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Increasing transparency and reproducibility
in stroke-microbiota research: A toolbox
for microbiota analysis

Adam Sorbie,1 Rosa Delgado Jiménez,1 and Corinne Benakis1,2,*

SUMMARY

Homeostasis of gutmicrobiota is crucial in maintaining human health. Alterations,
or ‘‘dysbiosis,’’ are increasingly implicated in human diseases, such as cancer, in-
flammatory bowel diseases, and, more recently, neurological disorders. In
ischemic stroke patients, gut microbial profiles are markedly different compared
to healthy controls, whereas manipulation of microbiota in animal models of
stroke modulates outcome, further implicating microbiota in stroke pathobi-
ology. Despite this, evidence for the involvement of specific microbes or microbi-
al products and microbial signatures have yet to be identified, likely owing to dif-
ferences in methodology, data analysis, and confounding variables between
different studies. Here, we provide a set of guidelines to enable researchers to
conduct high-quality, reproducible, and transparent microbiota studies, focusing
on 16S rRNA sequencing in the emerging subfield of the stroke-microbiota. In
doing so, we aim to facilitate novel and reproducible associations between the
microbiota and brain diseases, including stroke, and translation into clinical
practice.

INTRODUCTION

Besides select sterile sites, the human body is colonized by complex communities of microbes, termed the

microbiota that encompasses bacteria, fungi, and viruses. These microbial communities have co-evolved

with us playing a crucial role in health and disease (Claesson et al., 2017). Characterization of themicrobiota

has been the subject of intensive research in the past decade, generating large volumes of data and with

the advent of next-generation sequencing and bioinformatic methods to analyze such data sets; these

communities are being characterized in-ever greater detail. Microbiota data, however, are highly complex

and high-dimensional, and affected by a multitude of confounding factors; thus, careful consideration of

sample collection, study design, and bioinformatic analysis is necessary to ensure robust and reproducible

results (Ghosh et al., 2020; Vujkovic-Cvijin et al., 2020).

Analysis of high-throughput microbial data often requires specialist training but progress has been made

on lowering the barrier of entry, particularly for biologists who may lack the statistical or bioinformatic

expertise necessary to conduct these analyses (Bolyen et al., 2019; Lagkouvardos et al., 2016; Schloss

et al., 2009). Although commendable, this, in combination with the surge in attention surrounding the

microbiota, has led to an increase in underpowered, associative, and often overinterpreted studies

that limit translational impact (Schloss, 2018). Fecal microbiota transplantation (FMT) and probiotics

are the only microbiota-based therapies currently used in clinical practice. FMT is solely used to treat

Clostridioides difficile infection, whereas despite widespread use of probiotics, evidence regarding their

efficacy as a treatment is currently lacking (Gupta et al., 2016). Clinically recommended uses are currently

limited to formulations containing Lactobacillus and Bifidobacterium to prevent necrotizing enterocolitis

in preterm infants (Su et al., 2020). Regardless, the recent adoption and development of orthogonal

methods to characterize microbiota, such as gnotobiotic mice and metabolomics have allowed elucida-

tion of the mechanisms underlying microbiota-disease associations (Chu et al., 2019). Fully embracing

these methods and ensuring microbiota studies are well designed will ensure further development

and establishment of emerging subfields of microbiota research, especially in fields addressing complex

gut-brain interactions, such as the involvement of the microbiota in ischemic stroke (Delgado Jiménez

and Benakis, 2021).
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Recently, the interaction between the gut microbiota and CNS – the gut brain axis – has been implicated

in the etiology of neurological diseases, particularly those with a neuroinflammatory basis such as

cerebral infarction (Benakis et al., 2016; Cryan et al., 2020; Houlden et al., 2016; Singh et al., 2016; Xu

et al., 2021). Indeed, patients with severe stroke display significantly altered microbiota compared to

healthy age-matched controls. Xia et al. identified dysbiotic communities in stroke patients, with the level

of dysbiosis predicting stroke severity (Xia et al., 2019). In murine studies, manipulation of microbiota

with antibiotics before experimental stroke improved the outcome. Further, the microbiota affects the

development of brain lesions by regulating polarization of gut T cells that traffic to the brain post-stroke

(Benakis et al., 2016, 2020). Despite the implication of the microbiota in stroke severity and outcome,

identification of both taxonomic signatures and functional mechanisms of disease remains to be seen.

Uncovering a stroke-associated microbiota signature holds the potential to utilize specific gut bacteria

as therapeutic interventions, impacting host pathobiology and stroke outcome (Figure 1). High-level

associations such as an increase in members of Enterobacteriaceae and a decrease in butyrate-produc-

ing bacteria have been shown by several groups but insights at lower taxonomic resolution are lacking

(Haak et al., 2021; Xu et al., 2021). Two recent studies, however, have linked specific microbes or their

metabolites to stroke severity and outcome. Post-stroke expansion of Escherichia coli and immune

stimulation via lipopolysaccharide was linked to systemic inflammation and impaired outcome (Xu

et al., 2021). High levels of the metabolite trimethylamine-N-oxide (TMAO) – a gut microbial metabolite

known to be associated with cardiovascular disease – increased infarct volume and led to a poorer func-

tional outcome (Zhu et al., 2021). Together, these studies provide significant evidence for an important

role of the microbiota in stroke pathogenesis and treatment, yet a distinct microbial signature has not

been identified, hampered by disparate findings between existing studies, likely owing to differences

in methodologies, low sample sizes, and unacknowledged confounding variables (Sadler et al., 2017;

Singh et al., 2016; Stanley et al., 2018).

In general, existing stroke studies have been conducted to a high methodological standard. Nevertheless,

more carefully designed and conducted investigations into the role of the microbiota in stroke will enable

reproducibility between different studies and further generation of mechanistic insights. This review aims

to provide a framework for conducting well-designed microbiota studies in general, but with a focus on

aspects specific to stroke research. Furthermore, we aim to facilitate cross-study comparison and reproduc-

ibility of stroke-microbiota studies, supporting translation into clinical practice. Importantly, this work pre-

sents a publicly available toolbox and reproducible bioinformatic pipeline to analyze 16S rRNA gene

sequencing data applicable to all microbiota studies.

Figure 1. The gut microbiota in ischemic stroke

A summary of current knowledge on the involvement of the gut microbiota in stroke and outstanding questions which microbiota signatures identified by

16S rRNA sequencing can answer (created with BioRender.com)
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Pitfalls in stroke-microbiota studies

Each step in the process of conducting a microbiota study can introduce bias, impacting downstream

results. The sheer variety in sample collection methods, DNA extraction, and sequencing itself can be

overwhelming for those new to the field. By discussing each step in-detail, outlining where problems

can occur and how, and suggesting best practices while also providing a detailed step-by-step microbiota

analysis from stroke fecal samples, we aim to provide a set of guidelines and our own recommendations

(Box 1) for stroke researchers who wish to enter the field, enabling them to conduct well-designed and

executed studies. Importantly, we believe our guidelines and bioinformatic pipeline will be of interest

beyond the field of microbiota stroke research.

Study design

Sample size and experimental design is one of the most important steps in conducting a microbiome

study but often overlooked (Debelius et al., 2016). For human microbiota analysis, it is crucial to

define the type of study (i.e., cross-sectional, or longitudinal) and the question of interest as this

will impact processing and analysis downstream. A cross-sectional study of mucosal biopsies will

require different extraction methods and controls than a longitudinal follow-up study of stool samples.

