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Major depressive disorder (MDD) is a multifactorial disease a�ected by several

environmental factors. Although several potential onset hypotheses have

been identified, the molecular mechanisms underlying the pathogenesis of

this disorder remain unclear. Several recent studies have suggested that

among many environmental factors, inflammation and immune abnormalities

in the brain or the peripheral tissues are associated with the onset of MDDs.

Furthermore, several stress-related hypotheses have been proposed to explain

the onset of MDDs. Thus, inflammation or immune abnormalities can be

considered stress responses that occur within the brain or other tissues and are

regarded as one of the mechanisms underlying the stress hypothesis of MDDs.

Therefore, we introduce several current advances in inflammation studies in

the brain that might be related to the pathophysiology of MDD due to stress

exposure in this review.
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Introduction

One of the major mood disorders, major depressive disorder (MDD), is known

to show significant morbidity and is associated with social and economic disability

[Smith, 2014; Vigo et al., 2016; World Health Organization (WHO), 2020; Wang et al.,

2022]. MDD is believed to be a multifactorial disease attributable to both environmental

and genetic factors, although the genes responsible for and the molecular mechanisms

underlying the pathogenesis of MDD remain unclear (Lopizzo et al., 2015; Tohyama

et al., 2015;Miyata et al., 2015a). Although selective serotonin reuptake inhibitors (SSRIs)

and serotonin–norepinephrine reuptake inhibitors (SNRIs), which are therapeutic agents

for MDD, are based on the most widely accepted hypothesis, the monoamine hypothesis,

they do not exhibit adequate therapeutic effects in approximately one-third to half of

patients with MDD (Hieronymus et al., 2016; Jesulola et al., 2018; Zhao et al., 2022). The

important findings of low-dose ketamine effects have been recently suggested to provide

more insights into this discrepancy. Administration of low-dose ketamine increases spine

numbers on the dendrite in a short time and shows a sustained antidepressant effect
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within 1 h not only neurons but also astrocytes (Pryazhnikov

et al., 2018; Zanos and Gould, 2018; Stenovec et al., 2021). Thus,

this change in the neuronal plasticity and glia functions in the

brain might underlie the pathophysiology of MDD and may be

related to the monoamine hypothesis.

Considering the relationship between the neuronal plasticity

(or synaptic function) and the pathology of MDD, a thorough

understanding of the response to inflammation in the brain

is important. Several recent studies have suggested that

among many environmental factors, inflammation and immune

abnormalities in the brain and peripheral tissues are associated

with the onset of neuropsychiatric disorders, and inflammation

during brain development has been shown to strongly increase

the risk of MDD [Goldsmith et al., 2016; Pape et al., 2019;

Abdoli et al., 2020; World Health Organization (WHO),

2020; Hansen, 2022; Wang et al., 2022]. In addition, synaptic

pruning is induced by increased reactive microglia in the brain

of patients with MDD, and nonsteroidal anti-inflammatory

drugs (NSAIDs) perform assistant functions in enhancing the

therapeutic effects in patients with senile depression (Wohleb

et al., 2016; Yuan et al., 2020; Hang et al., 2021; Dawood et al.,

2022; Li et al., 2022; Strekalova et al., 2022). Changes in the

expression levels of cytokines and chemokines have also been

reported to occur in the blood of patients withMDD (Martinuzzi

et al., 2021; Poletti et al., 2021; Agarwal et al., 2022).

Among the multiple environmental factors, repeated

stressful events are associated with the onset of MDD, and

stress has been shown to activate the hypothalamic–pituitary–

adrenocortical (HPA) system (Pariante and Lightman, 2008;

Nouraei et al., 2018; Ceruso et al., 2020; Hennings et al.,

2021). The negative feedback of corticosteroids on the HPA

system occurs at the level of the hypothalamus and anterior

pituitary via glucocorticoid receptors (GRs). Dysregulation

of this negative feedback mechanism has been reported in

patients with MDD, which results in hyperactivity of the

HPA system and higher basal levels of serum corticosterone

(Almeida et al., 2021). In addition, many clinical studies

have demonstrated that elevated corticosterone levels trigger

depressive symptoms (Short et al., 2016; Raupp-Barcaro

et al., 2018). These facts strongly indicate that sustained

elevated levels of plasma corticosteroids are a cause of

MDD. However, glucocorticoids (humans, cortisol, rodents, and

corticosterone) can show both inflammation-aggravating and

anti-inflammatory effects. One of the inflammatory cytokines,

interleukin-1 (IL-1), inhibits the translocation of the GR

from the cytoplasm to the nucleus (Wang et al., 2004).

