Koh et al., 2015). Negative covariance
indicates that the individual finger forces synergistically act
to compensate each other errors and attenuate the VF force
error (i.e., error compensation), while positive covariance means

that individual finger forces act synergistically, but each finger’s
errors are accumulated and the VF force error increases (i.e.,
error amplification; Shim et al., 2003a; Latash et al., 2007). The

covariances between finger forces,
∑

σxi,xj and
∑

σei,ej that
we use as an index of multi-finger synergy are mathematically
similar to the motor synergy indices used in other previous
studies (Shim et al., 2004; Latash, 2008, 2010; Ranganathan
and Newell, 2008; Karol et al., 2011). One advantage of using
covariances is that the total variance can be linearly decomposed
into individual finger variances and inter-finger covariances (Koh
et al., 2015). Therefore, covariances were used in this study
as indices of motor synergies. We define motor synergy as
task-specific interactions between motor effectors employed by
CNS for enhancement of motor performance and utilization
of degrees of freedom in a redundant motor system (Latash
et al., 2007; Shim et al., 2008). The sum of individual finger
force variances is the total variance in the motor task, while
the between-finger covariance reflects synergistic interactions
of individual finger forces. The total variance of the VF
force (i.e., the sum of individual finger variances) was also
decomposed into task-relevant and task-irrelevant variances
according to the Uncontrolled Manifold theory (Scholz and
Sch¨oner, 1999; Shim et al., 2004; Latash, 2010) to examine
the task-relevant and task-irrelevant variances related to motor
synergy.

Statistical Analysis
Paired t-test was used to compare OMSEFI experimentally
obtained and OMSE statistically estimated. One-way repeated-
measures ANOVA with Fisher’s post hoc pairwise multiple
comparisons were used to compare three feedback conditions. A
simple regression analysis was performed to determine whether
either of mean or variance of VF force at each trial increase or
decrease as a function of trial. The level of statistical significance
was set at p = 0.05.
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FIGURE 3 | Hierarchical organization of multi-finger force variability. The overall mean squared error (OMSE) is composed of or the linear sum of the variance

of the VF force (σ2) and the systematic error (b2). The variance of the VF force (σ2) is composed of or the linear sum of the intra-trial moment-to-moment variance

(online variance; σ2
X
), the time-averaged trial-to-trial variance (offline variance; σ2

E
), and at the virtual finger (VF) level where the task is performed with the sum of all

finger forces (VF force). The online and offline variances at the VF level are composed of or the linear sum of individual finger (IF) force variances

(

n
∑

i= 1
σ2
xi

and
n
∑

i=1
σ2
ei

)

and between-finger force covariances

(

n
∑

i 6=j

σ2
xi ,xj

and
n
∑

i 6=j

σei ,ej

)

at the IF level.

RESULTS

Effects of Intra-Auditory Integration on
Motor Performance
We found that intra-auditory integration followed Bayesian
model. The OMSEFI calculated from the Bayesian model did not
differ from the experimentally obtained OMSE [t(9) = 0.896,
p = 0.393]. There were also no differences between the model
and the experimental data for VF variance [t(9) = 0.614,
p = 0.554] or the systematic error [t(9) = 2.10, p =

0.065; Figure 4]. We also found that intra-auditory integration
enhanced motor performance quantified as OMSE. Repeated-
measures ANOVA showed that OMSE experimentally obtained
from the FI condition was smaller than both OMSEF and
OMSEI from the F condition and the I condition, respectively
[F(2, 9) = 12.76, p < 0.001; FI vs. F: p = 0.003, and FI
vs. I: p = 0.004]. Using HDV model, OMSE decomposed into
online and offline variance of the VF force, and the systematic
error, which are reflected as consistency, reproducibility, and
accuracy of motor task, respectively. We found that the enhanced
motor performance achieved by improving consistency and
reproducibility of the VF force with unchanged accuracy. The

variance of the VF force in the FI condition was also smaller than
those from the F condition and the I condition for both online
control [F(2, 9) = 8.92, p = 0.002; FI vs. F: p = 0.009, and FI vs. I:
p = 0.002] and offline control [F(2, 9) = 10.07, p = 0.001; FI vs.
F: p = 0.003, and FI vs. I: p = 0.015]. The systematic errors
did not differ across the feedback conditions [F(2, 9) = 2.088,
p = 0.153]. Thus, the decreases in OMSE were mainly due to
the reduction of both online and offline variances, rather than
systematic errors.

Effects of Intra-Auditory Integration on
Motor Synergy
The VF variance in this model is mathematically equivalent to
the sum of individual finger variances and covariances for both
online and offline control, which allows us to investigate the
source of changes in VF variances. We found that intra-auditory
integration enhanced both online and offline motor synergy.
Repeated-measures ANOVA revealed that online individual
finger variance [F(2, 9) = 6.86, p = 0.006; FI vs. F: p = 0.019,
and FI vs. I: p = 0.016] and covariance [F(2, 9) = 7.38, p = 0.005;
FI vs. F: p = 0.011, and FI vs. I: p = 0.003] were lower in the FI
condition than in the F and I conditions (Figure 5). In contrast,
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FIGURE 4 | VF level variables: overall mean square error (OMSE), varaince, sestematic error, and online and offline variances at the VF level for F

condition (red), I condition (green), and FI condition (blue). These variables are associated with task performance. Error bars represent s.e.m. across subjects.