Thus, the experimental design needs to consider the following points: (1) Will this be a longitudinal

or cross-sectional study? (2) How will samples be preserved and within what time frame will they be

processed? (3) Which readouts are planned, 16S, Shotgun metagenomics, Metabolomics or multiple? If

using 16S which hypervariable region will be used? (4) Is the study well powered and controlled? (5)

Are potential confounding variables well documented and can they be accounted for? By ensuring all

these questions are sufficiently answered, robustness and reproducibility of results can be significantly

improved.

Many confounding variables can impact microbiome composition, potentially obscuring genuine patterns

or leading to false conclusions. Factors such as lifestyle (Vujkovic-Cvijin et al., 2020), geography (He et al.,

2018), diet (Asnicar et al., 2021a), and medication (Forslund et al., 2021) all impact microbiota composi-

tion. In stroke patients, stool transit time and frequency, sex, age, and smoking may also confound re-

sults, either alone or in an additive or combinatorial manner. Importantly, many of these factors are either

Box 1. Recommendations for sample collection and processing

Design Recommendations Further reading

Sample size Consult a statistician or utilize tools such as

powmic or Micropower to estimate sample

size before beginning study

(Chen, 2020; Debelius et al., 2016;

Kelly et al., 2015)

Sample collection method Stool samples: fresh sample (Claesson et al., 2017;

Liang et al., 2020)Tissue samples: whole biopsies rather

than mucosal scrapes are preferable

Sample storage Store samples immediately at �80�C or if

study design requires RT storage, store in

95% ethanol

(Marotz et al., 2021;

Pollock et al., 2018)

DNA extraction method Use a mechanical lysis method and try to

ensure samples are processed with the

same kit

(Gerasimidis et al., 2016;

Nearing et al., 2021)

Controls Prudent use of negative and positive controls.

We recommend at least one extraction control

per batch and additional water controls during

library preparation and sequencing

(Bedarf et al., 2021;

de Goffaude et al., 2018)

Sequencer Illumina MiSeq/HiSeq� machines are

appropriate for most 16S studies

(Caporaso et al., 2012;

Pollock et al., 2018)

Hypervariable region V1-V2/V3, V4, and V3-V4 are all commonly

used and suitable for animal or human studies

(Abellan-Schneyder et al., 2021)
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impacted by or are risk factors for stroke themselves (Asnicar et al., 2021b; Ghosh et al., 2020; Hankey,

2020; Lim et al., 2012; Phan et al., 2019; Vujkovic-Cvijin et al., 2020). Several other factors associated

with stroke, such as severity, reduced food intake post-admission, infection, underlying co-morbidities,

and post-stroke medication and treatment, could also introduce significant variability in microbiota

composition (Chamorro et al., 2007; FOOD Trial Collaboration, 2003; Vujkovic-Cvijin et al., 2020).

Antibiotics certainly impact gut microbiota; however, current, or past usage (e.g., in the last two months)

is included in the exclusion criteria of most if not all existing stroke-microbiota studies. Despite this,

recent work has suggested that antibiotics may have a longer lasting impact on microbial composition,

which should be taken into account (Vujkovic-Cvijin et al., 2020). At this stage, it is important to

systematically collect metadata from patients to ensure that confounding variables can be controlled

for (Michel et al., 2010). An overview of considerations during this stage and our recommendations are

listed in Table 1. This is particularly important for human studies but also in animal models as well. It

is well established that co-housing of mice homogenizes microbiota composition as mice are copropha-

gic, hence experimental findings must be replicated across multiple cages to ensure treatment/condition

associated effects are reproducible (Robertson et al., 2019). Stroke specific factors also apply to animal

models; mice subjected to severe stroke (transient occlusion of the middle cerebral artery) (Jackman

et al., 2011) have a reduced food intake in the acute response (Lourbopoulos et al., 2016) in comparison

to their sham counterparts, in part owing to sickness behavior (Roth et al., 2020), which likely impacts

microbiota. To our knowledge, no stroke-microbiota study to date has accounted for this, however, con-

trolling food intake, for example, by fasting sham mice, can mitigate this effect, improving the reliability

of results. Stress induced by surgery and anesthesia also alter microbial composition, however using sham

mice as a control likely reduces the impact of this (Singh et al., 2016). Nevertheless, it can be useful to

include a non-surgical control in addition. Stroke severity itself (as quantified by infarct volume) also

differentially impacts microbiota. Microbial composition of animals with small infarct volumes, induced

by permanent middle cerebral artery occlusion (pMCAO) resemble sham mice (Singh et al., 2016). Infarct

size also depends on the gender and age of experimental animals; thus, mice must be age and gender

matched (Manwani et al., 2013). Examples of these considerations and our recommendations to mitigate

them are compiled in Table 2.

Sample size

Estimating sample size is another often overlooked step, yet the validity and reproducibility of findings is

highly dependent on this. Compounding this problem, very few software packages or tools currently exist

to calculate sample size specifically for microbiota studies. Several R packages have been developed to

solve this problem. Micropower, allows users to estimate the sample size required to detect differences

in beta-diversity using PERMANOVA (Kelly et al., 2015). The recently published Powmic also enables power

analysis for differential abundance testing (Chen, 2020). Despite this, only a limited number of microbiome

Table 1. Experimental design considerations for human studies

Considerations Recommendations

Co-morbidities Record any significant existing or prior medical conditions

Age Ensure control groups are age matched

Sex Stroke severity and outcome is often worse in women and may need to be adjusted for (Phan

et al., 2019)

Geography Ensure individuals reside in the same region/country or stratify by location (He et al., 2018)

Food intake Patients with severe stroke may have reduced food intake, potentially confounding results

(FOOD Trial Collaboration, 2003)

Stool consistency Record stool consistency if possible (Lim et al., 2012; Vujkovic-Cvijin et al., 2020)

Infection Post-stroke infections are common and should be recorded (Chamorro et al., 2007)

Medication Existing medication may confound results, patients with a history of antibiotic use in the past

six months should be excluded (Forslund et al., 2021; Vujkovic-Cvijin et al., 2020)

Treatment Treatment given – i.e., Thrombolysis should be recorded and tested for an effect on the

microbiota. Surgery likely additionally impacts microbiota and should be noted

Alcohol use/smoking History of alcohol use and smoking are independent stroke risk factors but may also impact

microbiota composition (Hankey, 2020; Vujkovic-Cvijin et al., 2020)
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studies have utilized these tools (Debelius et al., 2016). In stroke, the severity appears to correlate with the

magnitude of alterations in microbiota composition, thus when dealing with high variation in severity, this

must be taken into consideration when deciding which samples to sequence (Singh et al., 2016; Xia et al.,

2019; Yin et al., 2015). The microbiota also shows high variability for several weeks post-stroke (Xu et al.,

2021). For longitudinal studies, this necessitates a larger number of total samples or utilizing multiple base-

line samples to assess inherent variability. Well-planned and powered experiments and thoughtfully

collected metadata underpin high quality studies as all downstream steps can be affected by choices

made at this stage.