Furthermore, in the activation of the sympathetic nervous

system, which is another stress response system, noradrenaline

has been reported to act on the microglia to induce IL-1β

mRNA expression (Sugama et al., 2019; Tozaki-Saitoh et al.,

2020).

As a part of the molecular mechanism of the onset

of depression based on this stress hypothesis, microglial

activation, and intracerebral inflammation have been shown

to be important for the emotional changes caused by chronic

stress in rodent models (Furuyashiki et al., 2019). Chronic

stress stimulates IL-1β production, and cyclooxygenase (COX)

1 is involved in the biosynthesis of the inflammation-

related molecule prostaglandin (PG) E2 following chronic

stress exposure (Nie et al., 2018). IL-1β and COX-1 are

mainly expressed in microglia in the brain; however, the

relationship between the changes in oligodendrocyte and

myelin functions and the response to inflammation in the

brain is largely unknown. Therefore, this mini-review focuses

on the current advances in inflammation studies in the

brain that might be related to the pathophysiology of

MDD due to stress exposure, which seems to be related to

not only neuronal functions but also oligodendrocytes and

myelin functions.

Promote or suppress: Glucocorticoid and
noradrenaline

Activated microglia have been reported to be involved in

various pathologies, including depression, bipolar disorder, and

sleep disorder (Stokes et al., 2015; Tay et al., 2018). Stress

exposure has been shown to be associated with microglial

activation (Walker et al., 2013; Sugama and Kakinuma, 2020).

Stress-induced microglial activation involves not only acute

stress exposure but also chronic stress exposure. Furthermore,

activation of both the HPA axis and the sympathetic nervous

system occurs with stress exposure (Elsaafien et al., 2021;

Sjörs Dahlman et al., 2021). GR and α- and β-adrenergic

receptors (ARs) are expressed in microglia and are involved

in the morphological and functional changes of microglia

with stress exposure; however, glucocorticoid and noradrenaline

functions for microglial activity and inflammation after

stress exposure are mediated by contradictory mechanisms

(Wohleb et al., 2011; Walker et al., 2013; Delpech et al.,

2015; Barnard et al., 2019; Ryan et al., 2020; Brás et al.,

2022).

Glucocorticoids

Our previous studies have indicated that elevation of

glucocorticoid levels by chronic stress exposure induces the

expression of adhesion molecules in oligodendrocytes via

the activation of the PI3K–PDK1–SGK1–NDRG1 pathway,

which causes excess arborization of oligodendrocytes (Miyata

et al., 2011). However, no reduction in the number of

oligodendrocytes was observed in the corpus callosum. We

also found that the nodes and paranodes of Ranvier in the

corpus callosum were narrower and oligodendrocyte activity

decreased after chronic stress exposure (Miyata et al., 2015b,

2016). However, we could not find microglial activation in

Frontiers in AgingNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2022.934346
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Miyata et al. 10.3389/fnagi.2022.934346

the corpus callosum for 24 h after the last stress exposure

(Miyata et al., 2011). A recent report suggested that microglia

are transiently activated for 1.5–4 h after social defeat stress,

and this microglial activation is enhanced in the hippocampus

and medial prefrontal cortex (PFC) of mice exposed to

chronic stress (Nie et al., 2018; Furuyashiki and Kitaoka,

2019). Thus, this stress response to microglia is transient

and shows specificity for different brain regions; therefore,

further investigation of the relationship between the elevation of

plasma glucocorticoid levels, the inflammatory response in the

brain and peripheral tissues, and the depression-like pathology

is required.