OMSE calculated from the Bayesian model is also shown. Asterisk indicates statistical significance (P < 0.05).

offline IF variance in the FI condition was smaller than the F
condition, but there was no difference between the FI condition
and the I condition [F(2, 9) = 9.92, p = 0.001; FI vs. F; p = 0.002,
and FI vs. I; p = 0.064]. Offline individual finger covariance
was smaller in the FI condition than the F and I conditions
[F(1.276, 9) = 9.85, p = 0.006; FI vs. F: p = 0.004, and FI vs. I: p =

0.019]. Note that smaller individual finger covariance represents
smaller error amplification between individual finger forces (Koh
et al., 2015). In analyses of task-relevant and task-irrelevant
spaces, both online and offline individual finger variances in the
task-relevant space were smaller in the FI condition as compared
to the F and I conditions [online: F(2, 9) = 8.92, p = 0.002; FI vs.
F: p = 0.009, and FI vs. I: p = 0.002, and offline: F(2, 9) = 10.07,
p = 0.001; FI vs. F: p = 0.003, and FI vs. I: p = 0.015], while
both online and offline individual variances in task-irrelevant
space remained unchanged throughout the feedback conditions
[online: F(2, 9) = 2.725, p = 0.093, and offline: F(2, 9) = 1.001,
p = 0.387]. Online individual finger covariance in both F and
I conditions was statistically greater than zero [F: t(9) = 3.020,
p = 0.014 and I: t(9) = 3.997, p = 0.003] while online covariance
in FI condition did not significantly differ from zero [t(9) = 1.429,
p = 0.187]. Offline individual finger covariance in all conditions
was statistically greater than zero [F: t(9) = 6.056, p < 0.001, I:
t(9) = 6.845, p < 0.001, and FI: t(9) = 4.326, p = 0.002].

Learning Effects
We also tested whether a learning effect exists using a simple
linear regression. The mean and variance of VF force across time
at each trial was calculated to test if these values significantly
increase or decrease as a function of trial. No significant
regression was found for mean of VF force in any of the
conditions [F: F(1, 13) = 4.296, p = 0.059, I: F(1, 13) = 0.050,
p = 0.827, and FI: F(1, 13) = 0.108, p = 0.748], along with
no significant regression for variance [F: F(1, 13) = 4.515, p =

0.053, I: F(1, 13) = 2.313, p = 0.152, and FI: F(1, 13) = 2.392,
p = 0.146].

DISCUSSION

Previous studies on sensory integration have mainly focused on
the CNS mechanisms of inter-sensory integration, e.g., visual
and auditory, visual and tactile, or visual and proprioceptive
(Ernst and Banks, 2002; Alais and Burr, 2004; Helbig and
Ernst, 2007; Butler et al., 2010; Fetsch et al., 2010; Reuschel
et al., 2010). The current study, for the first time, showed how
intra-sensory integration of frequency and intensity in auditory
feedback affected motor performance and multi-finger synergy
in a constant finger force production task. We reported that
motor performance could be enhanced through intra-auditory
integration as evidenced by improved tracking of the target
force by the VF force. In addition, we report that multi-
finger synergy in producing that VF force is enhanced through
intra-auditory integration as evidenced by decreased covariance
between individual finger forces.

Our study employed the hierarchical organization of multi-
finger actions and used the HVD model previously proposed
by our group for the separate analysis of within-trial (online)
and between-trial (offline) motor behaviors (Koh et al., 2015).
We found that providing feedback on both intensity and
frequency was associated with the decreased covariances among
individual finger forces in both online and offline control. This
result indicates that the CNS responded to the presentation of
feedback on multiple auditory components by decreasing error
amplification among individual finger forces, resulting in both
greater consistency and greater repeatability of the VF force.

Positive covariance between individual finger forces indicates
that individual finger forces synergistically interact (Latash,
2010), but amplify the VF force error in the constant multi-finger
pressing task, while negative covariance implies that individual
finger forces interact to attenuate the VF force error, or to
maintain a relatively constant VF force when individual finger
forces are fluctuating. The ability to produce a particular VF
with fluctuating individual finger forces can be viewed as a
sign of versatility or flexibility within the motor system. The
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FIGURE 5 | Multi-finger force covariance and individual finger force variance for online and offline controls for F condition (red), I condition (green),

and FI condition (blue), at the individual finger (IF) level. The individual fingers’ contributions to the overall covariance and variance values are shown in the