Sample type, collection, and storage

Owing to the relatively low cost and apparent ease of analysis, 16S rRNA sequencing is commonly used

to profile microbial communities, providing a high-level, but low-resolution, overview of taxonomic

composition. More in-depth methods such as shotgun metagenomics meta-transcriptomics and meta-

proteomics provide information on both microbial composition and function but can be significantly

more costly and require specialist resources to process and analyze data (Knight et al., 2018). Increasingly

utilized in microbiome research, the chemical composition of the microbiome can also be measured via

untargeted metabolomics (Bauermeister et al., 2021). Not all sample types are amenable to each method

of profiling microbial communities; however, the choice of readout impacts the sample type that can be

collected and dictates study design. In the stroke-microbiota field, there is currently a lack of diversity in

sample types, particularly in humans, likely owing to logistical and ethical constraints. Results derived

from stool samples are potentially limited in their translational impact as stool may not necessarily repre-

sent microbes involved in disease pathology (Claesson et al., 2017). Furthermore, stool samples provide

a snapshot of the entire gastrointestinal tract but likely do not represent each compartment equally, re-

flecting distal gut sites better than proximal gut, which should be taken into consideration with respect

to the scientific questions being asked. Here we focus on taxonomic profiling via 16S rRNA sequencing

that, along with metabolomics and meta-proteomics, has the greatest breadth in terms of suitable

sample types.

The method used for sample collection and subsequent storage can also introduce technical variation

(Liang et al., 2020). Stool collection is the most used sample type, particularly in clinical studies and is likely

Table 2. Experimental design considerations for animal studies

Considerations Recommendations

Microbiota standardization Ensure external animals are acclimatized to facility for at least 1 week before

experiment (Montonye et al., 2018)

Mouse congenital background

and source

Comparison of microbiota composition between mice from same genetic

background or same commercial vendors/facilities (Robertson et al., 2019)

Food Standardization and sterilization (autoclave) of mouse diets

Litter and cage effect Co-housing of animals of different treatment/conditions ensures microbiota shifts

are not due to cage effect (Robertson et al., 2019)

Randomization of experimental groups

Replication of findings across multiple cages of different litters

Age and sex of mice Use animals of similar age and the same sex, as both factors can impact stroke

outcome (Manwani et al., 2013)

Timing of sample collection Ensure samples are collected at approximately the same time of day to limit

variation due to circadian rhythm (Liang et al., 2015)

Experimental model Avoid direct comparisons of different experimental stroke models as somemodels

impact microbiota composition more than others (Singh et al., 2016)

Food intake Monitor weight loss and food intake after stroke/sham surgery by fasting of sham

mice or weighing food

Include weight loss as a covariate in analyses if significantly different between

groups

Anesthesia Record and standardize the dose, duration, and type of anesthesia given during

surgical procedures
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to be themost appropriate for human stroke-microbiota studies, owing to the difficulties of obtaining other

relevant sample types. Multiple methods exist to sample stool; a specimen can be obtained directly or via

rectal swab, yet results are conflicting on the impact of each on microbial composition. Rectal swabs, when

processed quickly, reflect stool microbiota composition relatively well; however, Fair et al. have recently

shown that rectal swabs may not accurately represent the microbiota of critically ill patients (Bokulich

et al., 2019; Fair et al., 2019). As such, in stroke-microbiota studies, stool samples are preferred over rectal

swabs, where possible.

In animal studies, there is often greater flexibility over sample type and collection; thus, the method chosen

needs to be aligned with the scientific question. For example, profilingmucosal associated bacteria is more

useful when studying the involvement of the microbiota in modulating intestinal immune response, post-

stroke mucosal tissue impairment, and bacterial translocation (Houlden et al., 2016; Stanley et al., 2016).

Several mucosal associated taxa, such as Segmented filamentous bacteria (SFB) in mice, induce intestinal

T-cells under homeostatic conditions, as well as in stroke and are not reliably detected in stool (Goto et al.,

2014; Sadler et al., 2017). Tissue and other ntestinal samples, such as cecal content, probably approximate

local communities better than stool; however, obtaining these sample types requires sacrifice, restricting

their use to cross-sectional studies. Regardless of the subject or sampling method, it is crucial to ensure

samples are collected in the same manner and that comparisons between different collection methods

are avoided.

Different sample storage conditions can additionally impact microbial abundances and composition

(Chen et al., 2019; Liang et al., 2020; Marotz et al., 2021). In principle, extraction from fresh samples is

best, however this is almost never feasible in practice. Ideally, samples should therefore be frozen at

�80�C before extraction. For some study designs, this may present difficulties, particularly where samples

are collected by patients themselves. For room temperature preservation, OMNIGENE Gut (Choo et al.,

2015), 95% ethanol (Marotz et al., 2021), and FTA cards (Vogtmann et al., 2016) all suitably maintain

composition during storage. As the most widely available and cost-effective method, we recommend

storing samples in 95% ethanol at a ratio of 2:1 for stroke-microbiota studies where immediate storage

at �80�C is not practical. As with sample collection, it is important to keep storage methods consistent

between samples.

DNA extraction

Choice of DNA extraction kit can be another source of unwanted technical variation (Gerasimidis et al.,

2016; Mackenzie et al., 2015). Various commercial kits are available, utilizing several methods of lysis –

chemical, enzymatic, or mechanical – each significantly differing in resulting microbial composition.

Gram positive and endospore forming bacteria are more resistant to lysis, particularly to chemical and

enzymatic methods. Moreover, abundances of certain taxa also vary with the DNA extraction kit used.

Mackenzie et al. compared five different commonly used extraction methods, showing that the abundance

of Firmicutes and Bacteroidetes varied according to the method used (Mackenzie et al., 2015). Neverthe-

less, between-sample variation was greater than technical variation attributed to kit. Gerasimidis et al. re-

ported similar findings and suggest that among themethods tested there was no one ‘‘best’’ method for all

purposes (Gerasimidis et al., 2016). However, we recommend the use of a kit employing a mechanical-

based lysis method. The inclusion of this step is associated with the increased quantity of microbial

DNA, higher bacterial diversity, and increased recovery of Gram-positive taxa (Pollock et al., 2018).

Ultimately, any approach needs to be optimized for sample type, have a high DNA yield, and not be biased

toward any particular taxon.

Low-biomass samples such as biopsies present additional challenges owing to the presence of contamina-

tion in extraction reagents, recently termed the ‘‘kitome’’ (de Goffau et al., 2018; Nearing et al., 2021). Salter

et al. elegantly highlighted this problem using a mock community dilution series, spiked with an unusual

Salmonella strain (Salter et al., 2014). With increasing dilution, true biological reads were drowned out

by contamination. Multiple studies have verified these findings, since finding that the kitome varies

according to both batch and kit (Glassing et al., 2016; Weiss et al., 2014). For any study, we recommend

a prudent use of negative extraction controls and to process all samples in one batch. Mock community

controls can also be useful, particularly when optimizing methods. Negative and positive controls are

essential for low biomass studies as contaminating bacterial DNA can mask true biological signal or

lead to false conclusions (Salter et al., 2014). Bacterial DNA has been identified in many sterile sites
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previously thought to be sterile, including the brain tissue. However, evidence for a ‘‘brain microbiome’’ is

scant and additional work has been unable to separate contamination from true signal (Bedarf et al., 2021).