The contradictory mechanisms of glucocorticoids

function in both microglial activity and inflammation

after stress exposure. Previous reports have presented several

hypotheses regarding this controversial phenomenon. The

priming hypothesis indicates that the inflammation state is

exacerbated by glucocorticoid treatment of microglia before

lipopolysaccharide (LPS) stimulation; however, microglial

activation is inhibited by glucocorticoid treatment of

microglia after LPS stimulation (Frank et al., 2010; Carrillo-

de Sauvage et al., 2013). The next hypothesis postulates a

dependency on glucocorticoid concentration. Treatment

of microglia with a low concentration of glucocorticoids

indicates suppression of inflammation; however, treatment

with a high concentration of glucocorticoids for microglia

promotes inflammation (MacPherson et al., 2005; Liu et al.,

2018b).

Noradrenaline

The contradictory mechanisms underlying noradrenaline

also function in both microglial activity and inflammation

after stress exposure. The noradrenaline signal was shown

to induce p38 MAPK- and ERK1/2-dependent inflammatory

responses in the absence of LPS stimulation; however, after LPS

stimulation, noradrenaline stimulates cAMP and suppresses the

inflammatory response in a PKA-dependentmanner (Qian et al.,

2009; Takahashi et al., 2018; Zhang et al., 2018; Ryan et al.,

2020).

cGAS-STING pathway

The cyclic GMP–AMP synthase (cGAS)–stimulator of

interferon genes (STING) pathway is one of the mechanisms

by which DNA appears in the cytoplasm, induces innate

immune systems, and strongly induces type I interferon (IFN-I)

(Margolis et al., 2017; Sprooten et al., 2019; Taguchi and Mukai,

2019; Yang et al., 2022). In recent years, the response to

autologous DNA leakage into the cytoplasm and the abnormal

activation of the cGAS-STING pathway have been reported to be

involved in many neurodegenerative and inflammatory diseases

(Jauhari et al., 2020; Pal et al., 2020; Barrett et al., 2021; Jassim

et al., 2021; Hinkle et al., 2022).

Type I interferon

The IFN therapy has been established as a useful treatment

for many diseases such as hepatitis C, hepatitis B, and multiple

myeloma (Ettari et al., 2016; Ye and Chen, 2021; Cao et al.,

2022; Liu, H. et al., 2022). However, IFN-I treatment is known

to induce various neuropsychiatric symptoms, and depression

is known to occur at a high frequency of 30% or more

(Tovey and Lallemand, 2010; Pinto and Andrade, 2016; Liu

et al., 2020). Nevertheless, the core symptoms of IFN-induced

depression are reported to be physical symptoms, such as sleep

disorders and loss of appetite, and the mood symptoms that

are observed in general depression are difficult to identify

in the foreground, with few reports describing the molecular

mechanisms underlying these differences. Thus, although the

relationship between the cGAS-STING pathway and the onset

of depression has not yet been reported, the primary goal

of future research is the involvement of chronic stress in

the endoplasmic reticulum and the Golgi apparatus functions

as the molecular mechanism of INF-I production by TBK1-

IRF3 pathway activation and the pathology of INF-I-specific

depressive symptoms.

Senescence-associated secretory phenotype

Aging is well-known to cause changes leading to immune

system decline, a process called “immunosenescence” (Pietrobon

et al., 2020). In addition, a previous report has shown that the

elderly have mild chronic inflammation and that inflammatory

proteins and growth factors are constantly increasing in the

elderly brain and a senescence-associated secretory phenotype

(SASP) mediates the transport of these factors extracellularly

(Gamage et al., 2020; Liao et al., 2021; Blagosklonny, 2022).

However, the increased levels of inflammatory cytokines, such

as TNF-α, IL-1, and IL-6, are very low in the elderly, and this

mild chronic inflammation in the elderly, called “inflammaging,”

is one of the health indicators of the elderly (Rea et al., 2018;

Pietrobon et al., 2020). Thus, these phenomena in the elderly

might be related to the activation of the SASP by transcription

factors, such as NF-κB and C/EBP-β, and the onset of senile

depression (Bruxel et al., 2019; Saito et al., 2021).

Inflammasome

Inflammasomes are protein complexes that play a central

role in innate immunity (Man and Kanneganti, 2016; Gasteiger

et al., 2017; Challagundla et al., 2022; Dong et al., 2022).

