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Abstract

A covalent core–shell structured protein cluster composed of hemoglobin (Hb) at the center and human serum albumins
(HSA) at the periphery, Hb-HSAm, is an artificial O2 carrier that can function as a red blood cell substitute. Here we described
the preparation of a novel Hb-HSA3 cluster with antioxidant activities and its O2 complex stable in aqueous H2O2 solution.
We used an approach of incorporating a Pt nanoparticle (PtNP) into the exterior HSA unit of the cluster. A citrate reduced
PtNP (1.8 nm diameter) was bound tightly within the cleft of free HSA with a binding constant (K) of 1.16107 M21,
generating a stable HSA-PtNP complex. This platinated protein showed high catalytic activities for dismutations of
superoxide radical anions (O2

N–) and hydrogen peroxide (H2O2), i.e., superoxide dismutase and catalase activities. Also, Hb-
HSA3 captured PtNP into the external albumin unit (K= 1.16107 M21), yielding an Hb-HSA3(PtNP) cluster. The association of
PtNP caused no alteration of the protein surface net charge and O2 binding affinity. The peripheral HSA-PtNP shell prevents
oxidation of the core Hb, which enables the formation of an extremely stable O2 complex, even in H2O2 solution.
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Introduction

Hemoglobin (Hb)-based O2 carriers (HBOCs) have been

studied extensively as a substitute for red blood cells (RBCs) in

transfusion medicine and as O2 therapeutic reagents [1–5].

Nevertheless, none satisfies all requirements for use in clinical

situations [6,7]. A common side-effect is mild hypertension

resulting from nitric oxide (NO) depletion by Hb diffused into

the extravascular space [8,9]. Actually, NO is an endothelial-

derived relaxing factor. Moreover, HBOCs show faster autoxida-

tion of Hb to the ferric heme form (metHb) than the native Hb

shows [10–12]. Autoxidation of Hb produces a superoxide radical

anion (O2
N–), which is disproportionated to hydrogen peroxide

(H2O2) [13]. These reactive oxygen species (ROS) promote the

oxidation of Hb. In RBC, antioxidant systems include superoxide

dismutase (SOD) and catalase, which catalytically scavenge O2
N–

and H2O2, and thereby protect the Hb function. In ischemia-

reperfusion when the ischemic tissue is reperfused with O2,

xanthine oxidase converts xanthine and hypoxanthine into O2
N–

[14–16]. Overproduction of O2
N– and subsequently H2O2 causes

not only tissue injury, but also further oxidation of Hb.

Consequently, in clinical situations involving ischemia-reperfusion,

HBOC with antioxidant activity is expected to be tremendously

useful. Chang et al. first synthesized polyHb-SOD-catalase

conjugate and demonstrated the reduction of the autoxidation

rate of Hb [17]. Kluger et al. reported that the metHb formation

was inhibited in structurally defined Hb-SOD dimer [18]. Silaghi-

Dumitrescu et al. prepared Hb copolymer with rubrerythrin, non

heme iron enzyme [19]. These Hb-(antioxidant enzyme) conju-

gates displayed both O2 carrying and antioxidant properties.

However, a specific enzyme is necessary to scavenge the individual

ROS, and it denatures gradually.

More recently, we synthesized a covalent core–shell structured

protein cluster comprising Hb at the center and human serum

albumins (HSA) at the periphery, Hb-HSAm (m=2, 3, 4), which

acts as a unique HBOC (Figure 1) [20]. Since HSA contains only

one cysteinyl thiol at position 34, we exploited a heterobifunctional

crosslinker, N-succinimidyl 4-(N-maleimidomethy) cyclohexane-1-

carboxylate (SMCC), as a connector between the Cys-34 residue

of HSA and the surface lysyl e-amino groups of Hb. The major

product is the Hb-HSA3 heterotetramer in triangular form with an

HSA-binding number (m) of three. HSA, the most prominent

plasma protein, demonstrates low permeability in the vasculature

walls because of the electrostatic repulsion between the negatively

charged albumin surface [isoelectric point (pI): 5.0] and glomer-

ular basement membrane around the endothelial cells [21]. From

this physiological perspective, the surface net charge of the Hb-

HSAm cluster is satisfactorily negative (pI: 5.1–5.2) [20]. Intrave-
nous transfusion of the Hb-HSAm cluster is expected to enable
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long-term circulation without extravasation. Moreover, it might

not elicit an unfavorable increase in blood pressure.