Library preparation and sequencing

Library preparation and sequencing are generally outsourced to a core facility or commercial sequencing

provider, but the choice of hypervariable region(s) and primer pair – in the case of 16S sequencing – and

sequencing platform is left to the researcher. As we are focused on amplicon sequencing of the bacterial

component of the microbiome, other technologies are outside the scope of this review. Readers are

referred to the following in-depth articles on metagenomics (Quince et al., 2017), meta-transcriptomics

(Zhang et al., 2021), and metabolomics (Bauermeister et al., 2021). The 16S rRNA gene comprises nine

hypervariable regions, V1–V9. The region and primer pair used will have a significant impact on both

phylogenetic resolution and the taxa that are detected (Abellan-Schneyder et al., 2021; Chen et al.,

2019). No existing primer pair are universal, and somepairsmaymiss biologically relevant taxa, for example,

the commonly used 27f primer, amplifying the V1 region can miss some Bifidobacteria (Chen et al., 2019).

Similarly, there is no gold standard hypervariable region, although V1–V2/V3, V3–4, and V4 are among the

most commonly used regions in human and mouse microbiota studies that may aid comparison with exist-

ing publisheddata (Abellan-Schneyder et al., 2021). Larger regions also increase the identification of certain

taxa. The number of PCR cycles used to generate 16S amplicons will also affect microbial composition. A

high number of cycles increases the possibility of bias, chimera formation and the impact of contamination

(Sze and Schloss, 2019). However, this is generally only an issue for low biomass samples such as tissue bi-

opsies, as the low input may require a higher number of cycles to produce sufficient input for sequencing,

and pooling of PCR products can be used to mitigate this issue (Kennedy et al., 2014). The choice of primer

pair and hypervariable region is mostly down to personal preference; however, for certain environments,

some primer pairs are preferred. V1–V2 is recommended for oral microbiota, for example, as it produces

the most faithful representation of oral communities (Wade and Prosdocimi, 2020). In any case, researchers

should be aware of the pros and cons of each pair and choose accordingly.

The majority of 16S studies are sequenced on using Illumina MiSeq machines, owing to their high

throughput, accuracy, and length of reads (up to 2 x 300 bp) (Caporaso et al., 2012). The chosen platform

depends on the scientific question being asked but generally, MiSeq will be the most appropriate. Illu-

mina HiSeq machines are also appropriate for both 16S and Shotgun metagenomics studies, offering

higher accuracy at the expense of increased cost and shorter reads (Caporaso et al., 2012; Quince

et al., 2017). However, recent newer Nextseq and Novaseq Illumina machines are being increasingly

utilized in metagenomics, owing to reduced costs and similar output (Quince et al., 2017). In Illumina

machines, reads can be sequenced in either single- or paired-end mode. We recommend opting for

paired end as this can increase the coverage and amplicon length. Longer-read technologies such as

Nanopore and PacBio sequencing are becoming more commonplace in recent years but traditionally

suffered from high error rates and an underdeveloped bioinformatics ecosystem, encumbering analysis.

However, this has improved vastly, with both Nanopore and PacBio sequencing achieving accuracies of

>99.9% on full-length 16S sequences as of 2021 (Karst et al., 2021). Improvements to bioinformatics tools

have also facilitated pre-processing and analysis but only a handful of microbiota analysis packages

accept these kinds of data (Callahan et al., 2019). In the coming years, full-length 16S sequencing will

likely be a viable alternative to short amplicon sequencing, and further enable the identification of

taxonomic signatures in stroke and other diseases.

Bioinformatic tools for microbiota analysis

In this section, we outline methods and tools used for raw data processing and statistical analysis of

microbiota data. As the application of these tools can require significant background knowledge, even

those with well-designed microbiota studies can run into problems with their analyses. Here we provide

an explanation of techniques and tools used and suggest various software packages and pipelines with

extensive tutorials and documentation to enable researchers unfamiliar with the field to make informed

choices. As microbiota analysis contains a substantial amount of field-specific jargon, we provide a glossary

below explaining commonly used terms (Box 2).

Raw data and pre-processing

Raw 16S rRNA sequencing data will generally be received in a fastq format, which requires substantial

quality control and pre-processing before any inferences regarding microbiota composition can be
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made. A multitude of pipelines and software packages are available, with varying levels of skill and tech-

nical knowledge required for use. Although pipelines with a graphical user interface (GUI) may seem like

an attractive option, we maintain that it is better to invest the time to learn how to use more advanced

and flexible tools, as this necessitates a greater understanding of the data. Widely used, well-maintained

tools with extensive documentation such as QIIME2 (Bolyen et al., 2019), mothur (Schloss et al., 2009), and

DADA2 (Callahan et al., 2016) are among some of the best options to pre-process and/or analyze micro-

biota data. A summary of all tools listed in this section and their use can be found in Box 3.

A crucial starting point in any analysis of sequencing data is the assessment of data quality (Figure 2, step 1).

Tools such as FastQC and the extension package MultiQC enable an overview of sequence length, quality,

Box 2. Glossary

16S: The 16S rRNA small ribosomal subunit. Containing a combination of conserved and hypervariable regions it can

be used as a molecular barcode to profile bacteria and archaea.

Alpha diversity: Species diversity within samples. Measures include Richness, Chao1, Shannon, and Simpson diver-

sity.

ASV: Amplicon sequence variant. Error-corrected sequence representing the true biological sequence.

AUC (AUCROC): Area under the receiver operator curve. A measure used to assess the ability of a machine learning

models to distinguish between classes.

Beta diversity: Between sample diversity. Metrics include Bray-Curtis and UniFrac.

Bray-Curtis: A count-based dissimilarity metric (beta diversity), based on the fraction of overabundant counts.

Chao1: An alpha diversitymetric, which estimates species richness based on abundance of individuals belonging to a

given class. Accounts for abundance and evenness.

Compositional data: Data composed of strictly positive numbers with a fixed sum (i.e., 1), conveying only relative

information.

CLR transform: Centered-log ratio transform. A data transformation computed by calculating the log-ratio of each

taxon relative to the geometric mean.

Cross-validation: Amethod of estimating the generalizability of a machine learningmodel by resampling limited data.

Differential abundance: Identification of bacteria that differ in abundance between groups.

Evenness: An alpha diversity metric, assessing how similar abundance distributions are between samples.

Faith’|’s phylogenetic diversity: A phylogenetic measure of alpha diversity, calculated as the sum of branch lengths in

the phylogenetic tree.

False discovery rate (FDR): The proportion of findings that are falsely identified as significant.

NMDS: Non-metric multidimensional scaling. An ordination method that attempts to represent the dissimilarity be-

tween samples, as closely as possible in a low-dimensional space.

OTU:Operational taxonomic unit. A cluster of similar 16S sequences (usually 97%) approximating a bacterial/archaeal

genera or species.

PCoA (MDS): Principal coordinate analysis (also known as metric multidimensional scaling). An ordination method that

attempts to preserve distance between samples in a low dimensional Euclidean space.

PERMANOVA: Non-parametric multivariate ANOVA. Used to assess whether beta diversity metrics differ between

groups.

Machine learning: Use of data and algorithms to learn from data without explicit instruction. Machine learning models

can be used to identify patterns in data and predict future trends.

Metagenomics: Measurement of the entire gene content present in a sample (DNA).

Metatranscriptomics: Measurement of actively transcribed genes in a sample (RNA).

Metabolomics: Measurement of the small molecule component (<2,000 Da) of a sample.