Inflammasome signals have been reported to cause the activation

of caspase-1 and increase the secretion of TNF-α and IL-1β,
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which are inflammatory cytokines in microglia and may

be associated with depressive symptoms (Zhu et al., 2017;

Slusarczyk et al., 2018; Li et al., 2021; Rao et al., 2021; Liu Q.

et al., 2022).

Nucleotide-binding, leucine-rich repeat, pyrin
domain containing 3

Nucleotide-binding, leucine-rich repeat, pyrin domain

containing 3 (NLRP3) has been reported to function as a

“hub” for the pathophysiology of various neuropsychiatric

disorders, including MDD (Iwata et al., 2016; Yamanashi et al.,

2017; Zhang et al., 2022). A previous report has indicated

that an increase in the ATP concentration in the PFC and

hippocampus was observed after restraint stress or chronic

mild stress as a model for the onset of depression and

that ATP binds to the P2X7 receptor in microglia (Ribeiro

et al., 2019; Lan et al., 2020; Drinkall et al., 2022). Next,

this P2X7 signal decreases the concentration of intracellular

potassium, inducing the formation of a protein complex

between the NLRP3 oligomer, apoptosis-associated speck-like

protein containing a CARD (ASC), and pro-caspase 1 (Yang

et al., 2018; von Muecke-Heim et al., 2021). The suppression

of inflammation in this inflammasome pathway might be a

function of the antidepressant effect; however, many P2X7

receptor inhibitors have low central transferability, and IL-1β-

neutralizing antibodies are extremely expensive (Iwata et al.,

2016; Wang et al., 2016; Yue et al., 2017; Ren et al., 2021).

Brain-related inflammation

Brain inflammation after chronic stress exposure involves

not only the induction of inflammatory cytokines from

microglia but also multiple peripheral reactions, such as

dysfunction of the blood–brain barrier, involvement of IL-

1 receptors in vascular endothelial cells, and promotion of

monocyte migration from the peripheral tissues into the brain

(Chaves-Filho et al., 2019; Kitaoka, 2022).

NSAIDs

Nonsteroidal anti-inflammatory drugs inhibit COX-1 and

COX-2 functions and decrease prostaglandin and thromboxane

levels, thus inducing a reduction in TNF-α and IL-6 levels

(Wohleb et al., 2016; Yuan et al., 2020; Hang et al., 2021;

Li et al., 2022). COX-1 selective inhibitors that suppress

inflammation in the brain can inhibit depressive symptoms

after chronic stress exposure (Guevara et al., 2015; Brkic

et al., 2020). COX-1 is expressed selectively in the microglia,

and it has been suggested to be involved in inflammation

control and depression by microglial regulation. Toll-like

receptors (TLRs) are highly expressed in microglia. Chronic

stress exposure induces the TLR2/4-dependent inflammatory

cytokines IL-1α and TNF-α in the microglia of PFC (Nie

et al., 2018). Furthermore, TLR2/4 is not only required for

enhanced expression of inflammatory cytokines in PFCs but also

essential for PGE2 production in the subcutaneous region (Nie

et al., 2019). The COX-2 selective inhibitor celecoxib inhibits

prostaglandin and downstream cytokine production (Strekalova

et al., 2022). Thus, several clinical studies have shown that

celecoxib enhances the antidepressant effect; however, some

studies have indicated that celecoxib might increase brain

inflammation (Baune, 2017; Lang and Walter, 2017; Alboni

et al., 2018; Strumila et al., 2022). These conflicting results may

be resolved through more detailed basic and clinical studies in

the future (Luning Prak et al., 2022).

IL-1β and IL-6

Corticosterone, which is closely related to chronic stress

responses, increases the number of neutrophils in the bone

marrow (Sarjan and Yajurvedi, 2018). Catecholamines, which

are chronic stress response factors, promote the proliferation

and recruitment of hematopoietic stem cells in the bone marrow

(Hanns et al., 2019). Thus, blood neutrophil and monocyte

counts increase in mice exposed to chronic stress.