If one were able to confer antioxidant properties to the external

HSA unit of Hb-HSAm, then this construct would become a

promising O2 carrier with high resistance towards oxidation

reactions. In this context, we chose Pt nanoparticle (PtNP) as a

potential candidate. PtNPs have been widely investigated for a

variety of applications, such as fine chemical synthesis, fuel cell

fabrications, and biomedical treatments. It was reported that PtNP

is an extremely effective catalysis for both O2
N– and H2O2

dismutations (Figure 1) [22–24]. (i) The high ROS scavenging

activities of PtNP depend on greater surface area per mass relative

to large particle [22,23]. (ii) Almost no cytotoxicity was observed

even after adherent cells were exposed to PtNPs [23]. We have

found that small PtNP (1.8 nm diameter) is incorporated into

HSA, and the obtained HSA-PtNP complex showed SOD and

catalase activities with high efficiency. The Hb-HSA3 also

possesses the capability of binding PtNP into the exterior HSA

shell. The resultant Hb-HSA3(PtNP) cluster forms a very stable O2

complex, even in aqueous H2O2 solution (Figure 1). This artificial

O2 carrier, having triple functionalities (O2 transport, O2
N–

dismutation, H2O2 dismutation) might be useful in clinical

conditions with ischemia-reperfusion. The Hb-HSA3(PtNP) cluster

would deliver O2 to the ischemic tissue, and simultaneously

protect Hb and tissues from damaging effects of reperfusion injury.

Materials and Methods

Materials and apparatus
Human serum albumin (HSA) was purchased from Japan Blood

Products Organization. Pure bovine Hb was purified from bovine

blood purchased from Tokyo Shibaura Zouki Co., Ltd. [20].

Hydrogen hexachloroplatinate(IV) hexahydrate (H2PtCl2N6H2O),

xanthine, and catalase (from bovine liver) were purchased from

Wako Pure Chemical Industries Ltd. Ferricytochrome c (Cyt. c,
from bovine heart) was purchased from Sigma-Aldrich Co.

Xanthine oxidase (XOD, from butter milk) was purchased from

Oriental Yeast Co., Ltd. Mn(III)-terakis(N-methylpyridinium)

porphyrin (Mn-TMPyP) was purchased from Frontier Scientific

Corp. Other chemicals of special grades were used without further

purification. The water was deionized (18.2 MVcm) using water

purification systems (Elix UV and Milli Q Reference; Millipore

Corp.). Isoelectric focusing (IEF) was performed using an

electrophoresis power supply (EPS 601; GE Healthcare UK

Ltd.) with an IEF gel (Novex pH 3–10; Invitrogen Corp.). The

protein marker used was an IEF calibration kit Broad pI (pH 3–10;

GE Healthcare UK Ltd.).

Synthesis of PtNP
The citrate-reduced PtNP was prepared as described in a report

of a study by Bond et al. [25]. To the refluxed aqueous

H2PtCl2N6H2O solution (271 mM, 85.5 mL), 1 wt% trisodium

citrate dihydrate in water (4.5 mL) was added and then refluxed

continuously for 1 h with stirring. The solution changed to dark

brown. After cooling slowly to 25uC, the obtained PtNP solution

was washed with water using an ultrafilter (Q0100, 10 kDa

Figure 1. Schematic illustrations of Hb-HSA3(PtNP) cluster. The Cys-34 of HSA and the surface Lys group of Hb were connected covalently
with a crosslinking agent (SMCC). A PtNP was bound within the cleft of the exterior HSA unit and performed SOD and catalase activities.
doi:10.1371/journal.pone.0110541.g001
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MWCO; Advantec Toyo Kaisha Ltd.) in an UHP-76K ultra-

holder. Finally, the medium was concentrated up to 50 mM as

PtNP using the UHP-76K ultraholder. The resultant PtNP colloid

solution was stored in a refrigerator at 4uC.

Preparation of Hb-HSA3 cluster
The Hb-HSA3 cluster was prepared according to our previously