Shannon diversity: A measure of alpha diversity, accounting for both the number of observed species and species

evenness.

Simpson diversity: An alpha diversity metric, measuring the relative abundance of species comprising sample rich-

ness.

Training/Test sets: Data splits used to train and test machine learning classifiers. The training set allows the model to

learn patterns in the data while the test set’s purpose is to estimate model performance on unseen data.

Rarefaction curve: A plot of species richness against read depth used to assess whether sampling depth was

adequate. A plateau indicates that no further diversity is likely to be detected with increased depth.

Richness: An alpha diversity metric measuring the total number of observed species.

ROC: A visual aid to assess machine learning classifier performance where the true positive rate is plotted against the

false positive rate.

UniFrac: A phylogenetic beta-diversity metric measuring the fraction of unique branches in a phylogenetic tree. The

extensions weighted and generalized UniFrac also take relative abundance into account.
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and adapter content (Andrews, 2010; Ewels et al., 2016). Low quality-reads, bases, and adapter sequences

can then be removed using tools such as Cutadapt or Trimmomatic (Figure 2, step 2) (Bolger et al., 2014;

Martin, 2011). Complete analysis suites such as QIIME2 and mothur wrap these programs or include their

own scripts to perform these tasks. Low-quality or improperly filtered data can lead to various problems

with downstream analyses, potentially inflating the diversity or hampering taxonomic classification.

Cleaned data can then be denoised, dereplicated, merged, if sequenced using paired reads, and then

used to infer Amplicon sequence variants (ASVs) or alternatively clustered into 97% operational

taxonomic units (OTUs) (Figure 2, steps 2 and 3). It is generally recommended to use ASVs as they increase

the resolution and are comparable between experiments. DADA2 (Callahan et al., 2016), Deblur (Amir

et al., 2017), and UNOISE2 (Edgar, 2016) are among the most widely used tools for ASV inference and

all provide extensive documentation. OTUs are still a viable option for community-level analyses such as

alpha and beta diversity and have been demonstrated to generate similar conclusions as ASVs from the

same samples (Glassman and Martiny, 2018). Recent work utilizing mock communities recommends

applying abundance filtering at 0.25% relative abundance to remove spurious ASVs orOTUs, as low abun-

dant sequencing artifacts can impact downstream analyses, and we recommend including this step in any

analysis (Reitmeier et al., 2021). After merging, using paired-end reads (Figure 2, step 4), ASVs orOTUs are

assigned taxonomy, usually by a machine learning model trained on representative sequences (Wang

et al., 2007). Most approaches use some variation of naive bayes by default, and, recently, Ziemski et al.

demonstrated alternative models do not significantly improve on this (Figure 2, step 5). In this case, other

methods should only be used with clear justification (Ziemski et al., 2021).

The choice of reference database, however, has a significant impact on the resulting taxonomic

assignments. The Ribosomal database project (RDP) (Cole et al., 2013), SILVA (Quast et al., 2012), and

Greengenes (DeSantis et al., 2006) are among the most comprehensive and most widely used reference

databases. Using mock communities, Abellan-Schneyder et al. demonstrated considerable discordance

in taxonomic assignment between databases, showing that RDP and SILVA performed consistently better

than Greengenes (Abellan-Schneyder et al., 2021). Although there is no gold-standard database, we

recommend using RDP or SILVA, as these are both larger and more recently updated than Greengenes.

Box 3. Bioinformatic tools

Use Tools References

Quality Control FastQC, MultiQC (Andrews, 2010; Ewels et al., 2016)

Primer/adapter trimming Cutadapt, Trimmomatic (Bolger et al., 2014; Martin, 2011)

Amplicon denoising DADA2, Deblur, UNOISE2 (Amir et al., 2017; Callahan et al., 2019;

Edgar, 2016)

Taxonomy databases RDP, SILVA, Greengenes (Cole et al., 2013; DeSantis et al., 2006;

Quast et al., 2012)

Phylogeny FastTree (Price et al., 2010)

Analysis suites QIIME2, mothur, phyloseq (Bolyen et al., 2019; McMurdie and Holmes,

2013; Schloss et al., 2009)

Pipelines IMNGS, nf-core/ampliseq (Lagkouvardos et al., 2016; Straub et al.,

2020)

Differential abundance ALDEx2, ANCOM/ANCOM-BC,

DESeq2, gneiss, LEfSe, MaAsLin2,

selbal

(Fernandes et al., 2014; Lin and Peddada,

2020b; Love et al., 2014; Mallick et al., 2021;

Mandal et al., 2015; Morton et al., 2017;

Rivera-Pinto et al., 2018; Segata et al., 2011)

Machine learning mikropml, SIAMCAT (Topçuo�glu et al., 2021; Wirbel et al., 2021)

Data repositories ENA/SRA (Leinonen et al., 2011)

Tools for reproducible

research

GitHub/GitLab, Rmarkdown,

Jupyter notebooks

(Allaire et al., 2021; Kluyver et al., 2016)
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To generate a phylogenetic tree, ASV or OTU sequences are first aligned, and a tool like FastTree can be

used to construct the phylogeny (Figure 2, step 5) (Price et al., 2010).

Each choice made during raw data processing will inevitably impact the data and it is critical that

these choices are justified and well documented to enhance thee validity and reproducibility of findings.

Using analysis pipelines in the form of scripts can help with this by providing a record of each step in

the process. QIIME2 and containerized pipelines, such as the nextflow-based nf-core/ampliseq, extend

this concept further by including provenance tracking and enabling fully reproducible analysis across

various computing infrastructures in the case of nf-core (Bolyen et al., 2019; Straub et al., 2020). We recom-

mend using such pipelines as they maintain the best balance between the ease of use and reproducibility.

Statistical analysis and interpretation

After ASV inference and taxonomic assignment, a matrix containing samples and the abundance of each

unique taxon is generated. Microbiota data are generally high-dimensional, often containing thousands of

ASVs and sparse, violating the assumptions of many common statistical tests. Additionally, each sample

has differing read counts that must be managed before proceeding with any analysis. It is important to

note that the number of reads is an additional important step in assessing the quality of the data. Defining

a minimum threshold is difficult as different environments will vary in the number of reads recovered;

however, work analyzing complex soil microbiomes has demonstrated even 2,000 reads per sample to

be sufficient to capture the diversity of most samples (Caporaso et al., 2010). Plotting a rarefaction curve

can also aid in assessing sampling effort.

To ensure measured differences are not an artifact of different read depth between samples, the data must

be subjected to normalization before proceeding with downstream analyses.

Normalization is a contentious topic in the microbiota field, with no universally agreed-upon method.

Rarefaction, which is randomly subsampling each sample to an even read depth, is very commonly used

and yet has received criticism, as it discards valid data and reduces statistical power (McMurdie andHolmes,

2014). Scaling methods such as cumulative sum scaling or converting data into relative abundances avoid

the problem of data loss but may lead to increased compositional bias and a higher false discovery rate

(FDR). Methods such as centered log-ratio (clr) transform mitigate compositional effects but are not

compatible with many alpha and beta diversitymetrics. As with many other steps in microbiome data pro-

cessing and analysis, there is no gold standard, and readers are referred to the following publications that

discuss the pros and cons of each in detail (Lin and Peddada, 2020a; McMurdie and Holmes, 2014; Weiss

et al., 2017). The choice of normalization method should depend on the desired downstream analyses,

with more advanced analyses potentially requiring a mixture of normalization strategies.