4-dimensional diamond graphs (A,C,E,G). Error bars represent s.e.m. across subjects. The accompanying bar graphs show the overall covariance and variance

values (B,D,F,H). The covariance and variance, only in online control, showed statistically significant differences between FI and either F or I conditions. The overall

variance values are decomposed into task-relevant and task-irrelevant variance values (I–L). Task-relevant variance for both online and offline controls showed

statistically significant differences between FI and either F or I condition. Asterisk indicates statistical significance (p < 0.05).

current study showed that the intra-auditory integration was
associated with decreased positive covariance between individual
finger forces, i.e., decreased error amplification at VF level.
Many previous studies that employed visual force feedback often
reported negative covariance between individual finger forces
in similar tasks of constant VF force production (Shim et al.,
2003b, 2004; Latash, 2010; Karol et al., 2011). Contrary to
these studies, our study showed positive covariance between
individual finger forces. This covariance difference may be
due to the differences in the level of feedback uncertainty in
sensory feedback the CNS received, leading to relatively high
task uncertainty introduced by the auditory feedback used in
our study as compared to the visual feedback used in the
previous studies. This speculation is consistent with the study
by Ranganathan and Newell (2008) in which they demonstrated
that the covariances between individual finger forces could be
systematically modulated by the uncertainty of the sensory
feedback. Reduction in positive covariance between individual
finger forces with intra-auditory integration would also be
consistent with the principle of minimal interactions (Gelfand
and Tsetlin, 1966), where interactions between low-level elements
of a hierarchy are organized such that the inputs from one

element to another (i.e., interactions) are minimized in an
optimal system.

In addition, it was observed that offline individual finger
variances and covariances were 2–5 times greater than online
counterparts. The large differences between online and offline
control suggest that the individual finger forces fluctuated
more and the coupling between individual finger forces were
stronger between trials as compared to within a trial. This
observation indicates that the CNS used larger “workspaces”
of individual finger forces and the inter-finger interactions
were greater between individual finger forces in offline control
than in online control. The large fluctuation of individual
fingers forces in offline may be contributed by two different
mechanisms: active utilization of the redundant degrees of
freedom in the multi-finger system in offline control, and/or
greater noise in the offline part of the control system. According
to the Bayesian model, prior knowledge about the relative
likelihood of different stimulus values can be integrated with
new sensory information to improve estimates of stimulus
values (Körding and Wolpert, 2004). Prior knowledge is task-
specific and achieved through experience with that particular
task. Although our analysis assumes no prior knowledge, it may
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be possible that prior knowledge gained from previous moments
within a trial or previous completed trials may have contributed
to the motor outcomes. If it is indeed the case, it is more
likely that the prior knowledge influenced motor behaviors more
within a trial as the sensory feedback is continuously provided
online contrary to the offline counterpart. Future research
specifically on prior knowledge and its impact on both online
and offline control may enhance our understanding of the role
of intra-auditory integration in motor performance and motor
synergy.

Sensory integration research has often used congruent or
incongruent multi-sensory information to provide sensory
feedback for the same or a different state of physical property,
respectively. For example, sound and light signals can come
from a same position (congruency) or different positions
(incongruency) in an experiment where a subject is instructed
to identify the location of the sensory source (Battaglia et al.,
2003). The previous studies showed that both congruent and
incongruent feedback conditions follow the Bayesian model
(Knill and Pouget, 2004; Körding and Wolpert, 2004). Our
research investigated only the congruent auditory feedback where
we provided the information about the same state of sound due
to the technical difficulties to provide different reference force
levels required for incongruent auditory feedback. According to
the previous studies, force magnitude is associated with force
variability (Schmidt et al., 1979; Galganski et al., 1993; Enoka
et al., 1999). In other words, the force variability can affect motor
performance and potentially motor synergy as well. Because
of these reasons, our experiment did not involve incongruent
auditory feedback in the effort to prevent adding additional
complexity in the study design.

The feedback gains used in the current study were set
according to “just noticeable differences” previously reported
assuming a change in force of 1 N. The use of the feedback
gains through individual auditory sensitivity test may have
provided more accurate measures into the intra-auditory
integration. In addition, we manipulated two physical quantities,
frequency, and intensity. These quantities are transformed as

physiological quantities, pitch, and loudness. The psychophysical
transformation from frequency-intensity space to pitch-loudness
space may not be a homeomorphism. However, the sensitivity
test during a constant force production task demands a new
method for accurate quantification through careful experiments
and modeling because the just noticeable difference may be
subject to changes during the dynamic process of finger force
production.

In conclusion, we found that both motor performance and
motor synergy during a constant multi-finger force production
were enhanced through intra-auditory integration, which
supports the idea that the CNS can integrate multiple sensory
components within the auditory modality to enhance motor
outputs consistent with the Bayesian model. In addition, our
results provide new evidence that the intra-auditory integration
is also associated with improved motor synergy. Although the
central back coupling hypothesis proposed in our previous study
demonstrated the theoretical possibility of generating synergistic
actions between motor effectors without an active involvement
of sensory feedback (Latash et al., 2005), the current study
provides evidences that the auditory feedback and intra-auditory
integration can indeed play an important role multi-finger
synergy.
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