reported procedure with some modifications [20]. Typically, a

DMSO solution of heterobifunctional crosslinker, N-succinimidyl

4-(N-maleimidomethy)cyclohexane-1-carboxylate (SMCC; Tokyo

Chemical Industry Co., Ltd.) (20 mM, 4 mL) was added dropwise

into phosphate buffered saline (PBS) solution (pH 7.4) of carbonyl

Hb (0.1 mM, 40 mL), and the mixture was stirred for 3 h in the

dark at 4uC. After removing unreacted crosslinker by gel filtration

chromatography (GFC) with a Sephadex G25 (superfine) column,

the obtained SMCC-bound Hb (maleimide activated Hb) was

concentrated to 40 mL ([Hb] = 0.1 mM) using a centrifugal

concentrator (Vivaspin 20 ultrafilter, 10 kDa MWCO; GE

Healthcare UK Ltd.). Then this solution was added slowly into

the PBS solution of HSA (1 mM, 40 mL) with subsequent stirring

under dark conditions for 14 h at 4uC. A part of reaction mixture

was applied to size-exclusion chromatography (SEC) on an HPLC

system (LaChrom Elite; Hitachi High-Technologies Corp.) with a

Shodex Protein KW-803 column (Showa Denko K.K.) using

phosphate buffer (PB, pH 7.4, 50 mM) as the mobile phase. The

elution curve exhibited new multiple peaks at the high molecular

weight region. The three major components were identified as Hb-

HSA4 heteropentamer (minor), Hb-HSA3 heterotetramer, and

Hb-HSA2 heterotrimer [20]. Then the resultant solution was

subjected to GFC with a Superdex 200 pg in XK50/60 column

(GE Healthcare UK Ltd.) using PBS (pH 7.4) as the running

buffer. We collected all major fractions before the HSA peak. The

unreacted free HSA was excluded completely. By Hb and total

protein assays [20], the average HSA/Hb ratio of the harvested

Hb-HSAm cluster was found to be 2.8–3.2, which is indicated as

Hb-HSA3. Finally, the obtained Hb-HSA3 solution was condensed

([Hb] = 5 g/dL) using a Vivaspin 20 ultrafilter (30 kDa MWCO)

and stored in a refrigerator at 4uC.

Figure 2. Crystal structure of HSA (PDB 1E78, ref. 31) and the PtNP binding site. (A) HSA structure involving the positions of drug site 1
(subdomain IIA, dark green), drug site 2 (subdomain IIIA, dark blue), Cys-34, and Trp-214. Cys-34 and Trp-214 are depicted in space-filling
representation. The upper image and lower images respectively show the ‘‘front side’’ and ‘‘back side’’. (B) Surface electrostatic potential
representations of HSA in the same orientations illustrated in (A). Blue and red respectively represent positive charge and negative charge density.
Possible binding site of PtNP in the positively charged cleft between subdomain IIA and IIIA is indicated by a yellow circle. These images were
produced based on crystal structure coordinates using PyMOL (Schrödinger K. K., CA, USA).
doi:10.1371/journal.pone.0110541.g002
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CD measurements
Circular dichroism (CD) spectra were obtained using a

spectropolarimeter (J-820; Jasco Corp.). The sample concentration

was 0.2 mM in PBS. Quartz cuvettes with 10-mm thickness were

used for measurements of 2002250 nm.

Preparation of HSA-PtNP complex and Hb-HSA3(PtNP)
cluster
The medium of PtNP solution was exchanged to PBS (pH 7.4)

using a Vivaspin 20 ultrafilter (10 kDa MWCO). A PBS solution

of HSA (0.51 mM, 0.1 mL) was added slowly to the PtNP solution

(10.2 mM, 5 mL, PBS), and the mixture was incubated for 1 h

with gentle stirring in the dark at 25uC, yielding HSA-PtNP

complex (PtNP/HSA=1/1). Similarly, the Hb-HSA3 solution

(0.51 mM, 0.2 mL, PBS) was added to the PtNP solution

(10.2 mM, 10 mL, PBS). Then the mixture was incubated for

1 h with gentle stirring in the dark at 25uC, affording Hb-

HSA3(PtNP) cluster (PtNP/Hb-HSA3=1/1).

Determination of binding constants of PtNP for HSA and
cluster
Binding constants (K) of PtNP for HSA and Hb-HSA3 cluster

were determined using fluorescence quenching measurements of

albumin by PtNP titration according to the literature [26].

Fluorescence of the HSA or Hb-HSA3 ([HSA unit] = 10 mM)

(Em: 340 nm) solution (PBS, pH 7.4) was quenched upon binding

of PtNP (0–0.3 mM). The plots of log(Fo–F)/F vs. log[PtNP] were

produced from the data to obtain the K values and binding

number.

Figure 3. TEM images of HSA-PtNP complexes. The sample was
negatively stained with 1% uranyl acetate.
doi:10.1371/journal.pone.0110541.g003

Table 1. O2
N– scavenging activity (IC50) and H2O2 scavenging activity (T50) of HSA-PtNP complex at 25uC.

Enzyme mimics IC50 (mM)a T50 (min)b

HSA N.D. N.D.

PtNP 0.12 6

HSA-PtNP 0.16 19

Mn-TMPyP 0.8c N.D.