Assessing microbial community structure

After normalization, variations in the community-level structure can be assessed using alpha and beta

diversity metrics. Alpha diversity measures diversity within samples. Commonly used metrics such as

richness, Shannon index and Faith’s phylogenetic diversity (Faith’s PD) measure different aspects and

can be used complementary to each other (Finotello et al., 2016). Richness is a simple measure of the

number of observed species, whereas the Shannon index takes both species richness and evenness into

account. Faith’s PD integrates phylogenetic information to estimate species diversity. Other metrics

such as Chao1 and Simpson index are also often used; however, they are analogous to richness and

Shannon, respectively, and are redundant if used in combination (Finotello et al., 2016). Beta diversity,

on the other hand, measures the pairwise dissimilarity between samples and is used to assess how similar

or different two givenmicrobial communities are. The choice of metric can significantly influence the results

obtained; thus, the metric used should be justified by the biological question. Bray-Curtis, a counts-based

metric, measures the compositional dissimilarity between sites/groups while phylogenetic methods, such

as UniFrac, take the genetic relationship between species into account (Lozupone and Knight, 2005).

Figure 2. Data analysis pipeline

Overview of the data-analysis pipelines provided with this study, displaying each step in the analysis pipeline and the

software used. Some examples of the kinds of figures which can generated with our pipeline are highlighted in the last

step. Two versions of the same pipeline are provided, one written in R (left) and one in python via QIIME2 (right), which

wraps the individual analysis steps in one software package (created with BioRender.com)
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Weighted and Generalized UniFrac are extensions of this method, which also account for abundance into,

differing in terms of their sensitivity to lowly and highly abundant lineages (Chen et al., 2012; Lozupone

et al., 2007). Differences in beta diversity can be visualized using ordination methods like principal

coordinates analysis (PCoA; also known as multidimensional scaling) or mon-metric multidimensional

scaling (NMDS). Both NMDS and PCoA are suitable for all commonly used metrics; however, PCoA can

generally only detect linear trends, whereas NMDS additionally detects non-linear patterns. Additionally,

using PCoA with non-Euclidean distance metrics such as Bray-Curtis can produce negative eigenvalues,

which cannot be represented meaningfully, potentially hindering interpretation. In this case, additional

corrections must be applied before plotting. Researchers should be aware of the basics of each beta

diversity metric and choose an appropriate ordination method accordingly.

Differential abundance

Beyond community-level changes, a common goal is to identify taxa that are associated with disease or differ-

entially abundant between sample groupings. A recent meta-analysis of humanmicrobiota studies found that

among the 224 publications included 34 different methods of differential abundance (DA) were used, with

LEfSe being the most common (Bardenhorst et al., 2021; Segata et al., 2011). This magnitude of different op-

tions can seem overwhelming, often leading to researchers choosing sub-optimal methods. Methods devel-

oped for RNAseq data such as DESeq2 have also been widely applied to microbiota data, which have been

shown to perform poorly (Lin and Peddada, 2020a; Love et al., 2014), in part owing to not accounting for

data compositionality. Although there is still some debate over whether microbiota data are truly composi-

tional, compositionally aware methods are becoming more widely used, leading to the development of DA

tools accounting for this (Gloor et al., 2017; Lovell et al., 2020). Compositional data refer to data that sum to

a fixed constant e.g., 1 or 100, as with relative abundances. As these data are proportional, an increase in

the abundance of one species necessitates a decrease in others, which can bemisinterpreted by non-compo-

sitionalmethods. Novelmethods such asANCOM– including its recent extensionANCOM-BC– andALDEx2,

account for the compositional nature of microbiota data through the use of log-ratios, which makes the data

scale invariant (Fernandes et al., 2014; Lin and Peddada, 2020b;Mandal et al., 2015). Other approaches such as

selbal and gneiss utilize a concept known as ‘‘Balances,’’ whereby the log-ratios of groups of taxa rather than

individuals are associatedwith a response variable, enabling compositionally-aware identification ofmicrobial

signatures (Morton et al., 2017; Rivera-Pinto et al., 2018).We recommendusing compositionalmethods as they

are generally more conservative, reducing the potential number of false positives. Regardless of the DA

method used, controlling the FDR is a crucial step to ensure that the number of false positives is limited. Kleine

Bardenhorst et al. found almost half included studies did not correct for multiple-testing (Bardenhorst et al.,

2021). Owing to the high dimensionality of microbiota data, significant results can be expected just by chance;

therefore, it is essential to use an appropriatemethod to control type I error. MostDApackages include this by

default but researchers should always be aware of the problem of multiple-testing and ensure the FDR is

adequately controlled for. The impact of multiple testing can also be mitigated by including an additional

abundance and/or prevalence filtering step prior to DA testing, removing taxa below a given threshold. For

example, in our laboratory, we commonly use a prevalence filter, retaining taxa present in more than a third

of samples; however, we recommend defining thresholds operationally as, in some cases or environments,

low abundant taxa may be relevant to outcome.

Machine learning for the prediction of disease-associated microbiota

Machine learning (ML) is a promising method to identify potential microbial biomarkers associated with

disease but is perhaps the most abused analysis technique in microbiota research. Many studies report

extremely high classification accuracies, using metrics such as Area under the receiver operator curve

(AUC), but very few report low performance. The complexity and high variability of microbiota data would

imply that this is likely to arise from other factors rather than the true biological signal (Quinn, 2021). Many

microbiota studies have relatively low sample sizes or imbalanced groups, which, when combined with the

large number of features (i.e., ASVs or OTUs), present significant difficulties when training ML models,

leading to overfitting (Teschendorff, 2019). The minimum sample size to use depends on the complexity

of both the given data set and the model used. As a rule of thumb, we do not recommend training models

on data sets with a sample size <40 (Wirbel et al., 2021). Compounding this issue, small sample sizes can

often lead to researchers omitting test sets, artificially inflating performance and leading to unverified

results. Another common mistake is test set leakage, where information from the test set is included in

the training set, which can similarly inflate model accuracy. Estimates of accuracy can be obtained by using

cross-validation, where the data set is repeatedly split into training and test sets and the accuracy
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averaged across each fold. However, in many cases, this is used incorrectly, also often owing to test set

leakage, or not at all (Quinn, 2021). Finally, supervised feature selection – that is, preselecting features

that are differentially abundant or show high feature importance – is often performed before training an

ML model, for example, by filtering data sets to only include differentially abundant taxa, again leading

to overly optimistic model accuracy (Wirbel et al., 2021). Feature selection should be nested within the

cross-validation process to ensure reliable estimates of model accuracy.

Clinical stroke-microbiota studies using of ML have generally demonstrated acceptable use of cross-vali-

dation and test and training sets, however many have performed supervised feature selection (Li et al.,

2019; Xu et al., 2019; Yin et al., 2015). Together, these issues hamper identification of accurate microbial

signatures of disease. The correct use of ML models and larger sample sizes will allow the identification

of robust bacterial signatures of stroke, as already demonstrated for many other diseases (Asnicar et al.,

2021a; Ghosh et al., 2020). To ensure the correct use of ML, researchers can make use of R packages like

mikropml and SIAMCAT that automate most of the steps where researchers unfamiliar with ML can

make mistakes (Topçuo�glu et al., 2021; Wirbel et al., 2021).