Increased expression of CCL2, a CCR2 ligand and one of the

chemokines involved in the mobilization of monocytes in the

blood, was observed in microglia after chronic stress exposure,

and increased expression of IL-1β was observed in monocytes in

the brain (Slusarczyk et al., 2015; Zhao et al., 2016; McKim et al.,

2018; Trojan et al., 2019). This increase in monocyte-derived

Il-1β expression and activation by caspase-1 is associated with

anxiety symptoms (Wohleb et al., 2015; McKim et al., 2018).

The relationship between IL-6 andMDD pathology has been

reported previously (Maes et al., 2016; Ting et al., 2020; Kuo

et al., 2021). Serum IL-6 concentration was significantly higher

in patients with MDD and decreased only in the SSRI and SNRI

reaction groups (Fei et al., 2021). Thus, high IL-6 levels in the

blood are associated with intractable depression, and IL-6 levels

in the blood may predict the therapeutic response to SSRIs

and/or SNRIs.

COVID-19 infections

Coronaviruses can damage the central nervous system

(CNS) via direct invasion. These viruses enter via the

blood-circulation pathway, neuronal pathway, and binding

to angiotensin-converting enzyme-2 (ACE-2) receptors (Wu

et al., 2020; Kumar et al., 2021; Hornick et al., 2022; Thye

et al., 2022). Furthermore, some patients with COVID-19

show cytokine dysregulation, such as TNF-α, IL-1β, IL-6,

and IFN-γ, which are well known to be associated with

MDD (Liu et al., 2021; Lorkiewicz and Waszkiewicz, 2021).
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FIGURE 1

Expected mechanisms of the onset of MDD by the e�ects of intracerebral inflammation due to environmental stress exposure.

Cytokine-release syndrome or COVID-19 infection-induced

inflammatory responses may be associated with chronic stress-

related inflammatory responses that prolong and increase

post-viral symptoms (Troyer et al., 2020). Furthermore, some

COVID-19 survivors show a relationship between disruption

of the HPA axis and several psychiatric symptoms, including

anxiety, depression, and post-traumatic stress disorder (PTSD)

(Hu et al., 2020; Badenoch et al., 2021; Mohammadkhanizadeh

and Nikbakht, 2021; Hornick et al., 2022; Thye et al., 2022).

Conclusion

Many diseases of the nervous system attack nonneuronal

cells and indirectly affect neuronal function and integrity.

We have already demonstrated for the first time both in

vivo and in vitro that exposure to chronic stress leads

to alterations in oligodendrocyte activity and disrupts

axon-myelin adhesion at the paranodes and nodes of

Ranvier, as evidenced by the diffuse distribution of key

proteins and reduced axonal activity (Miyata et al., 2011,

2015b, 2016). We further found changes in some factors

involved in the inflammatory response based on the

results of our recent study. Therefore, we have continued

investigating the relationship between brain inflammation and

depressive pathology.

Compromised white matter/myelin integrity has been

reported not only in patients with MDD but also in animal

models of MDD (Miyata et al., 2016; Miyata, 2019; Greenberg

et al., 2021). Furthermore, in brain imaging and postmortem

evaluations of the human brain, patients with MDD have

been found to show abnormalities in the white matter

and/or oligodendrocytes (Czéh and Nagy, 2018; Vostrikov

and Uranova, 2020). Interestingly, stress exposure in animal

models can decrease the number of oligodendrocytes in

the cortex and amygdala, indicating potential links between

disturbed myelination and MDD (Liu et al., 2018a; Kokkosis

et al., 2022; Madeira et al., 2022). In contrast, it has been

reported that astrocytes are related to neuroinflammation,

and astrocyte density in the frontal region is reduced
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in chronic stress conditions (Banasr et al., 2010; Hattori

et al., 2017; Takarada-Iemata et al., 2018; Roboon et al.,

2021).

A primary goal of future studies is to understand the

mechanisms of several brain/peripheral inflammations,

which are discussed in this review, and the molecular

mechanisms of neurons, oligodendrocytes/myelin, astrocytes,

microglia cells, and vascular systems functional changes

in chronic stress-exposed mouse models (Figure 1).

Therefore, it will be intriguing to examine whether

some factors involved in the inflammatory response,

which were found in our studies, play roles in the

compromised white matter/myelin integrity that has

been reported.
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