Cu,Zn-SOD 0.03d –

Catalase – <0.1

aIn PB solution (pH 7.8, 50 mM).
bIn PBS solution (pH 7.4), [H2O2] = 0.1 mM.
cRef. 29.
dRef. 33. In PB solution (pH 7.8, 45 mM).
doi:10.1371/journal.pone.0110541.t001

Figure 4. Time course of residual H2O2 percentage in 0.1 mM
H2O2 solution with HSA-PtNP complex. [Sample] = 1 mM at 25uC.
doi:10.1371/journal.pone.0110541.g004
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TEM measurement
Droplets of HSA-PtNP ([protein] = 0.35 mg/mL) were applied

to amorphous carbon film covered 200-mesh grids (Quantifoil

R1/4 with a hole diameter of approximately 1 mm; Quantifoil

Micro Tools GmbH, Jena, Germany), which had been hydro-

philized before use by plasma treatment (8 W, 60 s) in a Baltec

Med 020 device (Leica Microsystems). After the supernatant fluid

was blotted with a filter paper, an aqueous uranyl acetate (1 w/v

%) was applied for another 45 s and the grids were eventually left

to air-dry after blotting. Then the grids were transferred into a

transmission electron microscope (Tecnai F20 microscope

equipped with field emission gun operated at a 160 kV

accelerating voltage; FEI Co.). Images were recorded using a

CCD camera (Eagle 4k-CCD device; FEI Co.) operated at a

binning factor of 2 (2,04862,048 pixel).

O2
N– scavenging activity (xanthine–XOD–Cyt. c assay)
O2

N– scavenging activity (SOD activity) of the HSA-PtNP

complex was determined using the Cyt. c reduction technique, in

which O2
N– was produced in situ by a xanthine–XOD reaction

[27,28]. The experiments were performed according to our

previously reported procedure [29]. To the PB solution (pH 7.8,

50 mM, 3.0 mL) containing Cyt. c (10 mM), xanthine (50 mM),

and catalase (500 U/mL) in a 10-mm path length optical quartz

cuvette, an amount of XOD sufficient to give an initial rate of

DA550 = 0.025 min21 (without HSA-PtNP complex) (approximate-

ly 2.0 mU/mL) was injected at 25uC. After the addition of XOD,

increases in the absorption at 550 nm based on the reduced-form

Cyt. c was monitored at 25uC. From the absorbance increase, the

initial rate constant (vi) was determined at various concentration of

HSA-PtNP complex. The IC50 value is defined as the 50%

inhibition concentration of Cyt. c reduction. The same exper-

iments were also conducted for PtNP and HSA.

H2O2 scavenging activity (quantitative peroxide assay)
H2O2 scavenging activity (catalase activity) of the HSA-PtNP

complex was evaluated by measuring the concentration of residual

H2O2 using the Pierce Quantitative Peroxide Assay Kits (Thermo

Fisher Scientific Inc.). The HSA-PtNP solution (50 mM, 41 mL)
was added to the aqueous solution of H2O2 (102 mM, 2.0 mL) in a

vial bottle. Then the mixture was incubated with gentle stirring at

25uC. The 50 mL sample was pipetted out regularly from the

reaction mixture and HSA-PtNP was removed using a centrifugal

Figure 5. SEC profile of Hb-HSA3 cluster. Black line: reaction
mixture of SMCC-bound Hb and HSA, red line: separated Hb-HSA3.
doi:10.1371/journal.pone.0110541.g005

Figure 6. CD spectra of Hb, HSA, and Hb-HSA3. [Sample] = 0.2 mM
in PBS solution (pH 7.4) at 25uC.
doi:10.1371/journal.pone.0110541.g006

Figure 7. Visible absorption spectral changes of Hb-HSA3

cluster. In PBS solution (pH 7.4) at 25uC.
doi:10.1371/journal.pone.0110541.g007
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filter device (Microcon Ultracel YM-30; Millipore Corp.). Then

20 mL of the filtrate was mixed with the working reagent (200 mL)
in a hole of a 96-well cell culture plate. The absorbance at 555 nm

based on the (xylenol orange)-Fe(III) complex was measured using

a Microplate Reader (iMark; Bio-Rad Laboratories, Inc.). From

absorption at 550 nm, the concentration of residual H2O2 in the

sample was determined using the calibration line ([H2O2] = 0–

100 mM) prepared in advance. The T50 value is defined as time

required for quenching half of H2O2. The same experiments were

also conducted for PtNP, HSA, catalase, and Mn-TMPyP.