Longitudinal analysis of microbiota data

Longitudinal sampling designs enable additional insights, enabling concurrent analysis of both inter and

intra-individual variability, however in stroke, temporal analyses have been limited thus far, yet are likely

crucial in identifying microbes involved in modulating outcome. Such designs present additional analysis

challenges, owing to the inherent autocorrelation of temporal data, which violates the assumptions of

many common statistical tests. Care must therefore be taken to ensure the correct tests are used,

particularly for DA or ML analyses.

Microbiome-specific methods or packages for time-series analysis are currently scarce; however, recent

versions of QIIME2 ship with a plugin for longitudinal analysis: q2-longitudinal that utilizes various methods

to measure the temporal stability and identify DA features (Bokulich et al., 2018). Most of the existing DA

methodsmentioned above are either not suitable at all for temporal data, or not suitable withoutmodifying

default parameters. ALDEx2, ANCOM-BC, andMaAsLin2, however, all implement models that can be used

to perform longitudinalDA (Fernandes et al., 2014; Lin and Peddada, 2020b; Mallick et al., 2021). For amore

detailed review and tutorial on analysis of time-series data, we refer the readers to Coenen et al. (2020).

Controlling for confounding variables

Confounding variables can lead to false identification of differentially abundant taxa or exaggerate AUC,

in the case of ML. Unfortunately, confounders are plentiful in microbiome research, which can make it

difficult to discern true signal from noise (Vujkovic-Cvijin et al., 2020). As discussed above, it is important

to collect as much detailed and relevant metadata as possible as this can be extremely helpful at this step

in the analysis. We recommend always plotting data before beginning any further analyses. For example,

when conducting alpha or beta diversity analyses, it can be informative to generate PCoA/NMDS plots

colored by additional variables than those of direct relevance to the scientific question of the study, to

assess the potential impact of confounding variables. However, this will only highlight confounders

thatcontribute significantly to variation in the data. In some cases, careful grouping of samples, or,

dependent on sample size, exploring subsets of groups can mitigate the impact of confounding

variables. We recommend using packages where confounders can be included as interactions, such as

gneiss, ANCOM-BC, or MaAsLin2 (Lin and Peddada, 2020b; Mallick et al., 2021; Morton et al., 2017).

Fostering reproducibility and transparency

To ensure the reproducibility and validation of the findings, raw data and associated metadata need to be

openly accessible before publication via public repositories such as the Sequence read archive/European

Nucleotide archive (SRA/ENA) (Leinonen et al., 2011). At the very least, every software package and the

specific version used need to be listed in themethods of any resultingmanuscript. In the case of automated

pipelines, this information should be sufficient to reproduce the analysis. However, for bespoke analyses,

pipeline scripts used to process the raw data should be shared in a publicly available repository such as

GitHub or GitLab. Documenting each step in the analysis process is also important and further fosters

reproducibility and transparency. Various tools are available to aid in this process and we strongly recom-

mend making full use of these. Writing code in Rmarkdown or Jupyter Notebooks/Jupyter Lab allows the

inclusion of text in markdown format between cells of code, facilitating thorough documentation of the
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analyses performed (Allaire et al., 2021; Kluyver et al., 2016). Using a version control software, such as Git or

Mercurial, is also encouraged and enables both researchers and collaborators to better track analyses.

Similarly, a analysis code should also be uploaded to a public repository after publication. Ensuring clear

and detailed reporting will boost the stroke-microbiota field, facilitating novel insights into the interaction

between gut bacteria and stroke. Moreover, consistent and rigorous standards will enable meta-analyses

allowing identification of microbial signatures of stroke and stroke outcome.

Best practices – example pipeline

Theory and recommendations are necessary to help guide stroke-microbiota researchers toward making

the correct decisions regarding their data; however, practical advice and tutorials for some steps are often

lacking. To this end, we have designed and conducted our own stroke-microbiota study in mice, investi-

gating differentially abundant taxa, so that other researchers can use this as a template for their own studies.

Here, we designed a simple experiment to identify enriched taxa in mice subjected to experimental stroke.

Mice were randomly split into two groups, and either sham surgery or transient middle cerebral artery oc-

clusion (tMCAO) was performed (Llovera et al., 2021). Stool samples were collected 3 days after surgery and

frozen at �80�C before extraction and subsequent sequencing of the V4 region of the 16S rRNA gene.

To enable a wider number of researchers to utilize our pipeline, we have provided two versions of our anal-

ysis pipeline, one for those familiar with R and another for those more familiar with python. Each step in the

analysis pipeline is summarized above (Figure 2).

Results summary

To confirm the presence of ischemic stroke, we performed cresyl violet staining of brains from mice

subjected to tMCAO. All mice developed moderately large lesions in the ipsilateral hemisphere (mean

40.6 G 12.6 mm3; Figure 3A). Previous work comparing the microbiota of stroke and sham mice has

identified broad changes in microbial community structure but a limited loss of sample diversity. This

suggests that modulation of stroke and stroke outcome by the microbiota is mediated by changes in

microbial composition, rather than a loss of taxa. Thus, to confirm the absence of changes in overall

diversity and evenness, we calculated richness, Shannon effective, and Faith’s PD assessing the observed

number of species, diversity, and evenness and phylogenetic diversity. No significant differences were

observed between sham and stroke mice using any alpha diversity metric (Figure 3B), which is in line

with previous findings from murine studies (Houlden et al., 2016; Singh et al., 2016).

We next sought to assess differences in global community structure between sham and stroke mice.

Unsupervised analysis based on Generalized UniFrac distance revealed stroke samples clearly separated

from controls. Consistent with prior studies showing a differential impact of stroke severity on gut

microbiota, mice with larger infarcts tended to be further from sham mice than those with less severe

strokes (Figure 3C). To visualize taxonomic changes driving this difference, we plotted the taxonomic

composition of each sample by experimental group. It is important to note that the conclusions made

from these types of visualizations are generally limited; however, they can provide a useful overview of

potentially interesting changes in relative abundance. Shifts in relative abundance at the family level in

stroke appeared relatively minor, implying microbial shifts occur at lower taxonomic ranks (Figure 3D).

Finally, we sought to investigate changes in microbial abundance in detail. Using ANCOM-BC, a compo-

sitional DA method, we identified five ASVs with a corrected p-value < 0.05, in stroke mice (Figure 3E).

These were classified as Blautia, unknown Lachnospiraceae, Parabacteroides, unknown Rikenellaceae

and Alistipes. We additionally identified 17 ASVs decreased in stroke mice, several of which are known

butyrate producers, previously identified as decreased in stroke patients (Haak et al., 2021).

Concluding remarks

Here we have provided a blueprint for conducting stroke-microbiota studies along with an example data

set recapitulating and extending current findings. Adherence to these guidelines will enable further

insights on the involvement of the microbiota in stroke, facilitating targeted manipulation, with the

potential to improve stroke outcomes. Beyond 16S rRNA sequencing, we encourage further adoption

of other technologies such as shotgun metagenomics, meta-transcriptomics, and metabolomics/meta-

proteomics coupled with multi-omic integration in stroke-microbiota research. Multi-omic integration of

these different data types aids in functional understanding of microbial factors influencing a disease.
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Additionally, reductionist approaches such as gnotobiotic mice can help identify individual microbes that

can alter a disease or disease course. Employing these technologies in the stroke-microbiota field will

further mechanistic insights into the interplay between stroke and the microbiota.

We hope that this manuscript will lead to an improvement in the consistency, transparency, and reproduc-

ibility of methods and believe this is required before consistent microbial signatures can be identified,

A

D E

B

C

Figure 3. Disruption of community structure and composition post-stroke

(A) Representative cresyl violet stained sections, 3 days after tMCAO. Scale bar: 4 mm

(B) Alpha diversity measurements between stroke and shammice showing richness (left), Shannon effective (center), and Faith’s phylogenetic diversity (right).

Individual points dots represent a single mouse. Error bars represent the median +/� 1.5 multiplied by the IQR. Outliers are highlighted by an empty square

(C) Non-metric multidimensional scaling plot of Generalized UniFrac distance colored by group (Adonis PERMANOVA R2 = 0.12, p-value = 0.018)

(D) Family-level relative abundance in sham and stroke mice. Low abundant families were grouped with each other

(E) Significant differentially abundant taxa between stroke and sham mice, identified by ANCOM-BC (corrected p-value <0.05). Log2 Fold-change between

conditions is shown on the x axis
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laying the groundwork for microbiota-based treatments to become a reality. This, combined with the

adoption of methods to delineate functional mechanisms, will enable the translation of stroke-microbiota

research into clinical practice.

Limitations of the study

The limitations of this study include the focus on 16S rRNA sequencing at the expense of other, more

detailed, profiling techniques such as shotgun metagenomics. In addition, our data were collected at a

single timepoint, which may miss important microbial shifts associated with stroke that a longitudinal

sampling design would uncover.
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Animals

All experimental protocols were approved by the responsible governmental department (Regierung von

Oberbayern, Munich, Germany). C57BL/6 male mice were purchased from Charles-River Laboratories

(Sulzfeld, Germany), and acclimatized for 1 week. Mice were fed a standard chow diet (Ssniff, Soest,

Germany) fed ad libitum and housed under SPF conditions (12 h light-dark cycles at 22 G 2�C). Mice

were co-housed until surgery and subsequently placed in separate cages for 72h to allow food intake

and weight loss to be monitored.

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

DNeasy PowerLyzer PowerSoil Kit QIAGEN Cat. No. / ID: 12855-50

Deposited data

Raw sequencing data This publication ENA: PRJEB48735

Processed data and metadata This publication https://github.com/adamsorbie/Stroke_

Microbiota_reproducibility/tree/main/data

Software and algorithms

Powmic (Chen, 2020) https://github.com/lichen-lab/powmic

FastQC/MultiQC (Andrews, 2010; Ewels et al., 2016) https://github.com/s-andrews/FastQC/

https://multiqc.info/

Cutadapt (Martin, 2011) https://cutadapt.readthedocs.io/en/stable/

DADA2 (Callahan et al., 2016) https://benjjneb.github.io/dada2/index.html

QIIME2 (Bolyen et al., 2019) https://qiime2.org/

Phyloseq (McMurdie and Holmes, 2013) https://joey711.github.io/phyloseq/

R The R foundation https://www.r-project.org/

ImageJ N/A https://imagej.nih.gov/ij/

BioRender BioRender https://biorender.com/

Other

Chow Ssniff V1574-300
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Middle cerebral artery occlusion

Transient middle cerebral artery occlusion (tMCAO) was induced in 8-12 week old mice as previously

described with monitoring cerebral blood flow by transcranial laser Doppler flowmetry (Jackman et al.,

2011; Llovera et al., 2021). Briefly, mice were anesthetized with 1.5–2% isoflurane, and rectal temperature

maintained at 37G 0.5�C for the duration of surgery. A silicon-coated filament (#602112PK5Re, Doccol) was

inserted into the left external carotid artery and advanced until obstructing the MCA together with ligation

of the common carotid artery for 45 min. Regional cerebral blood flow (CBF, bregma coordinates: 2-mm

posterior, 5-mm lateral) was recorded by transcranial laser Doppler flowmetry (PF 5010 LDPM, Periflux

System 5000, Perimed) at induction of ischemia, before filament removal and at reperfusion. When MCA

occlusion was confirmed (a residual CBF <20%) animals were placed in a recovery chamber at 37�C for

45 min (until filament removal). To allow reperfusion, mice were anesthetized after occlusion and the

filament was removed.Mice were included if the residual CBF is <20% before reperfusion and CBF recovery

>80% within 10 min of reperfusion. Following tMCAO, mice were placed in temperature-controlled recov-

ery cages for 2 h to prevent post-surgery hypothermia. Sham surgery was performed as described above

including ligation of the external and common arteries, and introduction of the filament (in/out). At 72h

after surgery, mice were euthanized, brains were collected and immediately frozen at –80�C for cresyl violet

staining.

METHOD DETAILS

Infarct volume quantification

Brains tissues were sectioned (30-mm thick at 600-mm intervals) on a cryotome for cresyl violet staining as

previously described (Benakis et al., 2020). Quantification of the infarct volume (corrected for swelling

and tissue loss) was performed blinded using ImageJ.

Power analysis

Sample size estimation to detect differentially abundant taxa was carried out using powmic (Chen, 2020).

Parameters were estimated by fitting a subset of a previously published dataset (Xu et al., 2021), selected to

closely mirror our own study design, to a zero-inflated negative binomial model. These parameters were

subsequently used to generate synthetic datasets with 1000 ASVs. Estimation of the false discovery rate

(FDR) and the true and false-positive rates was then performed using the powmic function with default

parameters, testing a range of sample sizes (six, eight, ten and twelve). We used a true-positive rate

threshold of 0.8 to determine sufficient power.

DNA extraction and 16S sequencing

DNA was extracted from fecal samples using a QIAGEN DNeasy Powersoil Kit and quantified using a

NanoDrop ND-1000 Spectrophotometer (Thermo Fisher, United States). Sequencing was performed by

the Beijing Genomics Institute (BGI) according to standard procedures. Briefly, the V4 region of the 16S

rRNA gene was amplified using the 515F- GTGCCAGCMGCCGCGGTAA and 806R-GGACTACHVGGG

TWTCTAAT primer pair and sequenced on an Illumina HiSeq� 2500 machine using 2x250 bp paired end

reads.

Quality of raw reads were checked with MultiQC (Ewels et al., 2016) before trimming with Cutadapt (Martin,

2011). Subsequently, ASVs were inferred using DADA2, and filtered using a threshold of 0.25% relative

abundance to remove spurious sequences (Reitmeier et al., 2021). The remaining ASVs were assigned

taxonomy using the SILVA database version 138 (Callahan et al., 2016; Quast et al., 2012) and a phyloge-

netic tree inferred using FastTree2 with the GTR+CAT model (Price et al., 2010). Steps were identical in

the python-based pipeline, except that QIIME2 was used, which wraps the aforementioned tools.

QUANTIFICATION AND STATISTICAL ANALYSIS

Alpha (richness and Faith’s PD) and beta diversity (Generalized UniFrac) were calculated using R or QIIME2

(Bolyen et al., 2019). Statistical analysis of alpha and beta diversity was performed usingWilcoxon-tests and

PERMANOVA respectively. Differential abundance analysis was performed using ANCOM-BC (Lin and

Peddada, 2020a) using the Benjamini Hochberg method to control the FDR.
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