O2 binding property
The visible absorption spectra of deoxy (under N2), oxy (under

O2), and carbonyl (under CO) forms of the Hb-HSA3 and Hb-

HSA3(PtNP) clusters ([Hb]: 10 mM, PBS, pH 7.4) were obtained

in accordance with our previously reported procedures using a

UV–Visible spectrophotometer (8543; Agilent Technologies Inc.)

equipped with a temperature control unit (89090A; Agilent

Technologies Inc.) [20]. The O2 affinity (P50: O2-partial pressure

where Hb is half-saturated with O2) and Hill coefficient (n) were
determined using an automatic recording system for O2-equilib-

rium curve (Hemox Analyzer; TCS Scientific Corp.) using PBS

(pH 7.4) at 37uC. The sample was oxygenated by an increasing

O2-partial pressure and deoxygenated by flushing with N2.

O2 complex stability
The O2 complex stability of the Hb-HSA3 cluster was evaluated

using the first-order autoxidation rate constant (kox) of the central

Hb. The PBS solution (pH 7.4) of oxyHb-HSA3 cluster

([Hb] = 10 mM, 2 mL) was put into a 10-mm-path length optical

quartz cuvette. The top of the cuvette was sealed with a gas

permeation film (AeraSeal Film MAF710; Gel Co.), which allows

air exchange and which prevents water evaporation. The

absorption intensity at 630 nm (At) based on metHb formation

was monitored under aerobic conditions at 37uC. After the

measurement, the entirely oxidized metHb-HSA3 cluster was

prepared by addition of slightly excess K3[Fe(CN)3], and its

absorption intensity (A100) was observed. From the absorbance

increase, the kox value was ascertained using nonlinear least-

squares curve fitting techniques. The same experiments were

conducted for native Hb and Hb-HSA3(PtNP) cluster.

The O2 complex stability of the cluster in 20 mMH2O2 solution

was evaluated by the time course of metHb formation level

because the mechanism of the Hb oxidation was complicated. To

the PBS solution (pH 7.4) of oxyHb-HSA3 cluster ([Hb] = 10 mM,

2 mL) in a 10-mm-path length quartz cuvette, aqueous H2O2

(2 mM, 20 mL) was added, and the absorption intensity at 630 nm

(At) was measured under aerobic conditions with gentle stirring for

180 min at 25uC. The top of the cuvette was sealed with a gas

permeation film. After the measurement, a slightly excess

K3[Fe(CN)3] was added to determine the absorption intensity of

the entirely oxidized metHb form (A100). From the absorbance

increase, the metHb level [(At–A0)/(A100–A0)6100 (%)] (A0:

absorption intensity at 630 nm before H2O2 injection) was

ascertained. The same experiments were carried out for native

Hb, Hb-HSA3(PtNP) cluster, and simple mixture of Hb/HSA-

PtNP/HSA (1/1/2, molar ratio).

Results and Discussion

Synthesis and structure of HSA–PtNP complex
Enzymatic activities of PtNP have attracted considerable

attention because of their potential applications for medical use

[22–24]. Shirahata et al. reported high O2
N– and H2O2

dismutation activities of PtNPs and the highest enzyme reactivity

at a particle size of about 2.0 nm [23]. In the circulatory system,

the small PtNP (ca. 2 nm diameter) might be captured by HSA.

However, the enzymatic properties of such postulated HSA-PtNP

complex have not been reported in the relevant literature. We

have now prepared the HSA-PtNP complex and have examined

its O2
N– and H2O2 dismutation activities.

HSA is a heart-shaped monomeric protein (66.5 kDa) consisting

of three homologous domains (I–III), each of which contains two

subdomains: A and B (Figure 2A) [30,31]. Many water insoluble

Table 2. Visible absorption spectral data of Hb-HSA3 and Hb-HSA3(PtNP) clusters in PBS solution (pH 7.4) at 25uC.

lmax (nm)

Hemoproteins deoxy oxy carbonyl

Hb-HSA3 430, 556 413, 541, 577 420, 538, 569

Hb-HSA3(PtNP) 430, 554 413, 541, 576 419, 536, 568

Hba 430, 555 414, 541, 577 420, 538, 569

HbAb 430, 555 415, 541, 577 419, 540, 569

aFrom ref. 20.
bHbA (human adult Hb), from ref. 36.
doi:10.1371/journal.pone.0110541.t002

Figure 8. O2 equilibrium curves of Hb-HSA3 and Hb-HSA3(PtNP)
clusters. In PBS solution (pH 7.4) at 37uC.
doi:10.1371/journal.pone.0110541.g008
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metabolites (fatty acids, bilirubin, thyroxin, etc.) and commonly

used drugs (warfarin, diazepam, ibuprofen, etc.) bind to the

principle ligand binding sites in subdomain IIA and IIIA of HSA:

so-called drug sites 1 and 2 [32]. To embed a PtNP into this

protein interior, we prepared citrate-reduced PtNP with a

diameter of 1.5–2.0 nm [25]. TEM images clearly showed the

formation of uniform PtNPs with diameter (d) of 1.8 nm. The

PtNP concentration was calculated as 1.25 mM based on the Pt2+

concentration and particle size. The resultant aqueous PtNP

solution was concentrated up to 50 mM using an ultrafiltration

device. The medium was exchanged to phosphate buffered saline

(PBS, pH 7.4). No precipitation was found for over one year at

4uC.
The complexation of PtNP to HSA was conducted by adding

HSA to the PtNP solution (PtNP/HSA=1/1). Gel permeation

chromatography (Sephadex G25) of the obtained protein dis-

played a single elution peak. Notably, TEM images demonstrated

the formation of equivalent complex of HSA and PtNP

(Figure 3A). Close inspections of TEM micrographs revealed that

each PtNP is accommodated in the center of the protein

(Figure 3B). One feasible binding mode is a covalent linkage

between the thiol residue (Cys-34) of HSA and the PtNP surface.

Nevertheless, nonmercapt HSA, in which Cys-34 is oxidized, also

formed a similar HSA-PtNP complex, indicating that the covalent

S-Pt bond is unlikely. Another possible binding force is electro-

static attraction between the negatively charged surface of PtNP

and a positively charged region of the protein. Based on the

electrostatic potential representation of HSA, we found a positively

charged cleft between subdomain IIA and IIIA (Figure 2B). In

fact, the fluorescence emission intensity of the HSA solution (lem:
340 nm) was quenched by addition of PtNP. It is caused primarily

by an energy transfer from the tryptophan (Trp)-214 residue in

subdomain IIA (Figure 2A) to the bound PtNP. From titration

measurements [26], the binding constant (K) and binding number

of PtNP with HSA were calculated respectively as 1.16107 M21

and 1.1. We reasoned that one PtNP binds to the positively

charged cleft of HSA on the back side, yielding a 1:1 HSA-PtNP

complex. The obtained dark-brown protein solution was stable

over one year at 4uC.

Antioxidant activities of HSA–PtNP complex
The SOD activity of the HSA-PtNP complex was evaluated in

phosphate buffered (PB) solution using the xanthine–(xanthine

oxidase)–ferricytochrome c (Cyt. c) assay [27–29]. In the presence

of the HSA-PtNP complex, the Cyt. c reduction by O2
N– was

inhibited significantly. The IC50 value (the concentration of

enzyme necessary to attain 50% inhibition of the Cyt. c reduction)
of the HSA-PtNP complex was determined to be 0.16 mM
(Table 1). Under our experimental conditions, the reduction of

Cyt. c was not suppressed by HSA alone. For that reason, SOD

activity of the albumin protein is excluded. The IC50 of HSA-PtNP

complex is smaller than that of the best synthetic SOD model

Mn(III)-tetrakis(N-methylpyridinium)porphyrin (Mn-TMPyP) [29]

and resembled the value of native Cu,Zn-SOD [33]. We infer that

the HSA-PtNP complex possesses a strong capability to catalyze

the dismutation of O2
N–.

Next, the catalase activity of the HSA-PtNP complex was

examined by measuring the H2O2 decomposition. In the presence

of HSA-PtNP, the H2O2 concentration declined considerably and

reached zero after 180 min (Figure 4). The T50 value (time

required for quenching half of H2O2) of HSA-PtNP was 19 min

(Table 1). On the one hand, with the coexistence of HSA alone,

the concentration of H2O2 was not changed. These results imply

that the catalase activity of HSA-PtNP complex was based on the

PtNP in the protein. While the T50 value is at least two order of

magnitude larger than that of native catalase, this platinated

protein showed much higher H2O2 dismutation activity than Mn-

TMPyP [34]. Overall, we concluded that the HSA-PtNP complex

shows strong abilities to catalyze the dismutation of both O2
N– and

H2O2.

Synthesis and structure of Hb-HSA3(PtNP) cluster
The Hb-HSA3 cluster with the average HSA/Hb ratio of 3.0

was synthesized according to our previously reported procedure

with some modifications (See Materials and Methods). Size

exclusion chromatography (SEC) of the reaction mixture of

SMCC-bound Hb and HSA exhibited new peaks of Hb-HSA4

heteropentamer (shoulder), Hb-HSA3 heterotetramer, and Hb-

HSA2 heterotrimer (Figure 5); the major product was Hb-HSA3

(42%). By gel filtration chromatography (GFC), all the cluster

fractions were harvested together (yield: 80% based on Hb).

Unreacted free HSA was removed completely (Figure 5). The

Table 3. O2 binding parameters of Hb-HSA3 and Hb-HSA3(PtNP) clusters in PBS solution (pH 7.4) at 37uC.

Hemoproteins P50 (Torr) n (–) kox (h21)

Hb 23 2.6 0.037

Hb-HSA3 9 1.5 0.035

Hb-HSA3(PtNP) 9 1.5 0.039

doi:10.1371/journal.pone.0110541.t003

Figure 9. Time course of metHb level of Hb-HSA3 and Hb-
HSA3(PtNP) clusters. [Hb] = 10 mM in 20 mM H2O2 solution at 25uC.
doi:10.1371/journal.pone.0110541.g009
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average HSA/Hb ratio was determined to be 2.8–3.2 using Hb

and total protein assays. This protein cluster is shown as Hb-

HSA3. The CD spectral pattern and intensity of the Hb-HSA3

cluster agreed well with the sum of the Hb spectrum and a three-

fold-enlarged HSA spectrum (Figure 6). This observation also

supports the average HSA/Hb as 3 (mol/mol).

Then the Hb-HSA3 solution was added slowly to the PBS

solution of PtNP, yielding Hb-HSA3(PtNP) hybrid cluster (PtNP/

Hb-HSA3=1/1). From titration measurements [26], the K value

and binding number of PtNP with the exterior HSA unit were

ascertained as 1.16107 M21 and 1.1, which are equal to the data

observed for free HSA. The affinity of PtNP with HSA moiety of

the cluster is satisfactorily high. Even though, PtNP may transfer to

other plasma proteins after intravenous administration. To avoid

such intermolecular exchanging reaction in vivo, covalent attach-

ing of PtNP to the HSA unit would be beneficial. The isoelectric

point (pI: 5.1) of Hb-HSA3 was unaltered by PtNP incorporation.

HSA has a high molecular surface net charge, thereby the pI value
is known to be shifted slightly by ligand binding [35]. Thus, our

result suggests that the PtNP is not adhered onto the HSA surface,

but that it is embedded into the HSA shell.

O2 affinity and O2 complex stability
The visible absorption spectral patterns of the Hb-HSA3 cluster

in PBS solution (pH 7.4) under N2, O2, and CO atmosphere

(deoxy, oxy, and carbonyl forms) were fundamentally the same as

those of Hb-HSA3 tetramer and native Hb (Figure 7, Table 2)

[20,36]. In contrast, the PBS solution of Hb-HSA3(PtNP) cluster

exhibited strong absorbance over the entire visible range. It is

ascribed to the superposing of the PtNP absorption onto the Hb-

HSA3 spectrum. Nevertheless, the absorption maxima of the Hb-

HSA3 and Hb-HSA3(PtNP) clusters showed good mutual agree-

ment, indicating that PtNP caused no alternation of electronic

states of the hemes in Hb (Table 2).

The P50 (O2-partial pressure where Hb is half-saturated with

O2) and cooperativity coefficient (Hill coefficient, n) of Hb-HSA3

cluster (Figure 8, Table 3) were identical to the values of isolated

Hb-HSA3 tetramer [20]. Moderate O2 affinity of Hb-HSA3

cluster than native Hb might be attributable to the fact that the

Cys-93(b) residue in Hb was blocked by the crosslinking agent

SMCC and that Lys-82(b) was exploited as a binding partner of

Cys-34 of HSA [20]. Nonetheless, the high O2 affinity might be

favorable in application as a potential O2 carrier. Winslow et al.

demonstrated that HBOC with a low O2 affinity engenders

excessive O2 release in the arterioles and thereby invokes

autoregulatory vasoconstriction [37,38]. Intaglietta et al. reported

that lower P50 (10 Torr) RBC provides improvement of

microvascular function in comparison to the higher P50 (50 Torr)

RBC in a hemorrhagic shocked hamster model [39]. In light of

these investigations, the lower P50 might be effective to decrease

arteriole O2 transport, potentially eliminating undesired cardio-

vascular side effects.

Then the equilibrium between O2 and Hb-HSA3(PtNP) cluster

was measured to investigate the effect of PtNP on the O2 affinity.

The P50 and n values of the Hb-HSA3(PtNP) cluster were,

respectively, 9 Torr and 1.5 (Figure 8, Table 3). The O2 binding

parameters were unaffected by the PtNP association to the HSA

shell. We inferred that the Hb-HSA3(PtNP) cluster retained two

important benefits for RBC substitute: (i) negative surface net

charge and (ii) high O2 affinity.

The O2 complex stability of the Hb-HSA3(PtNP) cluster in PBS

(pH 7.4) was evaluated using the autoxidation rate constant (kox) of
the core Hb at 37uC. The kox value of native Hb was ascertained

as 0.037 h21; this result is well consistent with previously reported

data [10,40]. Remarkably, the Hb-HSA3 cluster showed a similar

kox (0.035 h21) to that of native Hb. The oxyHb nuclei maintain

high stability after conjugation with HSA. This fact contrasts with

the fact that other HBOCs (PEGylated Hb, polymerized Hb,

cross-linked Hb) show larger kox values relative to naked Hb [10–

12]. A possible explanation of the stable O2 complex of our cluster

is the enwrapping effect with HSA, which originally possesses a

weak antioxidant property. As described earlier in this report,

HSA itself showed no measurable SOD or catalase activities in our

experimental conditions with a large excess amount of O2
–N and

H2O2 (Table 1). Actually, HSA is known to be the predominant

antioxidant in plasma (in vivo). Blache et al. estimated that 70% of

the free-radical trapping activity of serum is attributed to HSA

[41]. Otagiri et al. found that the antioxidant capabilities of HSA

are attributable to the six methionine residues and Cys-34 [42].

Therefore, we inferred that covalent enwrapping with HSAs

stabilizes the core Hb structure and affords a weak antioxidant

effect to the hemes in Hb.

Unexpectedly, the kox value of Hb-HSA3(PtNP) cluster

(0.039 h21) was almost identical to those observed for Hb-HSA3

and Hb. Kim et al. synthesized various protein-coated PtNPs and

analyzed their ROS scavenging activities [24]. They demonstrated

that O2
N– and H2O2 dismutation activities of the protein-coated

PtNPs are greatly affected by the physicochemical properties and

interior shape of the protein shells. In the Hb-HSA3(PtNP) cluster,

the PtNP is bound to the cleft on the back side of HSA (Figure 2B),

whereas the Cys-34 connection site to the Hb center is located on

the front side of HSA. The accessibility of O2
N– and H2O2 from the

Hb to PtNP in the HSA shell might be restricted because no

accessible channel exists in the proteins.

Finally, we investigated the O2 complex stability of Hb-

HSA3(PtNP) cluster in aqueous H2O2 solution. The H2O2

concentration in the human blood is assumed to be tens of

micromolars (#35 mM) [43]. Therefore, the oxidation rates of Hb-

HSA3(PtNP), Hb-HSA3, and Hb in aqueous 20 mM H2O2

solution were examined. The time courses of the absorbance

increase at 630 nm (which is due to metHb formation) were

markedly different in these protein solutions (Figure 9). Native Hb

showed a biphasic autoxidation curve. Approximately 50% Hb is

oxidized rapidly in the initial phase within 30 min, followed by a

second slow oxidation process. The metHb formation level

reached 72% after 180 min. It is accepted that the a subunits in

Hb are oxidized easily with respect to the b subunits [13]. Because

the heme concentration was 40 mM ([Hb]= 10 mM), the a subunit

oxidation occurred first, and subsequently the b subunits were

oxidized.

The rate of metHb formation, however, was somewhat low in

the Hb-HSA3 cluster. In the initial phase, the metHb level

increased to 37% within 30 min, followed by a slow oxidation

reaction. This low rate appears to be attributable to a wrapping

effect of HSA shell. As expected, the Hb-HSA3(PtNP) cluster was

remarkably stable in H2O2 solution. We observed no initial

oxidation process and only 17% metHb after 180 min, which is

24% of the value of native Hb. This result derives from the high

antioxidant activity of the HSA-PtNP unit at the periphery.

Actually the oxidation rate of Hb in the coexistence of HSA-PtNP

and HSA (Hb/HSA-PtNP/HSA=1/1/2), that are not covalently

linked, was higher than that of the cluster. We can therefore

conclude that the HSA-PtNP shell acts as an efficient scavenger for

external H2O2 and achieves protection of the core Hb.
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Conclusion

A citrate-reduced PtNP (d=1.8 nm) binds strongly within a

cleft of HSA, generating a stable HSA-PtNP complex. This

platinated protein showed high O2
–N and H2O2 dismutation

activities. The Hb-HSA3 cluster also captured PtNP into the

external HSA unit. The obtained Hb-HSA3(PtNP) cluster formed

an extremely stable O2 complex even in H2O2 solution. These

results suggest that the Hb-HSA3(PtNP) cluster with (i) negative

surface net charges, (ii) high O2 affinity, and (iii) antioxidant

activities can be of tremendous medical importance as an

alternative material to RBCs for transfusion in many clinical

situations involving ischemia-reperfusion injury.
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